Устойчивость бурильных колонн в наклонно направленных скважинах

В. И. Гуляев, И. В. Горбунович

Национальный транспортный университет, Киев, Украина

Поставлена задача о теоретическом моделировании бифуркационного выпучивания бурильных колонн в глубоких наклонно направленных и горизонтальных нефтяных и газовых скважинах и предложена методика ее решения. Выполнен анализ критических состояний бурильных колонн при различных значениях угла наклона скважины, скоростей осевого движения бурильной колонны и ее вращения. Построены формы бифуркационного выпучивания.

Ключевые слова: наклонно направленные скважины, бурильные колонны, силы трения, потеря устойчивости, спиральные формы.

Введение. Конец прошлого века ознаменовался появлением целого ряда новейших технологий в топливно-энергетическом комплексе, особое место среди которых занимает высокоэффективная система разработки газонефтяных залежей с помощью наклонно направленных и горизонтальных скважин (рис. 1). За счет увеличения площади дренирования применение таких скважин позволяет существенно увеличить их дебит, продуктивность и скорость добычи, а также уменьшить себестоимость добычи и общее число колодцев при разработке конкретных месторождений. Среди наклонных скважин, наиболее удаленных по горизонтали от буровой установки, одной из ведущих является горизонтальная скважина с боковым отклонением 12000 м, пробуренная в шельфовой зоне острова Сахалин (третье место в мировой практике бурения [1]). Проектировщиками ставится задача увеличить это отклонение до 15000 м.

Рис. 1. Геометрическая схема бурильной колонны в наклонно направленной скважине.

По данным Американского нефтяного института, в настоящее время успех бурения наклонно направленных и горизонтальных скважин составляет 76%, для удлиненных скважин аварийной оказывается каждая третья [2, 3]. Учитывая, что их стоимость превышает 50 млн. долларов США, можно

В. И. Гуляев, И. В. Горбунович

заключить, что задачи моделирования критических состояний бурильных колонн (БК) в таких скважинах представляют существенный научный и прикладной интерес.

Среди этих задач особое место занимает проблема устойчивости БК в скважине, что обусловлено большой ее длиной по сравнению с диаметром и размещением внутри скважинной полости, ограничивающей поперечные перемещения. Поэтому в данной проблеме можно выделить две задачи, описывающие разные стадии буфуркационного процесса. На первой стадии происходит переход колонны в безразличное равновесное состояние, в котором наряду с исходной прямолинейной равновесной формой возможна некоторая другая, выпученная форма. Это состояние наступает при значениях силовых факторов, называемых критическими. Для их определения необходимо решать краевую задачу на собственные значения (задача Штурма-Лиувилля). Найденные при решении собственные значения определяют критические значения силовых (продольная сила, крутящий момент) или кинематических (угловая скорость вращения колонны, скорость течения в ней жидкости) факторов, а построенные нетривиальные решения – формы зарождающейся потери устойчивости [4-6]. На второй стадии потери устойчивости колонна выпучивается, искривляется, касается стенки скважины, вступает в силовое взаимодействие с ней и переходит в состояние закритического равновесия, в котором она, как принимается в теоретических расчетах, имеет форму регулярной цилиндрической спирали. Такое состояние обычно является устойчивым, поскольку стенки скважины препятствуют дальнейшему деформированию БК, однако его нельзя считать допустимым, так как возникающие в результате контактного взаимодействия силы трения ограничивают ее вращательное движение, а нормальные силы способствуют переходу породы в окрестности скважины в неустойчивое равновесие и ее обрушению.

Отметим, что решение второй задачи является более простым по сравнению с первой, поскольку при ее постановке принимается, что выпученная БК приобретает заданную спиральную форму, и с помощью так называемой обратной задачи теории балок вычисляются силы и моменты, необходимые для ее удержания в таком состоянии. Впервые указанный подход использовался в работе [7], дальнейшее развитие он получил в [8–14], где рассматривались вопросы определения шага выпученной спирали и контактных сил при различных упрощенных комбинациях граничных условий, учета и неучета сил веса и трения, а также разных сочетаний продольной силы и крутящего момента. Кроме того, как показали настоящие исследования, при работе БК находится в существенно неоднородном преднапряженном состоянии, и при потере устойчивости происходит ее локальное выпучивание с образованием нескольких нерегулярных спиральных витков, местоположения которых заранее неизвестно. Поэтому вряд ли являются обоснованными предпосылки о регулярности форм закритических спиралей, используемые при постановке задач о закритических равновесиях БК в пилиндрических скважинах.

Ранее [4-6] предложена методика моделирования эйлеровой потери устойчивости БК в сверхглубоких вертикальных скважинах с учетом не-

Устойчивость бурильных колонн в наклонно направленных скважинах

однородности их преднапряженного состояния, действия крутящего момента, а также сил инерции вращательного движения и внутреннего потока промывочной жидкости. Разработанная методика позволяет находить критические комбинации определяющих факторов операций бурения, соответствующие самому начальному этапу зарождения неустойчивости, и строить формы начинающегося выпучивания БК. При этом удалось преодолеть основную трудность процесса теоретического моделирования, связанную с малым отношением диаметра трубы БК к ее длине. Поскольку по этому параметру сверхглубокие БК геометрически подобны человеческому волосу, уравнения, описывающие их изгибное деформирование, приобретают так называемую "вычислительную жесткость", и традиционные методы их интегрирования становятся плохо сходящимися. В вышеуказанных работах высокий уровень сходимости вычислений достигнут в результате применения метода начальных параметров в сочетании с процедурой ортогонализации по Годунову.

Однако проблема прогнозирования и моделирования начальной стадии выпучивания приобретает особую специфику, если БК находится в наклонной или горизонтальной скважине. В этом случае в общий баланс сил необходимо включать также силы трения и их моменты. Учитывая, что наклонные и горизонтальные скважины получают все большее распространение в бурильной практике, отметим, что проблема разработки методики моделирования устойчивости находящихся в них БК является актуальной.

Напряженное состояние бурильной колонны в наклонной скважине. Пусть скважина, содержащая БК длиной L, наклонена под углом α к горизонтали. Совместим с осевой линией БК координатную ось Oz, направленную в сторону увеличения глубины скважины.

При выводе уравнения устойчивости БК необходимо выделить два состояния равновесия. В первом состоянии определяются внутренние силы T(z) и моменты $M_z(z)$ в БК, вызванные силами тяжести и трения, во втором – функции T(z) и $M_{z}(z)$ используются в качестве коэффициентов в разрешающих уравнениях и находятся их значения, при которых оператор уравнений бифуркации вырождается и наступает потеря устойчивости. В связи с этим вводится ряд упрощающих предположений относительно общей статической схемы равновесия упругого стержня в наклонном желобе. В частности, вращение длинной БК в длинной цилиндрической полости происходит с малой угловой скоростью и поэтому не учитывается. Несущественным считается также влияние сил инерции потоков промывочной жидкости. Принято, что главными причинами, вызывающими выпучивание БК, являются внутренняя продольная сила T(z) и крутящий момент $M_z(z)$. На формирование этих силовых факторов основное влияние оказывают осевая сила *R*, с которой БК упирается в дно скважины на конце z = L, крутящий момент $M_{\text{дол}}$, с которым долото разрушает породу, распределенные силы гравитации интенсивностью $f_{\rm rp}$, силы трения $f_{\rm rp}$ и моменты сил трения *m*.

Распределенные силы тяжести (рис. 2) вычисляются элементарно: $f_{\rm rp} = g(\rho_{\rm T} - \rho_{\rm W})F$, где $g = 9,81 \,{\rm m/c}^2$ – ускорение свободного падения; $\rho_{\rm T}$, $\rho_{\rm W}$ – плотности материала трубы БК и промывочной жидкости соответственно; F – площадь поперечного сечения трубы. Тогда их осевые и нормальные компо-

В. И. Гуляев, И. В. Горбунович

ненты составляют: $f_z = f_{rp} \sin \alpha$; $f_n = f_{rp} \cos \alpha$. Однако при вычислении сил трения f_{rp} и моментов *m* возникают некоторые трудности, вызванные неопределенностью коэффициента статического трения в теории сухого трения. Так, полагают, что сила трения подчиняется закону Кулона [15]:

$$f_{\rm TP} \le \mu f_n, \tag{1}$$

где знак неравенства соответствует трению покоя, знак равенства – критическому состоянию и трению скольжения.

Рис. 2. Силы и моменты, действующие на элемент бурильной колонны.

Поскольку соотношение (1) не позволяет в явном виде определить силы трения $f_{\rm m}$, для их вычисления используются уравнения равновесия системы. Однако и этот подход в общем случае может оказаться нерезультативным, если рассматриваемая система содержит тела, соединенные упругими элементами. Учитывая, что система становится статически неопределимой, состояниям ее равновесия может соответствовать бесчисленное множество комбинаций сил трения. В качестве примера, иллюстрирующего это свойство упругих систем с трущимися парами, рассмотрим два тела, расположенные на наклоненной под углом α плоскости и связанные упругой пружиной (рис. 3). На тела действуют силы тяжести G_i , раскладываемые на силы: нормального давления $N_i = G_i \cos \alpha$, тангенциальные силы $P_i = G_i \sin \alpha$, силы трения $F_i^{\text{ rp}}$ (*i* = 1, 2) и силы натяжения пружины $T_{12} = -T_{21}$. Если угол а меньше некоторого предельного значения, называемого углом трения, то можно подобрать бесчисленное множество сил упругости $T_{12} = -T_{21}$, при которых система будет в равновесии. Каждой из них будет соответствовать своя комбинация сил трения покоя $|F_1^{\text{тр}}| < \mu |N_1|, |F_2^{\text{тр}}| < \mu |N_2|.$ Однако если такую систему привести в движение путем, например, увеличения угла α , то в соответствии с законом (1) силы трения сразу примут единственно возможные значения $|F_1^{\text{тр}}| = \mu |N_1|, |F_2^{\text{тр}}| = \mu |N_2|.$

Аналогичные явления имеют место также для баланса сил трения и осевых упругих сил, действующих на удлиненную упругую БК в наклонной скважине. Пока БК находится в состоянии покоя ей может соответствовать бесчисленное множество функций распределения сил трения $f_{\rm тp}(z)$ и про-

дольных упругих сил T(z), поэтому задача их нахождения является статически неопределимой. Однако если БК перемешается вдоль оси скважины (с любой скоростью), то при выбранном законе (1) интенсивность сил трения составляет $f_{\rm TP} = \pm \mu g(\rho_{\rm T} - \rho_{\rm w})F \cos \alpha$, где знак "+" или "–" выбирается в зависимости от направления движения БК.

Рис. 3. Равновесие тел на наклонной плоскости.

Поскольку вектор сил трения в трущейся паре всегда направлен вдоль вектора относительной скорости трущихся тел, то при вращательном движении БК осевая компонента сил трения $f_{\rm TP} = 0$, окружная составляющая этой силы дает распределенный крутящий момент интенсивностью $m = \pm \mu g(\rho_{\rm T} - \rho_{\rm W})F\cos\alpha r_1$, где r_1 – наружный радиус трубы БК.

Задача об определении сил трения и их моментов усложняется, когда БК одновременно и перемещается в осевом направлении и вращается. В такой ситуации составляющие сил трения в осевом и окружном направлениях пропорциональны скоростям движения в этих направлениях элемента поверхности трубы БК, трущегося с поверхностью стенки скважины. Тогда интенсивности осевой силы трения и ее момента рассчитываются по формулам

$$f_{\rm Tp} = \pm \mu g(\rho_{\rm T} - \rho_{\rm K}) F \cos \alpha \frac{\dot{z}}{\sqrt{(\dot{z})^2 + (\omega r_1)^2}};$$

$$m = \pm \mu g(\rho_{\rm T} - \rho_{\rm K}) F \cos \alpha \frac{\omega r_1^2}{\sqrt{(\dot{z})^2 + (\omega r_1)^2}}.$$
 (2)

Равенства (2) позволяют вычислить внутренние силы T(z) и крутящие моменты $M_z(z)$ при различных режимах движения БК внутри скважины. В частности, из формул (2) следует, что подбором отношения скоростей \dot{z} и ωr_1 можно регулировать силы сопротивления $f_{\rm TP}$. Так, если скорость $\omega r_1 >> \dot{z}$, то силы $f_{\rm TP}$ становятся очень маленькими, и БК может перемещаться вдоль очень длинных горизонтальных участков только под действием сил тяжести на первом (вертикальном) участке. В этом случае колонна как бы ввинчивается в скважину, не испытывая осевых сил сопротивления. Этот факт известен специалистам-бурильщикам и широко применяется на практике.

В. И. Гуляев, И. В. Горбунович

Уравнения критических состояний. Рассмотрим устойчивость БК только на нижнем прямолинейном участке наклонно направленной скважины длиной L, полагая, что на верхней криволинейной части она испытывает наибольшие растянутые внутренние осевые силы и поэтому устойчивость потерять не может (рис. 1). Как обычно при расчете устойчивости БК [7–14], примем, что силы тяжести $f_{\rm rp}(z)$, силы трения $f_{\rm rp}(z)$ и их моменты не препятствуют ее выпучиванию, а влияют только на преднапряжение в критическом состоянии.

Особенность бифуркационного выпучивания БК под действием внутренних силы T(z) и момента $M_z(z)$ заключается в том, что форма ее потери устойчивости может быть только трехмерной [4–6]. Поэтому геометрию БК будем описывать с помощью двух искомых переменных u(z), v(z), представляющих собой ее поперечные перемещения вдоль осей Ox и Oy соответственно. В связи с большой длиной БК и ее гибкостью граничные условия для этих функций на краях z = 0, z = L несущественно влияют на критические состояния. Поэтому можно считать, что БК шарнирно закреплена на концах.

Уравнения потери устойчивости упругого стержня под действием силы T(z) и момента $M_z(z)$ имеют вид [4]

$$EI\frac{d^{4}u}{dz^{4}} - \frac{d}{dz}\left(T\frac{du}{dz}\right) - \frac{d}{dz}\left(M_{z}\frac{d^{2}v}{dz^{2}}\right) = 0;$$

$$EI\frac{d^{4}v}{dz^{4}} - \frac{d}{dz}\left(T\frac{dv}{dz}\right) + \frac{d}{dz}\left(M_{z}\frac{d^{2}u}{dz^{2}}\right) = 0,$$
(3)

где u, v – поперечные перемещения упругой линии БК в деформированном состоянии в плоскостях Oxz и Oyz соответственно; I – момент инерции поперечного сечения трубы БК относительной осей Ox и Oy; E – модуль упругости материала БК.

Учитывая, что и T и M_z зависят от z, записываем систему (3) в окончательном виде

$$EI\frac{d^{4}u}{dz^{4}} - T(z)\frac{d^{2}u}{dz^{2}} - \frac{dT(z)}{dz}\frac{du}{dz} - M_{z}(z)\frac{d^{2}v}{dz^{2}} - \frac{dM_{z}(z)}{dz}\frac{dv}{dz} = 0;$$

$$EI\frac{d^{2}v}{dz^{4}} - T(z)\frac{d^{2}v}{dz^{2}} - \frac{dT(z)}{dz}\frac{dv}{dz} + M_{z}(z)\frac{d^{2}u}{dz^{2}} + \frac{dM_{z}(z)}{dz}\frac{dv}{dz} = 0.$$
(4)

Для рассмотренного случая равновесия БК в наклонной скважине силу T(z) можно представить в виде

$$T(z) = -R + (f_{\rm Tp} - f_z)(z - L) =$$

= -R + g(\rho_{\rm T} - \rho_{\rm F})F[\mu\cos\alpha \frac{z}{\sqrt{(z)}^2 + (\omega r_1)^2} - \sin\alpha](z - L). (5)

Тогда получим

$$\frac{dT}{dz} = g(\rho_{\rm T} - \rho_{\rm K})F[\mu\cos\alpha\frac{\dot{z}}{\sqrt{(\dot{z})^2 + (\omega r_1)^2}} - \sin\alpha]. \tag{6}$$

Крутящий момент вычисляется аналогично:

$$M_z(z) = M_{\text{пол}} + m(L-z) =$$

$$= M_{\rm gon} + \mu g(\rho_{\rm T} - \rho_{\rm m}) F \cos \alpha \frac{\omega r_1^2}{\sqrt{(\dot{z})^2 + (\omega r_1)^2}} (L - z).$$
(7)

Производная от него записывается в виде

$$\frac{dM_{z}}{dz} = -\mu g(\rho_{\rm T} - \rho_{\rm K}) F \cos \alpha \frac{\omega r_{\rm l}^{2}}{\sqrt{(\dot{z})^{2} + (\omega r_{\rm l})^{2}}}.$$
(8)

С помощью равенств (5)–(8) уравнения устойчивости (4) приводятся к окончательному виду.

Полагаем, что на концах z = 0, z = L реализуются условия шарнирного опирания. В таком случае имеем краевые условия:

$$u(0) = v(0) = 0; \quad u''_{zz}(0) = v''_{zz}(0) = 0;$$

$$u(L) = v(L) = 0; \quad u''_{zz}(L) = v''_{zz}(L) = 0.$$
(9)

Комбинации функций (5)–(8), при которых однородная система (4), (9) наряду с тривиальными решениями имеет и нетривиальные, являются критическими. Они характеризуют состояния колонны, при которых она начинает выпучиваться, приобретая пространственную криволинейную форму. Для определения этих состояний и построения бифуркационных форм применяется метод начальных параметров в сочетании с методом ортогонализации по Годунову. При этом соответствующая матрица размера 8×8 частных решений (фундаментальная матрица, или матрица Коши) вычисляется с помощью численного метода Эверхарта [4].

Обсуждение результатов. Для исследования влияния на устойчивость БК угла наклона α прямолинейного участка скважины и отношения скорости \dot{z} осевого движения к окружной скорости ωr_1 элемента ее наружной поверхности выбран случай, когда ее длина L = 4000 м. Наружный r_1 и внутренний r_2 радиусы трубы колонны составляют 0,08415 и 0,07415 м соответственно; материал трубы – сталь с механическими параметрами: $E = 2,1 \cdot 10^{11}$ Па; $\rho_T = 7,8 \cdot 10^3$ кг/м³; влияние промывочной жидкости не учитывалось. Полагали, что в процессе бурения БК нижним концом упирается в дно скважины, тогда $R = 1,6 \cdot 10^5$ Н. Если торцевая часть долота

выведена из контакта с породой, то R = 0. Коэффициент трения μ принят равным 0,2. Момент сил трения $M_{\text{дол}}$, действующих на долото, варьировался.

Поскольку в рассмотренном случае внутренние сила T(z) и момент $M_z(z)$ не зависят от ω , а определяются только отношением $\dot{z}/\omega r_1$ и величинами R и $M_{\text{дол}}$, для каждой выбранной комбинации этих параметров по формулам (5), (7) вычисляли функции T(z), $M_z(z)$ и затем путем варьирования значением $M_{\text{дол}}$ находили его критическое значение $M_{\text{дол}}^{\text{кр}} = M_z^{\text{кр}}(L)$ и строили форму потери устойчивости. Результаты расчетов представлены в таблице. Они соответствуют различным значениям угла наклона α , выраженного через угол трения $\operatorname{arctg} \mu$. При $\alpha < \operatorname{arctg} \mu$ невращающаяся колонна удерживается в неподвижном состоянии силами трения, при $\alpha > \operatorname{arctg} \mu$ для ее удержания к верхнему концу необходимо приложить продольную растягивающую силу, случай $\alpha = \operatorname{arctg} \mu$ является предельным.

Критические значения продольных сил $T^{\text{кр}}(0)$ и крутящих моментов $M_z^{\text{кр}}(0)$ в бурильной колонне

№ позиции	ż/ωrį	R = -T(L),H	а, рал	$T^{\text{kp}}(0),$	$M_{\rm Z}^{\rm Kp}(0),$	$M_z^{\mathrm{Kp}}(L) = M_{\mathrm{дол}}^{\mathrm{Kp}},$
			I - 7-	п	н.м	Н∙м
1	0,1	0	$0,1 \operatorname{arctg} \mu$		_	_
2	0,1	0	0,5arctg μ	119844	2755366	2730000
3	0,1	0	$\operatorname{arctg} \mu$	268813	4154996	4130000
4	0,1	0	1,25 $\operatorname{arctg}\mu$	342406	14134718	14110000
5	0,1	0	$3 \operatorname{arctg} \mu$	824489	11361150	11340000
6	0,1	$1,6 \cdot 10^5$	$\operatorname{arctg} \mu$	108813	4154996	2754000
7	0,1	$1,6 \cdot 10^5$	1,25 arctg μ	182406	14134718	1980800
8	0,1	$1,6 \cdot 10^5$	$\pi/2$	1362139	6911000	6911000
9	10	0	$0,1 \operatorname{arctg} \mu$	_	_	-
10	10	0	$0,5 \operatorname{arctg} \mu$	_	_	_
11	10	0	$\operatorname{arctg} \mu$	_	-	_
12	10	0	1,25 arctg μ	78037	3294472	3292000
13	10	0	3 arctg μ	598286	9694115	9692000
14	10	$1,6 \cdot 10^5$	$\operatorname{arctg} \mu$	_	-	-
15	10	$1,6 \cdot 10^5$	1,25 arctg μ	_	_	_
16	10	$1,6 \cdot 10^5$	$\pi/2$	1326139	5003000	5003000

При проведении исследований рассматривались два случая: БК медленно опускалась вниз и сравнительно быстро вращалась $(\dot{z}/\omega r_1 = 0,1)$; при ее спуске осуществлялось медленное вращение $(\dot{z}/\omega r_1 = 10)$. Формы потери устойчивости, построенные для первого случая при найденных значениях $M_z^{\text{кр}}(L)$, соответствующих поз. 1–8 в таблице, приведены на рис. 4,*a*. Все

они имеют вид нерегулярных спиралей с переменным шагом и различным расположением мест преобладающего выпучивания. В значительной степени характер выпучивания БК зависит от вида функций T(z), $M_z(z)$ и локализации их максимальных значений. В простейшем случае, когда T(z) и $M_z(z)$ постоянны, удалось получить аналитическое выражение для критического значения крутящего момента [16]:

$$M_z^{\rm Kp} = \pm 2\sqrt{EI}\sqrt{\pi^2 EI/L^2 + T},\qquad(10)$$

которое использовалось для тестирования точности предложенной методики.

Рис. 4. Формы бифуркационного выпучивания бурильных колонн в наклонно направленных скважинах: $a - \dot{z}/\omega r_{\rm j} = 0,1; \ \delta - \dot{z}/\omega r_{\rm j} = 10.$

Рассматривалась модельная задача, в которой труба бурильной колонны длиной 4000 м в отсутствие сил трения подвергалась действию постоянной по всей длине продольной растягивающей силы T = 100000 H, и рассчитывалось критическое значение крутящего момента $M_z^{\rm kp}$. Согласно формуле (10) в этом случае получим $M_z^{\rm kp} = 1146199,410$ H·м. В результате выполнения вычислений с помощью предложенного подхода значение $M_z^{\rm kp}$ оказалось равным 1146199,445 H·м. При проведении тестирования расчетная длина БК разбивалась на 70000 участков интегрирования и на ней задавались 150 точек ортогонализации.

Из формулы (10) следует, что при T = 0 величина $M_z^{\kappa p}$ обратно пропорциональна длине БК:

$$M_z^{\rm \kappa p} = \pm 2\pi EI/L.$$

Если БК сжата (T < 0), то $M_z^{\text{кр}}$ уменьшается, растяжение БК (T > 0) приводит к увеличению $M_z^{\text{кр}}$. Поэтому, например, в случаях, когда БК сжата в ее нижней части реакцией R, критические значения крутящего момента $M_z^{\text{кр}}(L)$ сравнительно невелики (в таблице поз. 6, 7). В то же время на критическое состояние и форму выпучивания БК большое влияние оказывает также угол α наклона скважины, поскольку от него существенно зависят знаки и распределения функций T(z) и $M_z(z)$ на внутренних участках колонн. Действительно, как свидетельствуют равенства (5)–(8), эти функции линейно изменяются вдоль длины БК, причем $M_z(z)$ максимально в сечении z = 0, а T(z) в зависимости от α может увеличиваться и уменьшаться при приближении к сечению z = 0 (таблица).

При $\alpha = 0,1$ (в таблице поз. 1) силы трения настолько велики, что колонна оказывается сжатой на участке большой протяженности и поэтому неустойчива даже в отсутствие крутящих моментов. Этот эффект усиливается с увеличением скорости опускания колонны (в таблице поз. 9–16 для случая $\dot{z}/\omega r_1 = 10$). При таком соотношении скоростей \dot{z} и ωr_1 стабильное опускание колонны становится возможным, начиная с угла наклона $\alpha = 1,25 \operatorname{arctg} \mu$ в случае R = 0 (в таблице поз. 12). Формы потери устойчивости БК для этого режима опускания представлены на рис. 4,6. Они характеризуются преобладающим выпучиванием в зоне z = L с нулевыми или малыми растягивающими силами T(z).

Выводы

1. Поставлена задача о возникновении критических состояний бурильных колонн в прямолинейных наклонно направленных скважинах, построены разрешающие соотношения и предложена методика их решения.

2. С помощью компьютерного моделирования найдены критические значения осевых сил и крутящих моментов в режимах спуска бурильных колонн в скважинах с различными углами наклона при разных соотношениях между скоростями спуска и вращения колонны.

3. Установлено, что путем вращения бурильной колонны можно стабилизировать ее прямолинейную форму и осуществлять спуск даже в скважинах с малым углом наклона.

Резюме

Поставлено задачу про теоретичне моделювання біфуркаційного випинання бурильних колон у глибоких похило скерованих та горизонтальних нафтових і газових свердловинах та запропоновано методику її розв'язання. Виконано аналіз критичних станів бурильних колон за різних значень кута нахилу свердловини, швидкостей осьового руху бурильної колони й її обертання. Побудовано форми біфуркаційного випинання.

- McDermott J. R., Viktorin R. A., Schamp J. H., et al. Extended reach drilling (ERD) technology enables economical development of remote offshore field in Russia // SPE: Drilling Conf. (23–25 February 2005). – Amsterdam, Netherlands. – P. 183 – 188.
- 2. Фостер Б. "Сетевые графики", улучшающие показатели бурения скважин с горизонтальным смещением забоя // Нефтегазовые технологии. – 2005. – № 3. – С. 19 – 24.
- Mohiuddin M. A., Khan K., Abdulraheem A., et al. Analysis of wellbore instability in vertical, directional and horizontal wells using field data // J. Petroleum Sci. Eng. – 2007. – 55. – P. 83 – 92.
- 4. Гуляев В. И., Гайдайчук В. В., Соловьев И. Л., Горбунович И. В. Квазистатические критические состояния колонн глубокого бурения // Пробл. прочности. – 2006. – № 5. – С. 109 – 119.
- 5. Гуляев В. И., Луговой П. З., Белова М. А., Соловьев И. Л. Об устойчивости равновесия вращающихся бурильных колонн // Прикл. механика. – 2006. – № 6. – С. 101 – 109.
- 6. Гуляев В. И., Гайдайчук В. В., Худолий С. Н., Гловач Л. В. Компьютерное моделирование статических состояний бурильных колонн в наклонно направленных скважинах с геометрическими несовершенствами // Нефтегазопромысловый инжиниринг. – 2006. – № 4. – С. 26 – 29.
- 7. Lubinski A. Developments in Petroleum Engineering. Houston: Gulf Publishing Company, 1987. Vol. 1. 438 p.
- Chao S. and Lukasiewicz S. A new model on the buckling of a rod in tubing // J. Petroleum Sci. Eng. – 2006. – 50. – P. 78 – 82.
- Cunha J. C. Buckling of tubulars inside wellbores: a review on recent theoretical and experimental works // SPE Drilling and Completion. 2004. 19, No. 1. P. 13 19.
- Huang N. C. and Pattilo P. D. Helical buckling of a tube in an inclined well bore // Int. J. Non-Linear Mech. – 2000. – 35. – P. 911 – 923.
- Kwon and Young W. Analysis of helical buckling // SPE Drilling Eng. 1988. – June. – P. 211 – 216.
- Mitchell R. F. New concepts for helical buckling // Ibid. 1988. Sept. P. 303 – 310.
- 13. *Mitchell R. F.* The twist and shear of helically buckled pipe // SPE Drilling and Completion. 2004. **19**, No. 1. P. 20 28.
- 14. *Mitchell R. F.* Simple frictional analysis of helical buckling of tubing // SPE Drilling Eng. 1986. 1, No. 6. P. 457 465.
- 15. Лурье А. И. Аналитическая механика. М.: Физматгиз, 1961. 834 с.
- Феодосьев В. И. Избранные задачи и вопросы по сопротивлению материалов. – М.: Наука, 1967. – 237 с.

Поступила 04. 03. 2008