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The mechanics of crushing and breaking ofparticles is one of the most intractable problems in
materials science. The stressed states ofprocessed materials are significantly inhomogeneous, and
thus the deformation and disintegration mechanisms vary greatly. Two techniques have been
developedfor realizing these processes as a quasi-homogeneous transition. The device and method
developed by Enikolopov transform a solid polymer spontaneously into powder. The same loading
system is now used for obtaining fine-grained metals, similarly as when using the ECAP device
developed by Valiev. Both techniques are now usedfor obtaining nanostructured materials. The
common feature of both types of methods is the formation of new physical surfaces. These are
particle-free oversurfaces or grain boundaries. The method requires a supply ofenergy in theform
of mechanical work, and this is mostly done by simultaneous action ofpressure and shear stress.
Theformation offree oversurfaces in stressed solid bodies is the subject offracture mechanics. The
Griffith equation is employed to describe the problem.
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Introduction. Granulation forms the basis of many mechanical technologies that
aim to change the material substructure into a bulk. Two techniques have been developed
for realizing these processes as a quasi-homogeneous transition [1, 2]. The device and
method developed by Enikolopov [3] transforms a solid polymer spontaneously into
powder. The same loading system is now used for obtaining fine-grained polycrystals,
similarly as when using the ECAP device [4] developed by Valiev. Both techniques are
now used for obtaining nanostructured materials [5]. It is necessary to clarify the
micromechanisms of these processes for the purposes of materials science as well as
practical applications.

The initial phase of the processes in question is the state with large deformations
where local rotation as a part of the deformation gradient cannot be neglected. This effect
has been studied experimentally using X-ray techniques [6, 7] and also microscopically on
the polished surface of specimens [8-10]. The theoretical analysis of deformations
assuming local rotations is known as the Cosserat continuum theory. This theory was
developed in the second half of the 20th century [11, 12]. A number of problems
involving formation of the substructure and grain size were solved using a coupled stress
theory [13, 14].

The second phase of the spontaneous fragmentation process of quasi-homogeneous
solids, which takes place under pressure and shear stress, results in the formation of new
physical surfaces, i.e., particle-free oversurfaces [3] and a new grain structure with new
grain boundaries [4]. The limit states of individual shear cracks and shear bands are now
under very intensive theoretical and experimental study. An early paper [15] provided an
elastic solution for the in-plane crack problem as well as the out-of-plane crack problem.
3D shear cracks were studied in [16-18] using the extended finite element method and
continuum-discontinuum modeling.

A description of the final state of the process now arises from the superposition of
the two phases. This shows the formation of the field of deformations and rotations and
shear spherical cracks that they induce. The deformation field around a spherical
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macrocrack was studied in [19], using an interaction energy integral method. Attempts to
solve the above mentioned problems are based on the assumption of a homogeneous
continuum with individual defects [20, 21]. The aim of this paper is to put forward a
model of the granulation process, in which a quasi-homogeneous solid changes its grain
size and structure in the whole body volume.

A Model of the Granulation Process in a Solid Body. The general principle of an
idealized granulation process is a transition of a homogeneous solid body into a bulk of
homogeneous particles having surface tension and the same mass as in the original body.
The process is comparable with brittle fracture, but the stress states and crack modes are
different. Brittle fracture takes place mainly under tensile stress and in the form of the first
crack opening mode. According to the experimental results introduced above, the
analyzed process continues under the combination of both shear and pressure stresses.
This stress state then results in cracks of the 2nd and 3rd modes. The energy balance
principle used in the study of crack problems is expressed by the Griffith equation:

dE = dS+dU- dW = 0, dw = 2dU, (1)

where E is the total potential energy of a cracked body, S is the surface energy of the
crack, U is the strain energy of a deformed body with a crack, and W is the potential
energy of the applied loads. The presented relation between W and U is valid on
condition that the strains are elastic.

Fig. 1. system of deformations [11].

The Polar Continuum Mechanics Equations. Deformations in technological
processes are always large and the experimental results introduced above show that in
theoretical description kinematic rotations of a deformed material cannot be neglected.
The effect of local rotation is described in the mechanics of deformable bodies by
micropolar continuum theories. There, the whole system of deformations (Fig. 1) and
stresses is supplemented by the introduction of the moment stress tensor ny and
distortion tensor kYVy into the equations that describe its mechanical behavior. The
deformation of the differential representative volume element of a material is expressed
by the following relations [11]:

(2)

The stresses o0 jj and my that occur in the centers of the volume element planes are
described by the following equations:
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The elastic behavior ofisotropic materials is then defined by the following relations:

“4)

where G and v are elastic constants and a and t are parameters of the material
substructure.

The strain energy dU in the differential volume element dV is determined by the
following formula:

dU = udV, u= sijEij + mijkjj. (5)

Spherical Shear Cracks in a Spatially Compressed Material. A crucial point in
the granulation process is connected with the origin of the spherical particle form. It is
necessary to take into account the continuous field of local rotations resulting from large
shear strain. Experimental results show that at a certain level of the shear strain, rotations
stay discontinuous [6]. When the material is assumed to be isotropic, the originating
discontinuities acquire the form of a sphere as these rotations are always spatial.
Furthermore, this transition is possible owing to the energy flux coming from the
compressed volume elements into the surface layers and originating along the spherical
discontinuities, which can be seen as frozen eddies with boundary layers. To reach the
conditions for the transition limit state, the Griffith equation is used. The quantities of the
surface energy S and strain potential energy U, therefore, have to be determined.

Let us now assume spherical shear cracks on the surface of a sphere placed inside a
representative volume element cube (Fig. 2). The cracks are bounded by circles, which
originate from sections parallel to the sides of the cube. Their surface area is the same
as that of the six spherical segments. The differentials of their surface area and volume are
determined by the following formulas:

dA = 12&R 2sin <pd<p, dV = 6mR3sin3 <pd<yp, (6)

where R is the radius of the sphere and <p is the angle between its normal and meridian
plane.

The crack surface energy dS is now obtained by multiplying the crack surface area
2dA by the specific surface energy y, which also contains the energy of the plastically
deformed surface layer.

NO+ N2
ds = Rd<p
dh = dssinp = Rsinp
dA c=Rsinp
Fig. 2. Volume element cube.
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The strain energy density u in the material with polar stresses is now calculated by
the substitution of inverse relation (4) for Ki in Eq. (5), and further arranged and
expressed in the form containing the invariants S( and M ( of the stress and moment
tensors s\l;! and mh—!:

L,
_ os@efy om mVmijmji
2G 422G (1-]12)
1 S M(@2-1M
) v (g + ?-1M @ -
2G 3(1+,m) 2a2G (1-12)
The strain energy dU is now expressed using Eqgs. (5)-(7)
S M
dU = \— @ +S @ + @ \R3sin3 pdp. (8)
12G 3(1+,n) 2a2G (1-]1 2)

Substituting both quantities dS and dU in the Griffith equation, Eq. (1) results in
the following formula:

dE = o, M@ IME)

S ) R sin ip 6nR sinp= 0. 9)
3(1+,mn) 2a2G (1-12)

An approximation is accepted for the purpose of simplifying the equation. The angle
< is assumed for the octahedral plane, i.e., the value of sin2 < then equals 3/4. The
character of the parameters a and R should be pointed out. Both express the length and
stand for the characteristic dimension of structural elements, i.e., the particle size.
Therefore, an equation taking into account the condition R = a leads, after some
rearrangement, to the following quadratic form regarding the structural element size a:

a2(-12) (@) +3SD) m16yaG(1-]2)+ 3(M(2)- '1M (2)) = (10)

The solution of this form will be the subject of the next theoretical and experimental
analyses.

Conclusions. The solution of the problem under study is based on the account of the
mutual coupling of shear deformations with local rotations. The rotations predetermine the
origin of shear spherical cracks in all internal points of the macrovolume of the material.
The energy supplied to the system by the applied spherical pressure then leads, together
with other physicochemical auxiliary effects, to new conditions for thermo- dynamic
equilibrium of the process and to the formation of new physical surfaces.
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