УДК 539.3

Смешанно-гибридная схема метода конечных элементов для решения задач об изгибе, собственных колебаниях и устойчивости пластин

А. Ю. Чирков

Институт проблем прочности им. Г. С. Писаренко НАН Украины, Киев, Украина

Для решения задач об изгибе, колебаниях и устойчивости пластин построен гибридный конечный элемент на основе треугольника Зенкевича. Применяется смешанная аппроксимация для прогиба и углов поворотов пластины. Показано, что с уменьшением размеров треугольников смешанный метод обеспечивает сходимость как для прогиба пластины, так и изгибающих моментов, которая практически не зависит от способа разбиения пластины на треугольные элементы. В задачах о собственных колебаниях и устойчивости пластин смешанный метод дает более точные значения собственных частот и уровней критической нагрузки по сравнению с классическим треугольником Зенкевича. Представлены результаты численного анализа сходимости и точности решения модельных задач об изгибе, собственных колебаниях и устойчивости собственных задач об изгибе, собственных колебаниях и устойности решения модельных задач об изгибе, собственных колебаниях и устойчивости квадратной пластины.

Ключевые слова: изгиб, свободные колебания и устойчивость пластин, смешанная аппроксимация, метод конечных элементов, сходимость, точность.

Введение. В настоящей работе рассматривается применение смешанногибридной схемы метода конечных элементов (МКЭ) для решения задач об изгибе, собственных колебаниях и устойчивости пластин. Используются результаты, полученные в [1, 2], применительно к задаче об изгибе тонкой пластины. Напомним их.

Согласно классическим положениям теории изгиба тонких пластин [3], состояние пластины полностью описывается прогибом срединной поверхности w. При построении схем МКЭ аппроксимация в пределах конечного элемента должна удовлетворять критерию "постоянства деформаций" и обеспечивать непрерывность прогиба и нормальной производной на сторонах элементов [1]. Наиболее удобным на практике представляется использование простых трехузловых треугольных конечных элементов. Однако построение аппроксимирующих функций в этом случае приводит к серьезным трудностям математического и вычислительного характера [1], поскольку размерность "локальных" пространств конечных элементов достаточно велика и их структура существенно усложняется [1]. Обзор существующих реализаций МКЭ для решения задачи об изгибе пластины приведен в [1, 4]. Отметим наиболее важные из них: треугольник Аргириса; треугольник Сие-Клафа-Точера; сингулярный треугольник Зенкевича; прямоугольник Богнера-Фокса-Шмита; треугольник Белла; треугольник Биркгофа-Мэнсвилда; треугольник Морли; треугольник Фрайш де Вебеке и др.

Для практических приложений одним из возможных и широко распространенных решений этой задачи является несогласованный треугольный элемент, предложенный О. Зенкевичем [1]. Пусть *i*, *j*, k – нумерация вершин треугольника, образованная против часовой стрелки. Тогда прогиб w_h в пределах каждого треугольника задается в виде

© А. Ю. ЧИРКОВ, 2008 108 Смешанно-гибридная схема метода конечных элементов

$$w_{h} = d_{1}\lambda_{i} + d_{2}\lambda_{j} + d_{3}\lambda_{k} + d_{4}\lambda_{i}^{2}\lambda_{j} + d_{5}\lambda_{j}^{2}\lambda_{k} + d_{6}\lambda_{k}^{2}\lambda_{i} + d_{7}\lambda_{i}^{2}\lambda_{k} + d_{8}\lambda_{j}^{2}\lambda_{i} + d_{9}\lambda_{k}^{2}\lambda_{j} + 2d_{10}\lambda_{i}\lambda_{j}\lambda_{k}, \qquad (1)$$

где λ_i , λ_j , λ_k – линейные интерполяционные функции треугольника [2]; коэффициенты $d_1, ..., d_9$ определяются по соотношениям

$$\begin{cases} d_1 = w_i; \quad d_2 = w_j; \quad d_3 = w_k; \quad d_7 = w_i - w_k - b_j \varphi_i - c_j \psi_i; \\ d_4 = w_i - w_j + b_k \varphi_i + c_k \psi_i; \quad d_8 = w_j - w_i - b_k \varphi_j - c_k \psi_j; \\ d_5 = w_j - w_k + b_i \varphi_j + c_i \psi_j; \quad d_9 = w_k - w_j - b_i \varphi_k - c_i \psi_k; \\ d_6 = w_k - w_i + b_j \varphi_k + c_j \psi_k; \quad d_{10} = (d_4 + d_5 + d_6 + d_7 + d_8 + d_9)/4 \end{cases}$$
(2)

 $(\varphi_i = -(\partial w/\partial y)_i, \ \psi_i = (\partial w/\partial x)_i -$ углы поворотов срединной поверхности пластины соответственно вокруг осей *x* и *y* в узле *i*). Поскольку в задании прогиба w_h используется девять независимых коэффициентов $d_1, ..., d_9$, аппроксимация (1) представляет собой неполный кубический полином.

Обозначим через $\varphi_h = -\partial w_h / \partial y$ и $\psi_h = \partial w_h / \partial x$ углы поворотов пластины в пределах каждого треугольника. Тогда на основании соотношений (1), (2) получим

$$\begin{split} \psi_h &= e_1 + e_2 \lambda_i \lambda_j + e_3 \lambda_j \lambda_k + e_4 \lambda_k \lambda_i + e_5 \lambda_i^2 + e_6 \lambda_j^2 + e_7 \lambda_k^2; \\ &-\varphi_h &= f_1 + f_2 \lambda_i \lambda_j + f_3 \lambda_j \lambda_k + f_4 \lambda_k \lambda_i + f_5 \lambda_i^2 + f_6 \lambda_j^2 + f_7 \lambda_k^2, \end{split}$$
(3)

где

$$\begin{cases} e_1 = \frac{1}{2\Delta} (b_i d_1 + b_j d_2 + b_k d_3); & f_1 = \frac{1}{2\Delta} (c_i d_1 + c_j d_2 + c_k d_3); \\ e_2 = \frac{1}{\Delta} (b_i d_4 + b_j d_8 + b_k d_{10}); & f_2 = \frac{1}{\Delta} (c_i d_4 + c_j d_8 + c_k d_{10}); \\ e_3 = \frac{1}{\Delta} (b_j d_5 + b_k d_9 + b_i d_{10}); & f_3 = \frac{1}{\Delta} (c_j d_5 + c_k d_9 + c_i d_{10}); \\ e_4 = \frac{1}{\Delta} (b_k d_6 + b_i d_7 + b_j d_{10}); & f_4 = \frac{1}{\Delta} (c_k d_6 + c_i d_7 + c_j d_{10}); \\ e_5 = \frac{1}{2\Delta} (b_j d_4 + b_k d_7); & f_5 = \frac{1}{2\Delta} (c_j d_4 + c_k d_7); \\ e_6 = \frac{1}{2\Delta} (b_k d_5 + b_i d_8); & f_6 = \frac{1}{2\Delta} (c_k d_5 + c_i d_8); \\ e_7 = \frac{1}{2\Delta} (b_i d_6 + b_j d_9); & f_7 = \frac{1}{2\Delta} (c_i d_6 + c_j d_9). \end{cases}$$

Согласно выражениям (3), (4), функции φ_h и ψ_h в вершинах треугольника принимают значения $\varphi_i = \varphi_h(x_i, y_i)$ и $\psi_i = \psi_h(x_i, y_i)$, причем на сторонах треугольника имеет место параболический закон их изменения. Таким образом, аппроксимация (1)–(4) обеспечивает непрерывность прогиба

А. Ю. Чирков

для всей пластины и непрерывность углов поворотов только в узлах сетки. На сторонах треугольников функции φ_h и ψ_h изменяются по квадратичному закону, и, значит, нарушаются условия непрерывности угла наклона. Теоретические оценки и опыт решения практических задач свидетельствуют, что если сетка треугольников образована системой трех эквидистантных параллельных прямых, то с уменьшением размеров треугольников численное решение сходится к точному [1, 4].

В общем случае аппроксимация (1) позволяет получить решение, сходящееся не к точному, а к отличающемуся от него в пределах некоторой ошибки [1, 4]. Величина ошибки зависит от способа разбиения пластины на треугольные элементы и при использовании разбиения типа "крест" и неравномерных сеток существенно влияет на вычисление кривизны пластины и изгибающих моментов.

В работах [5–8] предложена модификация треугольника Зенкевича, согласно которой в формуле (1) вместо последнего слагаемого $2d_{10}\lambda_i\lambda_j\lambda_k$ добавляются три члена четвертого порядка $\lambda_i^2\lambda_j\lambda_k$, $\lambda_i\lambda_j^2\lambda_k$, $\lambda_i\lambda_j\lambda_k^2$ с различными коэффициентами. В результате обеспечивается выполнение "кусочного" тестирования [1, 8] и, следовательно, удовлетворяется критерий "постоянства деформаций".

Однако более простое решение получено при использовании смешанной аппроксимации для прогиба и углов поворотов пластины [2]. С этой целью модифицируем соотношения (3), полагая

$$\begin{split} \psi_{h} &= e_{1} + e_{2}\lambda_{i}\lambda_{j} + e_{3}\lambda_{j}\lambda_{k} + e_{4}\lambda_{k}\lambda_{i} + e_{5}\lambda_{i}^{2} + e_{6}\lambda_{j}^{2} + e_{7}\lambda_{k}^{2} + \\ &+ e_{8}(\lambda_{i}\lambda_{j}^{2} + \lambda_{i}^{2}\lambda_{j}) + e_{9}(\lambda_{j}\lambda_{k}^{2} + \lambda_{j}^{2}\lambda_{k}) + e_{10}(\lambda_{k}\lambda_{i}^{2} + \lambda_{k}^{2}\lambda_{i}); \\ -\varphi_{h} &= f_{1} + f_{2}\lambda_{i}\lambda_{j} + f_{3}\lambda_{j}\lambda_{k} + f_{4}\lambda_{k}\lambda_{i} + f_{5}\lambda_{i}^{2} + f_{6}\lambda_{j}^{2} + f_{7}\lambda_{k}^{2} + \\ &+ f_{8}(\lambda_{i}\lambda_{j}^{2} + \lambda_{i}^{2}\lambda_{j}) + f_{9}(\lambda_{j}\lambda_{k}^{2} + \lambda_{j}^{2}\lambda_{k}) + f_{10}(\lambda_{k}\lambda_{i}^{2} + \lambda_{k}^{2}\lambda_{i}), \end{split}$$
(5)

где коэффициенты $e_1, ..., e_7, f_1, ..., f_7$ определяются по выражениям (4), а $e_8, e_9, e_{10}, f_8, f_9, f_{10}$ выбираются таким образом, чтобы обеспечить линейный закон изменения функций φ_h и ψ_h на сторонах треугольника:

$$\begin{cases} e_8 = -e_2 + e_5 + e_6; & f_8 = -f_2 + f_5 + f_6; \\ e_9 = -e_3 + e_6 + e_7; & f_9 = -f_3 + f_6 + f_7; \\ e_{10} = -e_4 + e_7 + e_5; & f_{10} = -f_4 + f_7 + f_5. \end{cases}$$
(6)

Следовательно, имеет место непрерывность углов поворота φ_h и ψ_h для всей пластины. Заметим, однако, что аппроксимация (5), (6) накладывает чрезмерные требования непрерывности на функции φ_h и ψ_h . В действительности, согласно классической теории изгиба тонких пластин [3], достаточно потребовать непрерывность нормальной производной $\partial w_h / \partial n$ на границах между треугольниками [1, 4].

Пусть ω_{ij} , ω_{jk} , ω_{ki} – соответственно углы между векторами единичной нормали n_{ij} , n_{jk} , n_{ki} к рассматриваемой стороне треугольника и осью *x*. С учетом того что

$$\begin{cases} \frac{\partial w_{h}}{\partial n_{ij}} = (\psi_{h})_{ij} \cos(\omega_{ij}) - (\varphi_{h})_{ij} \sin(\omega_{ij}); \\ \frac{\partial w_{h}}{\partial n_{jk}} = (\psi_{h})_{jk} \cos(\omega_{jk}) - (\varphi_{h})_{jk} \sin(\omega_{jk}); \\ \frac{\partial w_{h}}{\partial n_{ki}} = (\psi_{h})_{ki} \cos(\omega_{ki}) - (\varphi_{h})_{ki} \sin(\omega_{ki}), \end{cases}$$
(7)

коэффициенты e_8 , e_9 , e_{10} и f_8 , f_9 , f_{10} определяются таким образом, чтобы обеспечить линейный закон изменения нормальной производной $\partial w_h/\partial n$ на сторонах каждого треугольника.

На основании формул (5) и (7) получим

$$\begin{cases} e_8 = g_1 \cos(\omega_{ij}) + g_4 \sin(\omega_{ij}); & f_8 = g_1 \sin(\omega_{ij}) - g_4 \cos(\omega_{ij}); \\ e_9 = g_2 \cos(\omega_{jk}) + g_5 \sin(\omega_{jk}); & f_9 = g_2 \sin(\omega_{jk}) - g_5 \cos(\omega_{jk}); \\ e_{10} = g_3 \cos(\omega_{ki}) + g_6 \sin(\omega_{ki}); & f_{10} = g_3 \sin(\omega_{ki}) - g_6 \cos(\omega_{ki}), \end{cases}$$
(8)

причем g_4 , g_5 , g_6 – произвольные вещественные константы; коэффициенты g_1 , g_2 , g_3 задаются с помощью следующих соотношений:

$$g_{1} = \cos(\omega_{ij})(-e_{2} + e_{5} + e_{6}) + \sin(\omega_{ij})(-f_{2} + f_{5} + f_{6});$$

$$g_{2} = \cos(\omega_{jk})(-e_{3} + e_{6} + e_{7}) + \sin(\omega_{jk})(-f_{3} + f_{6} + f_{7});$$

$$g_{3} = \cos(\omega_{ki})(-e_{4} + e_{7} + e_{5}) + \sin(\omega_{ki})(-f_{4} + f_{7} + f_{5}).$$
(9)

Следовательно, аппроксимация углов поворотов пластины (5) с учетом соотношений (7)–(9) допускает непрерывность нормальной производной на границах между треугольниками. Тем не менее аппроксимация (1), (5), (7)–(9) не является согласованной, поскольку соотношения $\varphi_h = -\frac{\partial w_h}{\partial y}$ и $\psi_h = \frac{\partial w_h}{\partial x}$ выполняются только в узлах сетки. Таким образом, приходим к смешанной аппроксимации для прогиба и углов поворотов пластины.

С физической точки зрения ошибка согласования эквивалентна действию в пределах треугольника фиктивных поперечных деформаций сдвига, определяемых в соответствии с выражениями (9) и законом Гука по формулам

$$\gamma_{xz}^{h} = \frac{\partial w_{h}}{\partial x} - \psi_{h} =$$

$$= -e_8(\lambda_i\lambda_j^2 + \lambda_i^2\lambda_j) - e_9(\lambda_j\lambda_k^2 + \lambda_j^2\lambda_k) - e_{10}(\lambda_k\lambda_i^2 + \lambda_k^2\lambda_i); \quad (10a)$$

$$\gamma_{yz}^{h} = \frac{\partial w_{k}}{\partial y} + \varphi_{h} =$$
$$= -f_{8}(\lambda_{i}\lambda_{j}^{2} + \lambda_{i}^{2}\lambda_{j}) - f_{9}(\lambda_{j}\lambda_{k}^{2} + \lambda_{j}^{2}\lambda_{k}) - f_{10}(\lambda_{k}\lambda_{i}^{2} + \lambda_{k}^{2}\lambda_{i}). \quad (106)$$

Заметим, что в узлах сетки функции γ_{xz}^h , γ_{yz}^h равны нулю, а коэффициенты e_8 , e_9 , e_{10} , f_8 , f_9 , f_{10} определяются по формулам (8), (9).

Пусть γ_{nz}^{h} , γ_{sz}^{h} – компоненты поперечного сдвига на сторонах треугольника, соответствующие векторам нормали и касательной:

$$\begin{cases} (\gamma_{nz}^{h})_{ij} = (\gamma_{xz}^{h})_{ij} \cos(\omega_{ij}) + (\gamma_{yz}^{h})_{ij} \sin(\omega_{ij}); \\ (\gamma_{nz}^{h})_{jk} = (\gamma_{xz}^{h})_{jk} \cos(\omega_{jk}) + (\gamma_{yz}^{h})_{jk} \sin(\omega_{jk}); \\ (\gamma_{nz}^{h})_{ki} = (\gamma_{xz}^{h})_{ki} \cos(\omega_{ki}) + (\gamma_{yz}^{h})_{ki} \sin(\omega_{ki}); \\ (\gamma_{sz}^{h})_{ij} = -(\gamma_{xz}^{h})_{ij} \sin(\omega_{ij}) + (\gamma_{yz}^{h})_{ij} \cos(\omega_{ij}); \\ (\gamma_{sz}^{h})_{jk} = -(\gamma_{xz}^{h})_{jk} \sin(\omega_{jk}) + (\gamma_{yz}^{h})_{jk} \cos(\omega_{jk}); \\ (\gamma_{sz}^{h})_{ki} = -(\gamma_{xz}^{h})_{jk} \sin(\omega_{jk}) + (\gamma_{yz}^{h})_{jk} \cos(\omega_{jk}); \end{cases}$$
(11)

Соотношения (10) с учетом (11) принимают вид

$$\begin{aligned} (\gamma_{nz}^{h})_{ij} &= -(e_8 \cos (\omega_{ij}) + f_8 \sin (\omega_{ij}))\lambda_i \lambda_j; \\ (\gamma_{nz}^{h})_{jk} &= -(e_9 \cos (\omega_{jk}) + f_9 \sin (\omega_{jk}))\lambda_j \lambda_k; \\ (\gamma_{nz}^{h})_{ki} &= -(e_{10} \cos (\omega_{ki}) + f_{10} \sin (\omega_{ki}))\lambda_k \lambda_i; \\ (\gamma_{sz}^{h})_{ij} &= (e_8 \sin (\omega_{ij}) - f_8 \cos (\omega_{ij}))\lambda_i \lambda_j; \\ (\gamma_{sz}^{h})_{jk} &= (e_9 \sin (\omega_{jk}) - f_9 \cos (\omega_{jk}))\lambda_j \lambda_k; \\ (\gamma_{sz}^{h})_{ki} &= (e_{10} \sin (\omega_{ki}) - f_{10} \cos (\omega_{ki}))\lambda_k \lambda_i. \end{aligned}$$
(12)

На основании (8) и (12) находим

$$\begin{aligned} (\gamma_{nz}^{h})_{ij} &= -g_1 \lambda_i \lambda_j; \\ (\gamma_{nz}^{h})_{jk} &= -g_2 \lambda_j \lambda_k; \\ (\gamma_{nz}^{h})_{ki} &= -g_2 \lambda_j \lambda_k; \\ (\gamma_{nz}^{h})_{ki} &= -g_3 \lambda_k \lambda_i; \end{aligned} \qquad \begin{aligned} (\gamma_{sz}^{h})_{ij} &= g_5 \lambda_j \lambda_k; \\ (\gamma_{nz}^{h})_{ki} &= g_6 \lambda_k \lambda_i. \end{aligned}$$

Выбирая коэффициенты g_4, g_5, g_6 из условия

$$(\gamma_{sz}^{h})_{ij} = (\gamma_{sz}^{h})_{jk} = (\gamma_{sz}^{h})_{ki} = 0,$$

получаем $g_4 = g_5 = g_6 = 0.$

Таким образом, коэффициенты e_8 , e_9 , e_{10} и f_8 , f_9 , f_{10} определяются по соотношениям

$$e_8 = g_1 \cos(\omega_{ij}); \qquad f_8 = g_1 \sin(\omega_{ij}); \\ e_9 = g_2 \cos(\omega_{jk}); \qquad f_9 = g_2 \sin(\omega_{jk}); \\ e_{10} = g_3 \cos(\omega_{ki}); \qquad f_{10} = g_3 \sin(\omega_{ki}).$$

Кроме того, использование неравенства треугольника

$$||\gamma_{xz}^{h}|| \le \left\| \frac{\partial w}{\partial x} - \psi_{h} \right\| + \left\| \frac{\partial (w_{h} - w)}{\partial x} \right\|;$$
$$||\gamma_{yz}^{h}|| \le \left\| \frac{\partial w}{\partial y} + \varphi_{h} \right\| + \left\| \frac{\partial (w_{h} - w)}{\partial y} \right\|$$

и результатов об интерполяции [4, 9] приводит к тому, что при $h \rightarrow 0$ имеем $\gamma_{xz}^{h} \rightarrow 0, \gamma_{yz}^{h} \rightarrow 0$. Другими словами, при уменьшении размеров треугольни-ков ошибка согласования стремится к нулю.

Что касается разрешимости дискретной задачи, которая получается на основании смешанной аппроксимации (1) и (5), то можно ожидать, что ее собственные значения не меньше таковых для задачи, построенной с помощью классического треугольника Зенкевича. Действительно, с физической точки зрения аппроксимация (5) приводит к более жесткой механической системе, чем аппроксимация (3), поскольку выполняется непрерывность нормальной производной на сторонах треугольников, и, следовательно, обеспечивает однозначную разрешимость дискретной задачи.

Кривизны и кручение срединной поверхности пластины определяются в пределах каждого треугольника по соотношениям

$$\begin{split} \kappa_x &= -\frac{1}{2\Delta} (A_1\lambda_i + A_2\lambda_j + A_3\lambda_k + A_4\lambda_i^2 + A_5\lambda_j^2 + A_6\lambda_k^2 + \\ &+ A_7\lambda_i\lambda_j + A_8\lambda_j\lambda_k + A_9\lambda_k\lambda_i); \\ \kappa_y &= -\frac{1}{2\Delta} (B_1\lambda_i + B_2\lambda_j + B_3\lambda_k + B_4\lambda_i^2 + B_5\lambda_j^2 + B_6\lambda_k^2 + \\ &+ B_7\lambda_i\lambda_j + B_8\lambda_j\lambda_k + B_9\lambda_k\lambda_i); \\ \kappa_{xy} &= \frac{1}{2\Delta} (C_1\lambda_i + C_2\lambda_j + C_3\lambda_k + C_4\lambda_i^2 + C_5\lambda_j^2 + C_6\lambda_k^2 + \\ &+ C_7\lambda_i\lambda_j + C_8\lambda_j\lambda_k + C_9\lambda_k\lambda_i), \end{split}$$

где

ISSN 0556-171Х. Проблемы прочности, 2008, № 4

113

$$\begin{array}{ll} A_{1}=b_{j}e_{2}+b_{k}e_{4}+2b_{i}e_{5}; & B_{1}=c_{j}f_{2}+c_{k}f_{4}+2c_{i}f_{5}; \\ A_{2}=b_{k}e_{3}+b_{i}e_{2}+2b_{j}e_{6}; & B_{2}=c_{k}f_{3}+c_{i}f_{2}+2c_{j}f_{6}; \\ A_{3}=b_{i}e_{4}+b_{j}e_{3}+2b_{k}e_{7}; & B_{3}=c_{i}f_{4}+c_{j}f_{3}+2c_{k}f_{7}; \\ A_{4}=b_{j}e_{8}+b_{k}e_{10}; & B_{4}=c_{j}f_{8}+c_{k}f_{10}; \\ A_{5}=b_{k}e_{9}+b_{i}e_{8}; & B_{5}=c_{k}f_{9}+c_{i}f_{8}; \\ A_{6}=b_{i}e_{10}+b_{j}e_{9}; & B_{6}=c_{i}f_{10}+c_{j}f_{9}; \\ A_{7}=-2b_{k}e_{8}; & B_{7}=-2c_{k}f_{8}; \\ A_{8}=-2b_{i}e_{9}; & B_{8}=-2c_{i}f_{9}; \\ A_{9}=-2b_{j}e_{10}; & B_{9}=-2c_{j}f_{10}; \end{array}$$

$$\begin{split} C_1 &= c_j e_2 + c_k e_4 + b_j f_2 + b_k f_4 + 2(c_i e_5 + b_i f_5);\\ C_2 &= c_k e_3 + c_i e_2 + b_k f_3 + b_i f_2 + 2(c_j e_6 + b_j f_6);\\ C_3 &= c_i e_4 + c_j e_3 + b_i f_4 + b_j f_3 + 2(c_k e_7 + b_k f_7);\\ C_4 &= c_j e_8 + c_k e_{10} + b_j f_8 + b_k f_{10};\\ C_5 &= c_k e_9 + c_i e_8 + b_k f_9 + b_i f_8;\\ C_6 &= c_i e_{10} + c_j e_9 + b_i f_{10} + b_j f_9;\\ C_7 &= -2(c_k e_8 + b_k f_8);\\ C_8 &= -2(c_i e_9 + b_i f_9);\\ C_9 &= -2(c_j e_{10} + b_j f_{10}). \end{split}$$

Для вычисления коэффициентов матриц жесткости и податливости введем в рассмотрение вектор, который включает все узловые неизвестные треугольника:

$$\{\delta\}^T = \{w_i \varphi_i \psi_i w_j \varphi_j \psi_j w_k \varphi_k \psi_k\}^T.$$

Тогда коэффициенты матрицы жесткост
и $k_{\alpha\beta}$ можно определить по соотношениям

$$\sum_{1 \le \alpha, \beta \le 9} k_{\alpha\beta} \delta_{\alpha} \delta_{\beta} = \frac{1}{16\Delta^3} \sum_{1 \le n \le 9} M_{xn} A_n + M_{yn} B_n + M_{xyn} C_n.$$

Здесь

$$M_{xn} = \sum_{1 \le m \le 9} \gamma_{nm} (D_{11}A_m + D_{12}B_m);$$

$$M_{yn} = \sum_{1 \le m \le 9} \gamma_{nm} (D_{12}A_m + D_{22}B_m);$$

$$M_{xyn} = \sum_{1 \le m \le 9} \gamma_{nm} D_{33} C_m,$$

где D_{11} , D_{12} , D_{22} , D_{33} – коэффициенты жесткости пластины; коэффициенты γ_{nm} ($1 \le n, m \le 9$) определяются в результате точного интегрирования по треугольнику и задаются с помощью выражений:

$$\begin{split} \gamma_{11} &= \gamma_{22} = \gamma_{33} = \frac{1}{6}; \qquad \gamma_{44} = \gamma_{55} = \gamma_{66} = \frac{1}{15}; \\ \gamma_{77} &= \gamma_{88} = \gamma_{99} = \gamma_{45} = \gamma_{46} = \gamma_{56} = \frac{1}{90}; \\ \gamma_{12} &= \gamma_{13} = \gamma_{23} = \frac{1}{12}; \qquad \gamma_{14} = \gamma_{25} = \gamma_{36} = \frac{1}{10}; \\ \gamma_{15} &= \gamma_{16} = \gamma_{17} = \gamma_{19} = \gamma_{24} = \gamma_{26} = \frac{1}{30}; \\ \gamma_{27} &= \gamma_{28} = \gamma_{34} = \gamma_{35} = \gamma_{38} = \gamma_{39} = \frac{1}{30}; \\ \gamma_{18} &= \gamma_{29} = \gamma_{37} = \gamma_{47} = \gamma_{49} = \gamma_{57} = \gamma_{58} = \gamma_{68} = \gamma_{69} = \frac{1}{60}; \\ \gamma_{48} &= \gamma_{59} = \gamma_{67} = \gamma_{78} = \gamma_{79} = \gamma_{89} = \frac{1}{180}; \qquad \gamma_{nm} = \gamma_{mn}, \qquad 1 \le n, m \le 9. \end{split}$$

Коэффициенты матрицы податливости упругого основания $m_{\alpha\beta}$ определяются на основании формулы

$$\sum_{1 \le \alpha, \beta \le 9} m_{\alpha\beta} \delta_{\alpha} \delta_{\beta} = c_z \Delta \sum_{1 \le n \le 10} z_n d_n, \qquad (13)$$

где c_z – жесткость упругого основания, или коэффициент постели; коэффициенты z_n вычисляются по соотношениям

$$z_n = \sum_{1 \le m \le 10} \omega_{nm} d_m;$$

ω_{nm} – коэффициенты,

$$\omega_{11} = \omega_{22} = \omega_{33} = \frac{1}{6}; \qquad \omega_{44} = \omega_{55} = \omega_{66} = \omega_{77} = \omega_{88} = \omega_{99} = \frac{1}{420};$$
$$\omega_{10,10} = \frac{1}{630}; \qquad \omega_{12} = \omega_{13} = \omega_{23} = \frac{1}{12};$$
$$\omega_{14} = \omega_{17} = \omega_{25} = \omega_{28} = \omega_{36} = \omega_{39} = \frac{1}{60};$$

ISSN 0556-171Х. Проблемы прочности, 2008, № 4

115

$$\begin{split} \omega_{16} &= \omega_{18} = \omega_{1,10} = \omega_{24} = \omega_{29} = \omega_{2,10} = \omega_{35} = \omega_{37} = \omega_{3,10} = \frac{1}{90}; \\ \omega_{15} &= \omega_{19} = \omega_{26} = \omega_{27} = \omega_{34} = \omega_{38} = \frac{1}{180}; \qquad \omega_{48} = \omega_{59} = \omega_{67} = \frac{1}{560}; \\ \omega_{47} &= \omega_{4,10} = \omega_{58} = \omega_{5,10} = \omega_{69} = \omega_{6,10} = \omega_{7,10} = \omega_{8,10} = \omega_{9,10} = \frac{1}{840}; \\ \omega_{45} &= \omega_{46} = \omega_{56} = \omega_{78} = \omega_{79} = \omega_{89} = \frac{1}{1680}; \qquad \omega_{49} = \omega_{57} = \omega_{68} = \frac{1}{2520}; \\ \omega_{nm} &= \omega_{mn}, \qquad 1 \le n, m \le 10. \end{split}$$

В задачах о свободных колебаниях пластины коэффициенты матрицы инерции вычисляются на основании формулы (13). При этом коэффициент постели c_z следует заменить произведением ρt , где ρ – плотность; t – толщина пластины.

При решении задачи об устойчивости пластины коэффициенты матрицы начальных напряжений $k^0_{\alpha\beta}$ определяются по соотношениям

$$\begin{split} &\sum_{1\leq\alpha,\,\beta\leq9} k^0_{\alpha\beta}\delta_\alpha\delta_\beta = \\ &= \Delta \Bigg(N_x \sum_{1\leq n\leq 10} p_n e_n + N_y \sum_{1\leq n\leq 10} q_n f_n + N_{xy} \sum_{1\leq n\leq 10} (p_n f_n + q_n e_n) \Bigg), \end{split}$$

где $N_x, \, N_y, \, N_{xy}$ — мембранные усилия, действующие в плоскости пластины; $p_n, \, q_n$ — коэффициенты

$$p_n = \sum_{1 \le m \le 10} \mu_{nm} e_m; \qquad q_n = \sum_{1 \le m \le 10} \mu_{nm} f_m;$$

 μ_{nm} – коэффициенты, определяемые по выражениям

$$\mu_{11} = 1;$$
 $\mu_{22} = \mu_{33} = \mu_{44} = \frac{1}{90};$

 $\mu_{55} = \mu_{66} = \mu_{77} = \mu_{18} = \mu_{19} = \mu_{1,10} = \frac{1}{15};$ $\mu_{88} = \mu_{99} = \mu_{10,10} = \frac{1}{120};$

$$\mu_{12} = \mu_{13} = \mu_{14} = \frac{1}{12}; \qquad \mu_{15} = \mu_{16} = \mu_{17} = \frac{1}{6};$$
$$\mu_{23} = \mu_{24} = \mu_{27} = \mu_{34} = \mu_{35} = \mu_{46} = \frac{1}{180};$$

Смешанно-гибридная схема метода конечных элементов

$$\mu_{25} = \mu_{26} = \mu_{36} = \mu_{37} = \mu_{45} = \mu_{47} = \frac{1}{60}; \qquad \mu_{28} = \mu_{39} = \mu_{4,10} = \frac{1}{105};$$

$$\mu_{29} = \mu_{2,10} = \mu_{38} = \mu_{3,10} = \mu_{48} = \mu_{49} = \frac{1}{252}; \qquad \mu_{48} = \mu_{49} = \frac{1}{252};$$

$$\mu_{56} = \mu_{57} = \mu_{67} = \frac{1}{90}; \qquad \mu_{58} = \mu_{5,10} = \mu_{68} = \mu_{69} = \mu_{79} = \mu_{7,10} = \frac{1}{70};$$

$$\mu_{59} = \mu_{6,10} = \mu_{78} = \frac{1}{315}; \qquad \mu_{89} = \mu_{8,10} = \mu_{9,10} = \frac{1}{360};$$

$$\mu_{nm} = \mu_{mn}, \qquad 1 \le n, m \le 10.$$

Численный анализ. Результаты расчетов сопоставлялись с известными аналитическими решениями, а также с полученными на основе классического треугольника Зенкевича (КМКЭ) и смешанного метода (СМКЭ). Все результаты представлены для квадратной пластины постоянной толщины *t* и длиной стороны *a*. Использовались два варианта разбиения пластины на треугольники: первый – соответствует делению квадрата на два равных треугольника; второй – на четыре. Деление квадрата осуществлялось с помощью его диагоналей (рисунок). Результаты сравнения представлены в табл. 1–6. Там же приведены разбиения вдоль стороны пластины *a*.

Два варианта разбиения квадратной пластины на треугольники (сетка 4×4): *a* – равномерная треугольная сетка; δ – сетка "крест".

Чистый изгиб пластины. В качестве примера рассматривался чистый изгиб квадратной пластины: $M_x = M_1$, $M_y = M_2$, $M_{xy} = 0$, где M_1 , M_2 – изгибающие моменты на контуре пластины. Задача решалась для различных комбинаций изгибающих моментов M_1 и M_2 . При любом виде разбиения пластины на треугольники смешанный метод обеспечивает получение точного решения задачи. Таким образом, смешанная аппроксимация удовлетворяет критерию "постоянства деформаций" и, следовательно, выдерживает "кусочное" тестирование.

А. Ю. Чирков

Свободно опертая квадратная пластина. Оценивалась точность определения изгибающих моментов и прогиба в центре пластины. Коэффициент Пуассона принимался равным 0,3. Проводилось сравнение численных результатов с аналитическим решением [3] в соответствии с формулами

$$M_x = M_y = M_{\text{max}} = \beta q a^2; \qquad w_{\text{max}} = \alpha q a^4 / D,$$

где $D = Et^3/12(1-\nu^2)$ – изгибная жесткость пластины; E – модуль Юнга.

Результаты расчетов представлены в табл. 1, 2. Применение равномерной треугольной сетки позволяет получить близкие результаты по обоим методам, хотя с использованием смешанной аппроксимации они несколько более точные. Ситуация существенно изменяется для разбиений на треугольники типа "крест". Из табл. 2 видно, что при использовании сетки типа "крест" треугольник Зенкевича обеспечивает приемлемые данные только для прогиба и не гарантирует получение изгибающих моментов при ее сгущении. Решение для изгибающих моментов носит осциллирующий характер. Смешанный метод сходится и дает близкие к аналитическому решению результаты.

Таблица 1

Результаты расчетов коэффициентов β и α свободно опертой квадратной пластины под действием распределенной нагрузки при использовании равномерной треугольной сетки

Сетка	β		Погрешность, %		α		Погрешность, %	
	КМКЭ	СМКЭ	КМКЭ	СМКЭ	КМКЭ	СМКЭ	КМКЭ	СМКЭ
4×4	0,05378	0,05208	-12,27	8,72	0,004393	0,004197	-8,15	-3,32
6×6	0,05040	0,04991	-5,22	-4,19	0,004217	0,004125	-3,81	-1,55
8×8	0,04926	0,04895	-2,84	-2,19	0,004152	0,004099	-2,21	-0,91
10×10	0,04876	0,04856	-1,79	-1,38	0,004122	0,004086	-1,48	-0,59
20×20	0,04812	0,04805	-0,46	-0,31	0,004080	0,004068	-0,44	-0,15
40×40	0,04795	0,04793	-0,10	-0,06	0,004067	0,004064	-0,12	-0,05
60×60	0,04792	0,04790	-0,04	0	0,004065	0,004063	-0,07	-0,02
80× 80	0,04790	0,04790	0	0	0,004064	0,004062	-0,05	0
[3]	0,0	479			0,00	4062		

Свободные колебания опертой квадратной пластины. Определялись первые четыре собственные частоты поперечных колебаний квадратной пластины. Коэффициент Пуассона принимался равным 0,3. Полученные результаты сопоставлялись с аналитическим решением [10]:

$$p_k = \frac{2\pi\omega_k}{a^2}\sqrt{\frac{D}{\rho t}}, \quad k = 1, 2, 3, 4.$$

	-	-						-
Сетка	β		Погрешность, %		α		Погрешность, %	
	КМКЭ	СМКЭ	КМКЭ	СМКЭ	КМКЭ	СМКЭ	КМКЭ	СМКЭ
4×4	0,04016	0,05100	16,16	-6,47	0,004165	0,004079	-2,53	-0,42
6×6	0,03723	0,04915	22,27	-2,61	0,004176	0,004067	-2,80	-0,12
8×8	0,03632	0,04858	24,17	-1,42	0,004184	0,004065	-3,00	-0,07
10×10	0,03590	0,04833	25,05	-0,89	0,004187	0,004064	-3,08	-0,05
20×20	0,03533	0,04800	26,24	-0,21	0,004192	0,004063	-3,20	-0,02
40×40	0,03520	0,04791	26,51	-0,02	0,004193	0,004062	-3,22	0
60×60	0,03516	0,04790	26,59	0	0,004193	0,004062	-3,22	0
80×80	0,03516	0,04790	26,59	0	0,004193	0,004062	-3,22	0
[3]	0,0	479			0,004062			

Результаты расчетов коэффициентов β и α свободно опертой квадратной пластины под действием распределенной нагрузки при использовании сетки типа "крест"

Таблица 2

Таблица З

Результаты расчетов представлены в табл. 3, 4 для двух вариантов разбиения пластины на треугольные элементы. При использовании сетки типа "крест" смешанный метод сходится и дает более точные значения частот p_k по сравнению с классическим треугольником Зенкевича.

x x									
Сетка	ω_1		ω_2		ω_3		ω_4		
	КМКЭ	СМКЭ	КМКЭ	СМКЭ	КМКЭ	СМКЭ	КМКЭ	СМКЭ	
4×4	3,02927	3,09001	7,41289	7,62941	11,4469	11,9088	15,3072	15,4983	
6×6	3,08477	3,11722	7,59887	7,74452	11,8838	12,2297	15,3842	15,6394	
8×8	3,10739	3,12755	7,69377	7,78918	12,1264	12,3611	15,4630	15,6566	
10×10	3,11868	3,13250	7,74527	7,81134	12,2639	12,4294	15,5262	15,6687	
20×20	3,13490	3,13929	7,82356	7,84287	12,4805	12,5300	15,6512	15,6953	
40×40	3,13950	3,14101	7,84558	7,85117	12,5427	12,5571	15,6923	15,7046	
60×60	3,14048	3,14133	7,84995	7,85273	12,5551	12,5623	15,7006	15,7064	
80×80	3,14086	3,14145	7,85154	7,85328	12,5596	12,5641	15,7036	15,7071	
100×100	3,14106	3,14150	7,85232	7,85353	12,5618	12,5649	15,7051	15,7074	
120×120	3,14118	3,14152	7,85257	7,85367	12,5630	12,5653	15,7059	15,7076	
140×140	3,14125	3,14154	7,85302	7,85375	12,5638	12,5656	15,7064	15,7077	
160×160	3,14131	3,14155	7,85321	7,85380	12,5643	12,5658	15,7067	15,7078	
[10]	3,141593		7,853982		12,56637		15,70796		

Результаты расчетов собственных частот колебаний свободно опертой квадратной пластины при использовании равномерной треугольной сетки

А. Ю. Чирков

Таблица 4

							T.	
Сетка	ω_1		ω_2		ω_3		ω_4	
	КМКЭ	СМКЭ	КМКЭ	СМКЭ	КМКЭ	СМКЭ	КМКЭ	СМКЭ
4×4	3,08683	3,13266	7,58134	7,76652	12,0137	12,2735	14,6718	15,3277
6×6	3,09172	3,13871	7,67562	7,82210	12,3306	12,5049	15,1178	15,5543
8×8	3,09211	3,14010	7,70029	7,83644	12,3636	12,5403	15,2605	15,6183
10×10	3,09213	3,14066	7,71010	7,84270	12,3685	12,5512	15,3283	15,6485
20×20	3,09207	3,14136	7,72521	7,85108	12,3687	12,5627	15,4252	15,6920
40×40	3,09205	3,14153	7,72886	7,85325	12,3683	12,5655	15,4513	15,7039
60×60	3,09204	3,14156	7,72955	7,85365	12,3682	12,5660	15,4562	15,7061
80× 80	3,09204	3,14158	7,72979	7,85379	12,3682	12,5661	15,4580	15,7069
100×100	3,09204	3,14158	7,72990	7,85386	12,3682	12,5662	15,4588	15,7073
120×120	3,09204	3,14159	7,72997	7,85390	12,3682	12,5663	15,4592	15,7075
140×140	3,09204	3,14159	7,7300	7,85392	12,3682	12,5663	15,4595	15,7076
[10]	3,141593		7,853982		12,56637		15,70796	

Результаты расчетов собственных частот колебаний свободно опертой квадратной пластины при использовании сетки типа "крест"

Устойчивость свободно опертой квадратной пластины при одноосном сжатии. Определялись первые четыре значения критической нагрузки. Коэффициент Пуассона принимался равным 0,3. Численные результаты сопоставлялись с аналитическим решением [11]:

$$p_k = \lambda_k \pi^2 D / a^2$$
, $k = 1, 2, 3, 4$.

Результаты расчетов представлены в табл. 5, 6 для двух вариантов разбиения пластины на треугольные элементы. Как и в задачах о свободных колебаниях пластины, смешанный метод позволяет получить более точные значения критической нагрузки по сравнению с классическим треугольником Зенкевича.

Заключение. Приведенный вариант смешанной аппроксимации прогиба и угла поворота нормали к срединной поверхности пластины удовлетворяет критерию "постоянства деформаций" и, следовательно, выдерживает 'кусочное" тестирование. При использовании равномерной треугольной сетки смешанная аппроксимация и треугольник Зенкевича приводят к близким результатам, которые при сгущении сетки сходятся к точному решению задачи. Для неравномерных сеток и разбиений типа "крест" треугольник Зенкевича дает приемлемые результаты только для прогиба и не гарантирует сходимость численного решения для изгибающих моментов. Смешанный метод обеспечивает сходимость при сгущении сетки как для прогиба пластины, так и изгибающих моментов, точность вычисления которых практически не зависит от способа разбиения пластины на треугольные элементы. В задачах

	-				-	-		
Сетка	λ_1		λ_2		λ_3		λ_4	
	КМКЭ	СМКЭ	КМКЭ	СМКЭ	КМКЭ	СМКЭ	КМКЭ	СМКЭ
4×4	3,7212	4,0217	5,6742	6,4564	10,2618	12,0740	12,9991	16,2376
6×6	3,8588	4,0095	5,9367	6,3549	10,6139	11,7301	14,2779	16,1775
8×8	3,9147	4,0052	6,0534	6,3079	10,7556	11,4576	14,9018	16,0950
10×10	3,9426	4,0033	6,1160	6,2864	10,8514	11,3285	15,2451	16,0580
20×20	3,9831	4,0008	6,2118	6,2587	11,0309	11,1631	15,7835	16,0132
40×40	3,9947	4,0002	6,2392	6,2522	11,0890	11,1239	15,9401	16,0032
60×60	3,9972	4,0001	6,2447	6,2510	11,1007	11,1168	15,9714	16,0014
80×80	3,9981	4,0000	6,2468	6,2505	11,1050	11,1143	15,9828	16,0008
100×100	3,9986	4,0000	6,2478	6,2503	11,1070	11,1132	15,9883	16,0005
120×120	3,9989	4,0000	6,2483	6,2502	11,1081	11,1125	15,9914	16,0003
140×140	3,9991	4,0000	6,2487	6,2502	11,1089	11,1122	15,9933	16,0002
160×160	3,9993	4,0000	6,2489	6,2501	11,1093	11,1119	15,9947	16,0002
[11]	4,0		6,25		11,1111		16,0	

Таблица 5 Результаты расчетов критической нагрузки для квадратной свободно опертой пластины при одноосном сжатии с использованием равномерной треугольной сетки

Таблица б

Результаты расчетов критической нагрузки для квадратной свободно опертой пластины при одноосном сжатии с использованием сетки типа "крест"

Сетка	λ_1		λ_2		λ_3		λ_4	
	КМКЭ	СМКЭ	КМКЭ	СМКЭ	КМКЭ	СМКЭ	КМКЭ	СМКЭ
4×4	3,8608	4,0363	5,8436	6,3866	9,7475	11,4645	14,0131	16,1206
6×6	3,8718	4,0182	5,9694	6,3239	10,3040	11,3404	15,4008	16,2638
8×8	3,8735	4,0100	6,0057	6,2923	10,4847	11,2412	15,4723	16,1657
10×10	3,8740	4,0067	6,0226	6,2771	10,5763	11,1936	15,4863	16,1083
20×20	3,8746	4,0017	6,0461	6,2567	10,7128	11,1310	15,4963	16,0270
40×40	3,8748	4,0004	6,0523	6,2517	10,7504	11,1160	15,4985	16,0067
60×60	3,8748	4,0002	6,0535	6,2507	10,7576	11,1133	15,4989	16,0030
80×80	3,8748	4,0001	6,0539	6,2504	10,7601	11,1123	15,4990	16,0012
100×100	3,8748	4,0001	6,0541	6,2503	10,7613	11,1119	15,4991	16,0011
120×120	3,8748	4,0000	6,0542	6,2502	10,7619	11,1116	15,4992	16,0007
140×140	3,8748	4,0000	6,0542	6,2501	10,7623	11,1115	15,4992	16,0005
160×160	3,8748	4,0000	6,0543	6,2501	10,7626	11,1114	15,4992	16,0004
[11]	4	,0	6,25		11,1111		16,0	

о свободных колебаниях и устойчивости пластины смешанный метод позволяет получить более точные значения собственных частот и уровней критической нагрузки по сравнению с классическим треугольником Зенкевича.

Резюме

Для розв'язку задач про згин, коливання та стійкість пластин побудовано гібридний скінченний елемент на основі трикутника Зенкевича. Використовується змішана апроксимація для прогину та кутів поворотів пластини. Показано, що зі зменшенням розмірів трикутників змішаний метод забезпечує збіжність як для прогину пластини, так і згинальних моментів, яка практично не залежить від способу розбиття пластини на трикутні елементи. У задачах про власні коливання і стійкість пластин змішаний метод дає більш точні значення власних частот та рівнів критичного навантаження порівняно з класичним трикутником Зенкевича. Наведено результати числового аналізу збіжності і точності розв'язку модельних задач про згин, власні коливання та стійкість квадратної пластини.

- 1. Zienkiewicz O. C. and Taylor R. L. The Finite Element Method. Oxford; Auckland; Boston; Johannesburg; Melbourne; New Delhi: Butterworth-Heinemann, 2000. – 1482 p.
- 2. Чирков А. Ю. Смешанная схема метода конечных элементов для решения краевых задач теории упругости и малых упругопластических деформаций. Киев: Ин-т пробл. прочности, 2003. 250 с.
- 3. Тимошенко С. П., Войновский-Кригер С. Пластинки и оболочки. М.: Наука, 1966. 635 с.
- 4. *Съярле* Ф. Метод конечных элементов для эллиптических задач. М.: Мир, 1980. 412 с.
- Bergan P. G. and Hanssen L. A new approach for deriving "good" element stiffness matrices // The Mathematics of Finite Elements and Applications / Ed. J. R. Whiteman. – London: Academic Press, 1977. – P. 483 – 498.
- 6. *Bergan P. G. and Nygard M. K.* Finite elements with increased freedom in choosing shape functions // Int. J. Num. Eng. 1984. **20**. P. 643 664.
- Felippa C. A. and Bergan P. G. A triangular plate bending element based on energy orthogonal free formulation // Comp. Meth. Appl. Mech. Eng. – 1987. – 61. – P. 129 – 160.
- Specht B. Modified shape functions for the three node plate bending element passing the patch test // Int. J. Num. Mech. Eng. – 1988. – 26. – P. 705 – 715.
- 9. Оганесян Л. А., Руховец Л. А. Вариационно-разностные методы решения эллиптических уравнений. Ереван: Изд-во АН АрмССР, 1979. 235 с.
- 10. Бабаков И. М. Теория колебаний. М.: Наука, 1968. 559 с.
- 11. Биргер И. А., Пановко Я. Г. Прочность, устойчивость, колебания. М.: Машиностроение, 1968. Т. 3. 567 с.

Поступила 14. 09. 2006