УДК 539.3

Оценка трещнностойкостн многоопорных замковых соединений лопаток газовых турбин

Н. Г. Шульженко, П. П. Гонтаровский, И. И. Мележик

Институт проблем машиностроения им. А. Н. Подгорного НАН Украины, Харьков, Украина

Приведены результаты оценки трещиностойкости трехопорного замкового соединения лопатки газовой турбины в условиях малоцикловой усталости и ползучести материала при наличии гипотетической трещины. Коэффициент интенсивности напряжений вычисляется с помощью метода конечных элементов.

Ключевые слова: кинетика трещины, малоцикловая усталость, ползучесть, многоопорное замковое соединение.

Оценка трещиностойкости многоопорных замковых соединений выполнена на примере соединения диска с лопаткой турбины высокого давления (ТВД) для привода воздушного компрессора газотурбинной установки (ГТУ) ГТК-10-4, предназначенной для сжатия природного газа. Более половины эксплуатируемых установок имеют наработку свыше 100000 ч при назначенном ресурсе 60000 ч, а в некоторых из них наработка достигала 170000 ч. Замковые соединения лопаток являются наиболее напряженными элементами ГТУ, работающими при температуре около 515°С.

Материал диска ТВД – жаропрочный сплав 15Х12ВНМФ (ЭИ802), плотность которого составляет 7850 кг/м³, коэффициент Пуассона – 0,3.

Материал рабочих лопаток – жаропрочный никелевый сплав XH65BMTЮ (ЭИ893). Его плотность – 8800 кг/м³, коэффициент Пуассона – 0,3.

Теплофизические свойства указанных материалов [1] приведены в табл. 1.

Количество рабочих лопаток на диске – 90, частота вращения ротора ТВД – 86,7 Гц.

Термонапряженное состояние замкового соединения рассчитывается в рамках плоской термоконтактной задачи.

Конечноэлементная расчетная схема показана на рис. 1. На боковых радиальных плоскостях, проходящих через середины хвостовиков соседних лопаток, заданы условия симметрии, на цилиндрической поверхности r = 0,47 м – радиальные перемещения, полученные из расчета облопаченного диска. Центробежные силы от пера лопатки равномерно распределялись по наружной цилиндрической поверхности r = 0,525 м. Граничные условия теплообмена подбирались из условий совпадения экспериментально измеренных температур на работающей установке при стационарном режиме. Температурное поле в замковом соединении на стационарном режиме приведено на рис. 2.

Особенностью данного соединения являются узкие площадки контакта протяженностью около 1 мм хвостовика лопатки и диска, что приводит к

© Н. Г. ШУЛЬЖЕНКО, П. П. ГОНТАРОВСКИЙ, И. И. МЕЛЕЖИК, 2008 ISSN 0556-171Х. Проблемы прочности, 2008, № 5

аблиц 7	а 1 Геплофизические с	войства сплавов 15	Х12ВНМФ и ХНо	55ВМТЮ
<i>T</i> , °C	<i>К,</i> Вт/м · град	$ ho C \cdot 10^6,$ Дж/м $^3 \cdot K$	$lpha \cdot 10^5,$ rpag ⁻¹	<i>E</i> · 10 ⁵ , МПа
20	$\frac{12,7}{23,0}$	<u>3,40</u> <u>3,75</u>	$\frac{1,000}{1,100}$	$\frac{2,16}{2,22}$
200	$\frac{13,0}{24,0}$	$\frac{4,10}{3,91}$	$\frac{1,050}{1,190}$	$\frac{2,04}{2,10}$
300	$\frac{13,8}{25,5}$	4,40 4,27	$\frac{1,070}{1,230}$	$\frac{1,98}{2,02}$
400	$\frac{15,5}{25,9}$	$\frac{4,90}{4,90}$	$\frac{1,100}{1,275}$	1,91 1,95
500	$\frac{17,2}{26,3}$	5,40 5,80	$\frac{1,120}{1,300}$	$\frac{1,80}{1,90}$
600	$\frac{19,7}{27,2}$	$\frac{6,00}{7,00}$	$\frac{1,160}{1,320}$	1,61 1,84

Н. Г. Шульженко, П. П. Гонтаровский, И. И. Мележик

Примечание. Над чертой приведены данные для сплава 15Х12ВНМФ, под чертой – для сплава ХН65ВМТЮ.

высоким контактным давлениям. Коэффициент линейного расширения материала лопатки выше, чем материала диска. Кроме того, температура хвостовика лопатки на 20°С выше, чем гребня диска. При идеальной беззазорной геометрии соединения верхний зуб диска будет нагружен сильнее остальных. Отклонения вследствие неточности изготовления соединения в рамках допусков приводят к дополнительным перераспределениям усилий между зубьями, в результате чего верхние зубья гребней диска будут нагружены больше. Поэтому в каждой третьей из обследованных установок, проработавших длительное время, обнаруживают трещины в верхнем зубе диска [2]. Местоположение таких трещин показано на рис. 1, где точка А обозначает вершину трещины. Конечноэлементная сетка в вершине трещины сгущалась до размера 0,01 мм. Естественно предположить, что при пусках газотурбинной установки перепад температур между хвостовиком лопатки и гребнем диска будет большим, чем на стационарном режиме, и верхний зуб будет подгружаться дополнительно. Однако расчеты показывают, что благодаря более высокому коэффициенту теплопроводности материала диска незначительный дополнительный перепад температур возникает при температурах ниже, чем на стационарном режиме, и описанный выше эффект догружений практически не реализуется. Таким образом, можно полагать, что максимальная нагрузка на верхний зуб будет иметь место при стационарном режиме работы.

Оценка трещиностойкости замкового соединения в условиях малоциклового нагружения и ползучести проводится на основе механики хрупкого разрушения по разработанной ранее методике [3, 4], учитывающей многорежимный характер нагружения, асимметрию цикла и другие факторы. Кинетика трещины описывается уравнениями типа Париса.

Рис. 1. Конечноэлементная расчетная схема замкового соединения.

Коэффициент интенсивности напряжений (КИН) определяется с помощью метода конечных элементов [4]. При этом используются прямой метод напряжений (по напряжениям вблизи вершины трещины) и прямой метод перемещений (по раскрытию и сдвигу берегов трещины) с последующим усреднением полученных результатов. Коэффициенты интенсивности напряжений вычисляются для нескольких фиксированных глубин гипотетической трещины, для промежуточных значений размеров трещины они определяются путем интерполирования. Вследствие сложного напряженного состояния в области вершины трещины при решении задачи целесообразно рассматривать КИН нормального отрыва $K_{\rm II}$ и КИН поперечного сдвига $K_{\rm II.}$ Согласно экспериментальным данным имеем $K_{\rm IIc} \approx (0, 6...0, 8) K_{\rm Ic}$ [5], поэтому для оценки кинетики трещины воспользуемся эквивалентным КИН, учитывая что $K_{\rm IIc} = 0.7 K_{\rm Ic}$:

$$K_e = \sqrt{K_{\mathrm{I}}^2 + 2K_{\mathrm{II}}^2}.$$

Расчеты КИН для замкового соединения с идеальной геометрией на стационарном режиме работы сведены в табл. 2. Там же приведены результаты для симметричного нагружения гребня диска, когда трещины расположены симметрично с двух сторон. Как видно, основной вклад в K_e вносит $K_{\rm II}$.

ISSN 0556-171Х. Проблемы прочности, 2008, № 5

Η.	Г.	Шульженко,	П.	П.	Гонтаровский,	И.	И.	Мележик
----	----	------------	----	----	---------------	----	----	---------

Таблица 2 КИН для трещин различной глубины								
Глубина трещины, мм	$K_{\mathrm{I}},$ МПа $\sqrt{\mathrm{M}}$	$K_{\mathrm{II}},$ МПа $\sqrt{\mathrm{M}}$	$K_e,$ МПа $\sqrt{ m M}$	$K_{e}^{ ext{chm}},$ МПа $\sqrt{ ext{m}}$				
0,5	33,07	27,95	51,54	50,81				
1,0	27,34	39,49	53,46	51,48				
1,5	23,48	33,72	53,15	50,29				
2,0	20,77	33,73	52,02	48,41				
2,5	18,80	33,28	50,69	46,44				
3,0	17,50	32,74	49,50	44,67				
4,0	15,54	31,98	47,82	31,66				
5,0	14,58	31,39	47,39	30,42				

Рис. 2. Температурное поле в замковом соединении на стационарном режиме: $1 - T = 390^{\circ}$ С; $2 - T = 410^{\circ}$ С; $3 - T = 430^{\circ}$ С; $4 - T = 450^{\circ}$ С; $5 - T = 470^{\circ}$ С; $6 - T = 490^{\circ}$ С; $7 - T = 510^{\circ}$ С; $8 - T = 530^{\circ}$ С; $9 - T = 550^{\circ}$ С.

В табл. 3 приведены эквивалентные значения КИН для случаев, когда шаг между зубьями хвостовика лопатки больше шага между зубьями гребня диска в пределах допуска при изготовлении ($\delta = 0,01$ м – верхний зуб подгружен) и когда шаг между зубьями хвостовика лопатки меньше шага между зубьями гребня диска ($\delta = -0,01$ мм – верхний зуб разгружен). Там же представлены результаты для двух симметрично расположенных трещин в верхних зубьях гребня диска.

ISSN 0556-171Х. Проблемы прочности, 2008, № 5

Оценка трещиностойкости многоопорных замковых соединений

Зависимость КИН от глубины трещины при отклонениях геометрии соединения								
Глубина	Верхний зу	5 подгружен	Верхний зуб разгружен					
трещины, мм	K_e , МПа \sqrt{M}	$K_e^{\text{сим}}, \ \mathbf{M} \Pi \mathbf{a} \sqrt{\mathbf{M}}$	K_e , МПа \sqrt{M}	$K_e^{\text{сим}}, \text{МПа}\sqrt{\text{м}}$				
0,5	59,15	58,26	43,99	43,42				
1,0	62,11	59,84	45,02	43,26				
1,5	62,07	58,79	44,43	41,93				
2,0	60,86	56,79	43,38	40,33				
2,5	59,36	54,49	42,28	38,65				
3,0	58,02	52,45	41,27	37,19				
4,0	56,15	38,98	39,89	24,81				
5,0	55,63	37,40	39,62	23,97				

Таблица З

Уменьшение КИН с увеличением глубины трещины можно объяснить повышением податливости верхнего зуба с ростом трещины и перераспределением вследствие этого контактных давлений по контактным площадкам соединения.

На рис. З показаны эпюры контактных давлений для левого верхнего зуба с трещиной и для правого верхнего зуба без трещины. На остальных контактных площадках перераспределение контактных давлений незначительно. С ростом трещины в основном подгружается нижний зуб соединения.

Рис. 3. Эпюры контактных давлений для левого верхнего зуба с трещиной (а) и для правого верхнего зуба без трещины (б): $1 - \delta = 0,01$ мм; $2 - \delta = 0; 3 - \delta = -0,01$ мм. (Сплошные линии – при отсутствии трещины, штриховые – при наличии трещины глубиной 2 мм, штрихпунктирные – при трещине глубиной 4 мм.)

ISSN 0556-171Х. Проблемы прочности, 2008, № 5

Н. Г. Шульженко, П. П. Гонтаровский, И. И. Мележик

При рассмотрении кинетики трещины ее начальная глубина составляла 0,5 мм. Для случая циклического нагружения использовали константы уравнения Париса для роторной стали Р2М $C_N = 6,32 \cdot 10^{-11}$, $n_N = 3,176$ [6]. Газотурбинная установка останавливается в среднем один раз за две тысячи часов работы, а снижение на 10% оборотов осуществляется 40 раз.

Для кинетики трещины от ползучести использовали два варианта констант $C_c = 4,6602 \cdot 10^{-12}$ и $0,932 \cdot 10^{-12}$ при $n_c = 5,0685$. Расчеты показывают, что подрастание трещины происходит за счет ползучести материала. Это следует из проведенных расчетов без учета ползучести (табл. 4).

Время подрастания трещины (тыс. часов)

δ,	Глубина трещины, мм										
MM	С уче	гом полз	учести	Замедленная ползучесть			Без учета ползучести				
	2	4	6	2	4	6	2	4	6		
	Одна трещина										
0,01	0,18	0,65	1,22	1,05	3,05	5,48	6,80	20,50	38,00		
0	0,50	1,53	2,80	2,30	6,50	11,60	11,20	29,20	49,80		
-0,01	1,25	3,78	6,85	5,15	14,80	26,25	19,20	51,30	87,80		
	Две трещины										
0,01	0,34	1,52	5,71	1,36	6,05	21,30	8,00	26,90	71,40		
0	0,72	3,58	13,34	2,92	13,55	38,40	12,85	46,90	89,10		
-0,01	1,62	9,67	45,10	6,54	33,00	132,80	22,48	87,10	269,20		

Таблица 4

Время подрастания трещины в верхнем зубе до 2, 4 и 6 мм (трещина почти сквозная) приведено в табл. 4. Там же представлены результаты для трещин в верхних зубьях гребня диска, расположенных симметрично.

Рассмотрены варианты идеально изготовленного замкового соединения $(\delta = 0)$, а также с подгруженным верхним зубом $\delta = 0,01$ мм и с разгруженным верхним зубом $\delta = -0,01$ мм. Из данных табл. 4 следует, что неточность изготовления соединения в пределах допуска существенно влияет на его живучесть.

Приведенные выше результаты получены для материала P2M. Для анализа трещиностойкости реальной конструкции необходимо использовать свойства стали при $T = 515^{\circ}$ С, из которой изготовлен диск. В литературных источниках этих данных обнаружить не удалось. Поскольку эквивалентный КИН $K_e < K_{Ic}$, а при глубине трещины более 1 мм он уменьшается с ее ростом за счет перераспределений напряжений, лавинообразного разрушения зуба не наступает. В случае разрушения верхнего зуба лопатка некоторое время будет удерживаться на двух нижних зубьях.

При двух симметрично расположенных трещинах в верхних зубьях гребня живучесть соединения несколько возрастает за счет большего уменьшения КИН с ростом глубины трещин.

Для повышения ресурса замкового соединения целесообразно шаг между зубьями хвостовика лопатки выполнять на 0,01 мм большим, чем шаг между зубьями гребня диска, что приведет к более равномерному распределению усилий между зубьями при работе на стационарном режиме.

Авторы выражают признательность проф. Л. Б. Гецову за помощь в решении данной задачи.

Резюме

Наведено результати оцінки тріщиностійкості трьохопорного замкового з'єднання лопатки газової турбіни в умовах малоциклової втоми і повзучості матеріалу за наявності гіпотетичної тріщини. Коефіцієнт інтенсивності напружень визначено за допомогою методу скінченних елементів.

- 1. *Масленков С. Б., Масленкова Е. А.* Стали и сплавы для высоких температур. Справочное изд. в 2 кн. Кн. 1. М.: Металлургия, 1991. 383 с.
- 2. Дашунин Н. В., Рыбников А. И., Гецов Л. Б. и др. Опыт длительной эксплуатации стационарных ГТУ на магистральных газопроводах. Ч. 1. Анализ характерных повреждений деталей // Вестн. двигателестроения. 2006. № 3. С. 50 55.
- 3. Шульженко Н. Г., Гонтаровский П. П., Мележик И. И. Оценка живучести высокотемпературных элементов турбомашин с трещинами // Вестн. НТУ "ХПИ". – 2004. – № 19. – С. 153 – 160.
- 4. Шульженко Н. Г., Гонтаровский П. П., Мележик И. И. Расчет трещиностойкости элементов конструкций методом конечных элементов // Там же. – 2005. – № 21. – С. 127 – 132.
- 5. Лебедсв А. О., Бобир М. І., Ламашевський В. П. Механіка матеріалів для інженерів. Київ: НТУУ "КПІ", 2006. 288 с.
- 6. Балина В. С., Конон Е. Д. О ресурсе высокотемпературных роторов паровых турбин // Теплоенергетика. 1988. № 7. С. 21 24.

Поступила 25. 10. 2007