УДК 539.3

Устойчивость ортотропных тонкостенных цилиндрических оболочек при кручении. Сообщение 2. Эксперимент

А. И. Маневич, Е. Ф. Прокопало

Днепропетровский национальный университет, Днепропетровск, Украина

Приведены результаты экспериментального исследования устойчивости тонкостенных ортотропных цилиндрических оболочек при кручении. Выполнено сравнение классического решения и уточненного теоретического, полученного в сообщении 1, с экспериментальными данными. Сделаны некоторые общие выводы, уточняющие существующие представления о выпучивании оболочек при кручении.

Ключевые слова: цилиндрическая оболочка, ортотропная оболочка, устойчивость, кручение, экспериментальное исследование.

Введение. Экспериментальные исследования устойчивости цилиндрических оболочек при кручении проводились, начиная с 30-х годов прошлого века. Достаточно полные обзоры полученных результатов приведены в [1– 4]. Для изотропных цилиндрических оболочек накоплен большой экспериментальный материал [5] и др. Менее исследованы ортотропные и конструктивно-анизотропные оболочки [2, 4]. Соответствие между экспериментальными и теоретическими данными при кручении, как правило, заметно лучше, чем при осевом сжатии, однако отмечается большой разброс экспериментальных точек. Это позволило в [3] сделать вывод, что "к настоящему времени нет удовлетворительного решения задачи устойчивости при кручении. Эксперименты не подтверждают как линейную, так и нелинейную теорию. Отклонение от линейной теории составляет примерно 35%".

В данной работе изложены результаты экспериментального исследования устойчивости ортотропных тонкостенных цилиндрических оболочек при кручении, выполненного с целью проверки теоретического решения, полученного в сообщении 1 [6]. Испытания 80 оболочек малой и средней длины (относительная длина L/R составляла от 1 до 12) позволяют оценить точность как полученного ранее решения [6], так и классического линейного.

Образцы и методика эксперимента. Экспериментальное исследование проводили на модельных оболочках, изготовленных из ватмана (чертежная бумага) марки "В" (ГОСТ 597-73)*. Возможность замены дорогостоящих образцов из металла моделями из ватмана при экспериментальных исследованиях устойчивости оболочек впервые показана, по-видимому, в работе [7]. Выполненные в дальнейшем экспериментальные исследования [8], в том числе в Днепропетровском университете [9, 10], подтвердили целесообразность и перспективность широкого использования ватмана при массовых экспериментах на устойчивость оболочек при различных нагрузках. Кроме высокой технологичности и дешевизны ватман по сравнению с другими материалами имеет высокое отношение предела текучести $\sigma_y/E = (1...3) \cdot 10^{-3}$). По-

^{*} В проведении испытаний принимали участие Е. Яруничева и П. Бондарев.

[©] А.И. МАНЕВИЧ, Е.Ф. ПРОКОПАЛО, 2008

ISSN 0556-171Х. Проблемы прочности, 2008, № 4

этому деформация остается упругой в более широком диапазоне изменения параметров оболочек и нагрузки.

Ватман является ортотропным материалом. Его модули упругости, коэффициенты Пуассона и пределы прочности в главных направлениях ортотропии бумаги заметно различаются. Для используемого в экспериментах материала они равны соответственно: $E_1 = 6,9 \cdot 10^9$ Па; $E_2 = 3,45 \cdot 10^9$ Па; $v_1 = 0,3; v_2 = 0,15; \sigma_{b1} = 45$ МПа и $\sigma_{b2} = 30$ МПа (определены при специальных испытаниях плоских образцов в электромеханическом устройстве, позволяющем выполнять достаточно точные измерения). Толщина листа составляла 0,23 мм.

Испытывали две серии оболочек, отличавшихся ориентацией главных направлений ортотропии ватмана. В первой серии оболочки изготовляли так, чтобы направление с большим модулем упругости $E_1 = 6,9 \cdot 10^9$ Па было ориентировано по образующей. Во второй серии больший модуль упругости отвечал кольцевому направлению. Диаметр всех оболочек был фиксирован и равен 75 мм. В каждой серии длину оболочек варьировали в достаточно широком диапазоне: 37,5...450 мм (L/R = 1...12). Для каждого выбранного значения L/R испытывали по три номинально идентичных оболочки (количество всех оболочек в первой серии равнялось 44, во второй – 36).

Схема испытательной установки приведена на рис. 1. Крутящий момент создавался грузами, усилия от которых передавались на оболочку с помощью тросов, блоков и жесткого торцевого приспособления, посаженного на оболочку. В процессе испытаний определяли критическое значение крутящего момента и измеряли параметры волнообразования (количество волн по кольцу, угол наклона выпучин). В ряде испытаний записывались диаграммы нагрузка – перемещение (в характерных точках). Обнаружено, что при предельной нагрузке имеет место ползучесть, деформации растут при постоянных напряжениях, поэтому при приближении к максимальной нагрузке нагружение проводили достаточно медленно, чтобы не пропустить момент начала ползучести.

Рис. 1. Схема испытательной установки: *I* – оболочка; *2* – торцевое приспособление; *3* – трос; *4* – блок; *5* – грузы; *6* – штатив с микрометром.

Результаты испытаний. *Критические напряжения*. Результаты испытаний представлены на рис. 2, где показаны критические (предельные) значения касательных напряжений τ_{cr} для двух серий оболочек. Там же приведены теоретические зависимости τ_{cr} от отношения L/R, построенные согласно нашему [6] и классическому решениям.

Рис. 2. Экспериментальные (точки) и расчетные (линии) значения критических напряжений для оболочек серий 1 ($E_x = E_1$, $E_y = E_2$) – a и 2 ($E_x = E_2$, $E_y = E_1$) – δ . (Здесь и на рис. 6: сплошные линии – уточненное решение, штриховые – классическое.)

Как видно, экспериментальные точки, как правило, расположены достаточно близко и даже несколько выше расчетных значений по обоим решениям. Расчетные значения по классическому решению при малых длинах оболочек располагаются близко к экспериментальным точкам, полученным для оболочек серии 1, кроме одной точки, для оболочек серии 2 они располагаются выше экспериментальных; при больших длинах оболочек (примерно при L/R > 3) экспериментальные точки лежат выше расчетных. Теоретическая кривая, полученная в [6], во всех случаях располагается несколько ниже

экспериментальных точек и очень близка к их огибающей, т.е. к нижней границе экспериментальных данных. Для оболочек серии 1 расхождение между теоретическими и экспериментальными значениями критических напряжений согласно классическому решению в среднем составляет 5,5% (среднеквадратическое отклонение 3,7%), для оболочек серии 2 - 1% (4,3%), по решению [6] – соответственно 11% (4,1%) и 4,6% (2,8%).

Наиболее вероятно, что расположение экспериментальных значений критических напряжений выше расчетных обусловлено разными граничными условиями, задаваемыми в эксперименте и расчете. В эксперименте торцевые приспособления приклеивали к оболочкам, что обеспечивало их защемление (с отсутствием продольных перемещений краев). При расчете края оболочки полагали шарнирно опертыми (с возможностью продольных перемещений). Как отмечалось ранее [2, 3] на основе исследований Алумяэ и Ямаки, ограничение по углу поворота несущественно, но условия по тангенциальным смещениям являются важными для критического момента. Ограничение продольных смещений приводит к повышению критических напряжений примерно на 10% [3].

Оценим приблизительно эффект защемления, используя решение [5] для изотропных оболочек. Ниже приведены значения отношения критических напряжений для изотропных оболочек с защемленными и шарнирно опертыми краями $\zeta = \tau_z/\tau_s$ (τ_z , τ_s – критические напряжения для оболочек с защемленными и шарнирно опертыми краями соответственно) в зависимости от L/R (по Доннелу) для значения R/h = 163, соответствующего испытанным оболочкам:

L/R	1	2	3	4	5	6	8	10	12
$\zeta = \tau_z / \tau_s$	1,139	1,109	1,1015	1,098	1,0965	1,0955	1,0944	1,0937	1,093

Можно условно пересчитать расчетные критические напряжения на случай защемления, умножая теоретические значения для шарнирных краев на ζ . Результаты такого пересчета для оболочек обеих серий представлены на рис. 3.

Соответствие между расчетом и экспериментом оказывается значительно лучше для решения [6]. Для оболочек серии 1 практически все экспериментальные средние значения ложатся на теоретическую кривую, для оболочек серии 2 они расположены несколько ниже. Расхождение между данными расчета и эксперимента для оболочек серии 1 составляет в среднем 2%, серии 2 – 5,3%. Согласно классическому решению расхождение равно 5 и 9,4% соответственно.

Отметим существующее различие между оболочками двух серий. Для оболочек серии 2 не только средние значения критических напряжений меньше расчетных (по решению [6]), но и все экспериментальные точки лежат несколько ниже теоретической кривой, что и следовало ожидать. Для оболочек серии 1 некоторые экспериментальные точки располагаются несколько выше расчетной кривой, и это требует объяснения. Возможная причина состоит в том, что влияние защемления зависит от ортотропии материала. Поскольку основной эффект защемления в оболочке связан с ограничением продольных смещений края, можно ожидать, что влияние защемления возрастает с увеличением отношения E_x/E_y . Оценка влияния защемления условно на основе расчета для изотропной оболочки (по Доннеллу) несколько занижает эффект защемления для оболочек серии 1 и завышает его для оболочек серии 2.

Рис. 3. Сравнение средних экспериментальных критических напряжений с расчетными, условно пересчитанными для защемления: a – оболочки серии 1 ($E_x = E_1$, $E_y = E_2$); \tilde{o} – оболочки серии 2 ($E_x = E_2$, $E_y = E_1$). (Сплошные линии – уточненное решение, штриховые – классическое, точки – средние значения критических напряжений в эксперименте для каждой относительной длины оболочки.)

В целом следует отметить хорошую согласованность между расчетом и экспериментом. Поскольку расчет основан на линейной теории, это свидетельствует о том, что эффекты нелинейности для цилиндрической оболочки при действии крутящего момента достаточно малы. Снижение критической нагрузки составляет примерно 2...5%.

Столь незначительные расхождения между линейным расчетом и экспериментом не согласуются с результатами известных экспериментов [1–4 и др.]. Малость эффекта нелинейности в наших испытаниях можно объяснить, во-первых, малостью начальных несовершенств, во-вторых, отсутствием или малостью физической нелинейности. На рис. 4 приведены диаграммы деформирования оболочек серии 1, имеющих разную длину. Видно, что кривые остаются практически линейными вплоть до момента потери устойчивости. При испытаниях оболочек из металлов и сплавов [1–5] в области относительно малых длин могло сказываться влияние упругопластических деформаций.

Рис. 4. Диаграммы деформирования оболочек серии 1 малой (а) и большой (б) длины.

Формы выпучивания. Формы потери устойчивости оболочек в эксперименте соответствовали ранее описанным и хорошо известным наклонным выпучинам с образованием одной полуволны по длине (кроме оболочек очень большой длины). Эти формы характеризуются числом волн по кольцу n и углом наклона по отношению к образующей α . Представляет интерес сравнение расчетных и экспериментальных характеристик волнообразования. На рис. 5 приведены экспериментальные значения числа волн n для оболочек серий 1 и 2 при разной относительной длине, а также расчетные кривые, полученные по классическому и данному решениям. Расчетное значение числа волн вычисляли по формуле (12) работы [6], где согласно классическому решению $n_0 = 1,7384$, в решении [6] n_0 определяли численно. Расчетные кривые достаточно хорошо соответствуют экспериментальным данным. В среднем экспериментальные точки расположены ближе к расчетным кривым по решению [6], чем по классическому.

Рис. 5. Сравнение теоретических значений чисел волн по кольцу с экспериментальными для оболочек серий 1 (*a*) и 2 (*б*). (Сплошные линии – уточненное решение, штриховые – классическое решение, точки – данные эксперимента.)

Рис. 6 иллюстрирует сравнение теоретических и экспериментальных значений $tg \alpha$ для оболочек обеих серий. Видно, что теоретические кривые практически совпадают и удовлетворительно описывают экспериментальную тенденцию. В среднем угол наклона выпучин в эксперименте оказывается большим, чем в расчете. По-видимому, защемление краев в большей мере влияет на наклон волн к образующей, чем на число волн по кольцу.

В случае оболочек очень большой длины (L/R = 10...12) волнообразование имело особенности, которые, видимо, не отмечались в литературных источниках. Фотография одной из таких оболочек показана на рис. 7. В пределах возникающих при потере устойчивости длинных наклонных выпучин (которые, однако, не распространялись на всю длину оболочки) образовывались две-три дополнительные волны. Таким образом, послекритическая форма представляла собой наложение разных волн. Видимо, этот эффект является нелинейным и связан с большой пологостью выпучин для длинных оболочек.

Рис. 6. Сравнение теоретических (линии) и экспериментальных (точки) значений tg α для оболочек серий 1 (*a*) и 2 (*б*).

Рис. 7. Форма выпучивания длинной оболочки.

Выводы

1. Отмечается хорошее соответствие между экспериментальными данными и расчетом по линейной теории как для критических напряжений, так и параметров волнообразования ортотропных цилиндрических оболочек при кручении.

2. Влияние геометрической нелинейности на критические напряжения при потере устойчивости под действием крутящего момента невелико; соответствующее снижение критической нагрузки составляет примерно 5% при условии работы материала в упругой области.

3. Поскольку защемление краев приводит, как правило, к примерно в два раза большему повышению критических напряжений (10...12%), линейный расчет, выполненный для шарнирно опертых краев, – к некоторой недооценке несущей способности реальных защемленных оболочек.

4. При пересчете теоретических значений критических напряжений с учетом защемления торцов отмечается хорошее соответствие между уточненным решением и экспериментом, причем экспериментальные точки располагаются ниже теоретических на 2...5%. Пересчет этих значений по классическому решению приводит к большему расхождению с экспериментом.

5. Параметры формы потери устойчивости в эксперименте также хорошо согласуются с расчетными значениями, при этом отмечается лучшее соответствие с расчетом по уточненной теории [6], особенно для числа волн в кольцевом направлении.

Резюме

Наведено результати експериментального дослідження стійкості ортотропних циліндричних оболонок при крученні. Виконано порівняння класичного розв'язку та уточненого теоретичного, отриманого у повідомленні 1, з експериментальними результатами. Зроблено деякі загальні висновки, що уточнюють існуючі уявлення відносно стійкості оболонок при крученні.

- 1. Fung Y. C. and Sechler E. E. Instability of thin elastic shells // Structural Mechanics: Proc. 1st Symp. Naval Structure Mechanics (Stanford University, 1958). Pergamon Press, 1960. P. 115 168.
- 2. Григолюк Э. И., Кабанов В. В. Устойчивость круговых цилиндрических оболочек // Итоги науки. Сер. Механика. М.: ВИНИТИ, 1969. 348 с.
- 3. Григолюк Э. И., Кабанов В. В. Устойчивость оболочек. М.: Наука, 1978. 360 с.
- 4. *Кабанов В. В.* Устойчивость неоднородных цилиндрических оболочек. – М.: Машиностроение, 1982. – 256 с.
- 5. *Donnell L. H.* Stability of thin walled tubes under torsion // NACA Report. 1933. No. 479. P. 29 57.
- Маневич А. И., Прокопало Е. Ф. Устойчивость ортотропных цилиндрических оболочек при кручении. Сообщ. 1. Теория // Пробл. прочности. – 2008. – № 3. – С. 17 – 28.

- 7. *Rhode R. V. and Lundquist E. E.* Strength tests on paper cylinders in compression, bending, and shear // NASA, Technical Note. 1931. No. 370.
- 8. *Чебанов В. М.* Исследование устойчивости тонкостенных оболочек при помощи моделей из бумаги // Инж. сб. 1955. **22**. С. 68 73.
- Прокопало Е. Ф. Экспериментальное исследование устойчивости цилиндрических оболочек при внешнем давлении, линейно изменяющемся вдоль образующей // Строит. механика и расчет сооружений. – 1988.
 № 6. – С. 61 – 64.
- 10. Прокопало Е. Устойчивость круговых цилиндрических панелей при осевом сжатии // Theor. Found. Civil Eng. 2003. **11**. P. 227 230.

Поступила 25. 12. 2006