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The mechanics o f  crushing and breaking o f  particles is one o f  the most intractable problems in 
materials science. The stressed states o f  processed materials are significantly inhomogeneous, and 
thus the deformation and disintegration mechanisms vary greatly. Two techniques have been 
developed fo r  realizing these processes as a quasi-homogeneous transition. The device and method 
developed by Enikolopov transform a solid polymer spontaneously into powder. The same loading 
system is now used fo r  obtaining fine-grained metals, similarly as when using the ECAP device 
developed by Valiev. Both techniques are now used fo r  obtaining nanostructured materials. The 
common feature o f  both types o f  methods is the formation o f  new physical surfaces. These are 
particle-free oversurfaces or grain boundaries. The method requires a supply o f  energy in the form  
o f mechanical work, and this is mostly done by simultaneous action o f  pressure and shear stress. 
The formation offree oversurfaces in stressed solid bodies is the subject offracture mechanics. The 
Griffith equation is employed to describe the problem.

K eyw o rd s : technology, processes, solids, crushing, m echanics, polar continuum, particle, 
oversurface, grain, grain boundary.

In trod uction . Granulation forms the basis o f  m any m echanical technologies that 
aim to change the material substructure into a bulk. Two techniques have been  developed  
for realizing these processes as a quasi-hom ogeneous transition [1, 2]. The d evice and 
m ethod developed by  Enikolopov [3] transforms a solid  polym er spontaneously into 
powder. The sam e loading system  is n ow  used for obtaining fine-grained polycrystals, 
sim ilarly as w hen using the ECAP device [4] developed by  Valiev. Both techniques are 
now  used for obtaining nanostructured materials [5]. It is necessary to clarify the 
m icrom echanism s o f  these processes for the purposes o f  materials science as w ell as 
practical applications.

The initial phase o f  the processes in question is the state w ith large deform ations 
w here loca l rotation as a part o f  the deform ation gradient cannot be neglected. This effect 
has been studied experim entally using X -ray techniques [6 , 7] and also m icroscopically  on 
the polished  surface o f  specim ens [8 -1 0 ]. The theoretical analysis o f  deform ations 
assum ing loca l rotations is know n as the Cosserat continuum  theory. This theory was 
developed in  the second h a lf o f  the 20th century [11, 12]. A  number o f  problem s 
involving form ation o f  the substructure and grain size were solved  using a coupled stress 
theory [13, 14].

The second phase o f  the spontaneous fragmentation process o f  quasi-hom ogeneous 
solids, w hich takes place under pressure and shear stress, results in  the formation o f  new  
physical surfaces, i.e ., particle-free oversurfaces [3] and a n ew  grain structure w ith  new  
grain boundaries [4]. The lim it states o f  individual shear cracks and shear bands are now  
under very intensive theoretical and experim ental study. A n  early paper [15] provided an 
elastic solution for the in-plane crack problem  as w ell as the out-of-plane crack problem. 
3D  shear cracks were studied in [1 6 -1 8 ] using the extended finite elem ent m ethod and 
continuum -discontinuum  m odeling.

A  description o f  the final state o f  the process n ow  arises from the superposition o f  
the tw o phases. This show s the formation o f  the field  o f  deform ations and rotations and 
shear spherical cracks that they induce. The deform ation field  around a spherical
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macrocrack w as studied in  [19], using an interaction energy integral method. Attem pts to 
solve the above m entioned problem s are based on the assum ption o f a hom ogeneous  
continuum w ith  individual defects [20, 21]. The aim o f  this paper is to put forward a 
m odel o f  the granulation process, in w hich  a quasi-hom ogeneous solid  changes its grain  
size and structure in  the w hole body volum e.

A  M od el o f  th e  G ran u la tion  P rocess in  a Solid  B ody. The general principle o f  an 
idealized granulation process is a transition o f  a hom ogeneous solid  body into a bulk o f  
hom ogeneous particles having surface tension  and the sam e m ass as in  the original body. 
The process is comparable w ith  brittle fracture, but the stress states and crack m odes are 
different. Brittle fracture takes place m ainly under tensile stress and in the form o f  the first 
crack opening m ode. A ccording to the experim ental results introduced above, the 
analyzed process continues under the com bination o f  both shear and pressure stresses. 
This stress state then results in  cracks o f  the 2nd and 3rd m odes. The energy balance 
principle used  in  the study o f  crack problem s is expressed by  the Griffith equation:

where E  is the total potential energy o f  a cracked body, S  is the surface energy o f  the 
crack, U  is the strain energy o f  a deform ed body w ith a crack, and W  is the potential 
energy o f  the applied loads. The presented relation betw een W  and U  is valid  on 
condition that the strains are elastic.

T h e P o lar  C on tin u u m  M ech an ics E q u ation s. D eform ations in  technological 
processes are alw ays large and the experim ental results introduced above show  that in 
theoretical description kinem atic rotations o f  a deform ed material cannot be neglected. 
The effect o f  local rotation is described in the m echanics o f  deform able bodies by  
m icropolar continuum  theories. There, the w hole system  o f  deform ations (Fig. 1) and 
stresses is supplem ented by the introduction o f  the m om ent stress tensor n  ÿ  and 
distortion tensor k  ÿ  into the equations that describe its m echanical behavior. The 
deform ation o f  the differential representative volum e elem ent o f  a material is expressed  
by the fo llow in g  relations [ 11]:

The stresses o  jj and my that occur in  the centers o f  the volum e elem ent planes are 
described by  the fo llow ing equations:

dE  =  dS  +  d U  -  d W  =  0, d W  =  2 d U , ( 1)

Fig. 1. system o f deformations [11].

(2 )
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^  ij, j  0, ^  nm ^  nm +  £ imn № ij, j  0 (3)

The elastic behavior o f  isotropic materials is then defined by  the fo llow ing relations:

where G  and v are elastic constants and a  and t  are parameters o f  the material 
substructure.

The strain energy d U  in  the differential volum e elem ent d V  is determ ined by  the 
fo llow ing formula:

Sp h erica l S h ear C racks in  a S p atia lly  C om p ressed  M ateria l. A  crucial point in 
the granulation process is connected w ith the origin o f  the spherical particle form. It is 
necessary to take into account the continuous field  o f  local rotations resulting from large 
shear strain. Experimental results show  that at a certain level o f  the shear strain, rotations 
stay discontinuous [6 ]. W hen the material is assum ed to be isotropic, the originating  
discontinuities acquire the form o f  a sphere as these rotations are alw ays spatial. 
Furthermore, this transition is possib le ow ing to the energy flux com ing from the 
com pressed volum e elem ents into the surface layers and originating along the spherical 
discontinuities, w hich  can be seen  as frozen eddies w ith boundary layers. To reach the 
conditions for the transition lim it state, the Griffith equation is used. The quantities o f  the 
surface energy S  and strain potential energy U, therefore, have to be determined.

Let us n ow  assum e spherical shear cracks on the surface o f  a sphere p laced inside a 
representative volum e elem ent cube (Fig. 2). The cracks are bounded by  circles, w hich  
originate from sections parallel to the sides o f  the cube. Their surface area is the same 
as that o f  the six  spherical segm ents. The differentials o f  their surface area and volum e are 
determ ined by the fo llow ing formulas:

where R  is the radius o f  the sphere and <p is the angle betw een its normal and meridian  
plane.

The crack surface energy dS  is n ow  obtained by  m ultiplying the crack surface area 
2dA  by  the specific surface energy y, w hich  also contains the energy o f  the plastically  
deform ed surface layer.

(4)

d U  =  u d V , u =  s ij £ ij +  mij k  j j . (5)

dA =  12tzR  2 sin <pd<p, d V  =  6mR3 s in 3 <pd<p, (6 )

N 0 +  N 2

dA

ds =  Rd<p 
dh =  ds sin p =  R sin p 

c =  R sin p
Fig. 2. Volume element cube.
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The strain energy density u in the material w ith  polar stresses is now  calculated by  
the substitution o f  inverse relation (4) for K tj  in  Eq. (5), and further arranged and 
expressed in  the form containing the invariants S (  and M (  o f  the stress and m om ent
tensors s H and mH:v lJ

Ц

u =
l j l j  3 (1 + f t ) 11 

2G
+  -

■Vmijmji

4 a  2G ( 1 - ] 2 )

1

2G

S (1)
3(1+ ,и )

+ S (2) +
M (2) - ] M (S2) 

2a  2G ( 1 - ]  2 )
(7)

The strain energy d U  is n ow  expressed using Eqs. (5 )-(7 )

d U  =  \ —  
12G

S (1)
3( 1+ ,и )

+ S (2)
M

+ (2)

2a  2G ( 1 - ] 2 )
\R 3 s in 3 pdp. (8)

Substituting both quantities dS  and d U  in  the Griffith equation, Eq. (1) results in 
the fo llow ing formula:

dE  = ’ (1)
3( 1+ ,и )

+ S (2) +
M  (2) ] M (S2) 

2a 2G (1 -  ]  2 )
R  sin ip 6nR  sin p =  0. (9 )

A n  approxim ation is accepted for the purpose o f  sim plifying the equation. The angle 
<p is assum ed for the octahedral plane, i.e ., the value o f  s in 2 <p then equals 3/4. The 

character o f  the parameters a  and R  should be pointed out. Both express the length and 
stand for the characteristic dim ension o f  structural elem ents, i.e ., the particle size. 
Therefore, an equation taking into account the condition R  =  a  leads, after som e 
rearrangement, to the fo llow ing quadratic form regarding the structural elem ent size a :

a  2 ( 1- ]  2 ) (1) +  3S D)
1+  ft

■ 1 6 y a G (1 -] 2 ) +  3( M (2)- ' ] M (2) ) = ( 10)

The solution o f  this form w ill be the subject o f  the next theoretical and experimental 
analyses.

C onclu sions. The solution o f  the problem  under study is based on the account o f  the 
mutual coupling o f  shear deform ations w ith loca l rotations. The rotations predetermine the 
origin o f  shear spherical cracks in  all internal points o f  the m acrovolum e o f  the material. 
The energy supplied to the system  by  the applied spherical pressure then leads, together 
w ith other physicochem ical auxiliary effects, to new  conditions for thermo- dynamic 
equilibrium o f  the process and to the form ation o f  n ew  physical surfaces.
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