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C MCnoNnb30BaHNEM KOHEUYHO3NEMEHTHOr0 MOAXOAA OrnpefeneHbl 3HauYeHWs KoadduumeHTa rmé-
KOCTM M CTENeHN yCTONUMBOCT Y Y3N10B COBAMHEHUS! CTabHO Gankn ¢ >Kene3o6e TOHHbIM OCHOBA-
Hvem. WccnegyloTcs fBa Tuna COeAvHEHMIA: B MepBOM CTanbHas OnopHas nnacTwHa C npuBa-
PEHHOW K Heli BepTUKaNbHOW Gankol KpemuTcs K >Kene3o6e TOHHOMY OCHOBAHWIO ABYMS aHKep-
HbIMW GOTTaMmK, KOTOpble PACNONOMKEHbl Ha OCU CUMMETPUN ABYTAaBPOBOI Ganki, BO BTOPOM -
YeTbIpbMs GonTaMW. 3afaBanucb fBa TWMA Harpy>KeHusi: NepBoe COeAMHEHWe MOLBEpPranoch
[JeiicTBMIO nepepe3blBalOLLEl Ciubl N M3rMbatoLLero MOMeHTa, BTOPOe - nepepesbiBatoLLeli Cubl,
M3rMbaloLLero MOMeHTa W OCEBOW Cubl CXKATUA. [Af ONuUCaHUs peanbHOro MOBEAEHUs 3TUX
COefHEHMIA NCNONb30BaNCA NOAX0A, YUMT bIBAIOLLMIA YCNOBUS KOHTAaKTa 1 TPEHUS MEXK/Y OMOpHOVA
6ankoii 1 >kene3obe TOHHLIM OCHOBaHWeM. 10Axof OCHOBAH Ha OAHOCTOPOHHEN 3aBUCMMOCTM AnA
KOHTaKTHOIA 3afja4n C KYNOHOBCKAM TPEHMEM. [insi MOBbILLEHNS TOYHOCTM YMUCMEHHBIX pacyeToB
1Cnonb3yeTcs MOAUMULMPOBAHHBLIA MeTog JlarpaHyka. onyyeHbl AuarpamMmmbl B KOOpAMHATAxX
MOMEHT-YrN0BOE MNepemeLleHre M KO3((ULMEHT TMOKOCTU-PACCTOAHME OT BepLUMHbI BepTU-
KaslbHOI 6ankn Jo OmopHoit NanTbl. OnpeaeneHo BAUSHWE CTENeHN YCTOWYNBOCTY COeAUHEHNIA Ha
[OnyCcTUMbIE Harpy3kv 1 fediopmaLym.

KntoueBble CnoBa: COEAUHEHMS KOMOHH M OCHOBaHWIA, KO3IMULUMEHT rMOKOCTH,
CTEMeHb YCTONYMBOCTU, KOHEYHOINNEMEHTHbIA NOAX0A, OAHOCTOPOHHUIA KOHTaKT,
KpWBbIE MOMEHT-YI/I0BOE MepeMeLLeHUe.

Introduction. Today, to study the steel connections between a steel column
and a reinforced concrete foundation as a perfectly pinned connection (R =0) or
fully rigid connection (R =) is not quite realistic approach. Numerous and
well-documented studies in the past few decades have shown the nonlinear
behavior of the connections and their nonperfect rigidity or flexibility. The factor
of rigidity R expressed in kN-m/rad covers the whole range of the values
varying from zero to . The tools of design as well as the standards used in the
computer codes do not take into account this partial rigidity of the connections.
Assuming an idealized behavior for column base connections (perfectly pinned or
fully rigid) does not reflect the true behavior of these connections and even less
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the consequences for the results of analyses, mainly the internal force distribution
between members and structural deformations. The partial flexibility (X= 1/R) of
column bases and its consequences, like a fixity degree y, on the analysis of steel
structures have drawn less attention from research community than beam-to-
column connections. Nevertheless, results from all studies tend to confirm that
column base connections exhibit semi-rigid behavior. Galambos [1] was the first
to demonstrate the effect of column base fixity on strength of column. He
concluded that the buckling strength of rigid frames could benefit positively from
the partial rigidity of column base connections. Two decades later, Nixon [2]
picked up the Galambos theoretical equations and demonstrated that the increased
strength of column could lead to non-negligible savings in light industrial
buildings. In 1970, an experimental research was undertaken at Laval University
of Quebec (Canada). The results obtained by Lizotte and Beaulieu [3] showed
that the degree of base plate fixity of a simple two-anchor-bolt column base,
nominally assumed to be pinned, was such that it could be considered as a fixed
base connection until buckling occurred. Also, the moment developed at the base
before buckling did not induce rotation of the base plate. Later, Picard and Dion
[4], Samson and Beaulieu [5], and Perruse and Beaulieu [6], showed that the
presence of axial load significantly increases the degree of column base fixity,
and if considered in column analysis, it reduces the effective length of the
column, reduces second order (P — A) effects, and leads to more realistic bending
moment distribution in the column. The base restraint coefficient (GL) then
recommended by Canadian Standard S16 (CSA 1978 and CSA 2001) [7, 8] for
assumed pinned or fixed column base connection appeared conservative and was
consequently not appropriate. Also Eurocode 3 [9] treats these connections either
as pinned or fixed. Knowing the true degree of fixity, Nixon’s equations led to
more accurate evaluations of column buckling loads. A few years later, Beaulieu
and Picard [10] showed from the results of the experimental program that column
buckling seems to occur in the elastic behavior zone of the column-foundation
connection, that is, the linear portion at the beginning of the M — 6 curve. Also,
they showed that the number of anchors and their size do not influence the
buckling resistance, but they believed that eventually substantial material economy
could be gained if the true rigidity of column base connections was taken into
consideration; for instance, in the design of industrial structures. Experimental
research by Melchers [11] also demonstrated the moment resistance capacity of
assumed pinned column base connections and identified parameters that influence
column base rigidity, such as base plate thickness; anchor bolt size and column
size. These results were confirmed by Pensirini and Colson [12]. They show that
the initial stiffness and ultimate capacity of the connection are significantly
dependent on the column axial load. In 1996, Ermopoulos and Stamatopoulos
[13] reached the conclusion that increased axial loading confers higher rigidity to
column base connection. They identified parameters that influence column base
rigidity, such as a base plate thickness, anchor bolt size, the concrete stress, the
nonlinear contact between base plate and concrete foundation. One year later, the
same authors [14] proposed an analytical modeling of column base plates under
cyclic loading based on mathematical model. Following these results, another
study undertaken by Kootolen and Baniotopoulos [15] showed the effect of axial
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load on the displacements of base plate. They simulated the nonlinear contact
between base plate and concrete foundation. The last study has been carried out
by Dumas, Beaulieu, and Picard [16]. Results obtained from finite element model
show that consideration of the semi-rigidity of column base connections increases
the accuracy of the analysis results and leads to a decrease in structure weight and
deformation.

1. Development of the Model by Finite Element. Taking into account
studies enumerated above and the various recommendations made by the authors,
we built a two-dimension finite element model based on the nonlinear analysis of
the structure to simulate the behavior of column base plate connection. The model
takes into account the nonlinearity of materials and the nonlinearity of contact
between the foundation and the base plate, where it simulates the rising of the
base plate and where friction at the interface concrete foundation-base plate is
ensured by four nodes quadratic elements [17]. The model is established in
CASTEM3M computer code.

1.1 Unilateral Contact (the Signorini Problem). In numerous simulations,
the law of unilateral contact used is illustrated by the problem of Signorini. Let us
consider a deformable body in contact with arigid body (Fig. 1), the conditions of
unilateral contact of Signorini having to be respected in all points of the
deformable bodies located in the contact Tc are [18]:

h<o, (1a)
Rn <0, (1b)
h mRn —o0, (1¢)

where h is the interstice or the displacement of a point of contact in the normal
direction to the contact n, and Rn is the component of the normal effort.
Equation (1a) translates the condition of impenetrability, equation (1b) - the fact
that the normal force of contact is compression, and equation (1c) represents the
condition of complementarily (if the point is in contact then h —o and Rn * o, if
the point leaves the contact then h< o and Ryt =0) [18].

Imposed forces f S

e N : external normal
with the contact

Fig. 1 Contact between a deformable body and rigid body (the Signorini problem).
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1.2. Coulomb s Law. The force at the point of contact can be broken up into a
normal force Rn and a tangential force R7 (R=Rn en+ R7 *t). The model of

Coulomb is written in the following way [18]:

\Rt\A f*\Rn\, (22)
R7 </uURmM\N v7 =0 (adherence), (2b)
V -
Rt=-P\Rr (slip), (2¢)
Vi

where vi is the tangential relative speed between the two bodies and u is the
friction coefficient of Coulomb (Fig. 2) which includes all the local parameters,
such as roughness between the two bodies.

Fig. 2. The Coulomb law.

1.3. Equilibrium without Friction. A deformable body Q1 and a rigid body
Q2 are considered, we note by Q = QiUQ2 the total of the two bodies. The
deformable body is subjected to the imposed displacements ud on the zone Tu,

to applied loads f s on the zone , and to forces of volumes f vV acting on the
field (Fig. 1)
divO+fv =0 in Q, (3)
u=ud on ru, 4)
[a]-n=fs on Ta, (5)
[al*n=R on Tc. (6)
1.4. Equilibrium with Friction. Equilibrium of deformable body Q1 with

frictional contact is described by

Whbody = 2 f [O]{£}dV ~ f fv eudV ~ f fv eudS - Wcont. (7
2V % rc
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The work of the actions of contact on the deformable body is written as

Wceont =f f (RnneUn + Rteut)dS (8)
rc

with
ut = (U2 —U1) —un en.

The actions of rigid body Q2 on body Q1 are described by

fcont = ff (Rn en + Rt)dS. (€)]
rc

1.5. Finite Element Modeling.

a=CJ/E (behavior law),
£=[Blu (interpolation of deformations),
u= [N Juk (interpolation of displacements).

In matrix form the Eq. (7) is written

Whbody = 2 uT [K]Ju —uT{F} (10)

with rigidity matrix
[K]=f BT[C]BdV,
\%

and vector of the external efforts

{F}=f [NT]fvdV + f [NT]fsdS +f [NT]f(xmdS.
c c

The equilibrium of the system with frictional contact amounts to minimize
the energy equation under the following constraint:
\div o = 6 Whody = 0,

Th= (52 —01) en)*n = [G] un = 0, (11)

1.6. Method o fResolution (Augmented Lagrangian Problem). The method of
resolution is based on combination of the penalization and Lagrangian methods.
We have to insert a large term a (penalization coefficient) and X (Lagrangian
multiplier) into the energy equation (10) [19]:
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1 AN
Whodv(u, A)= - uT[KJu + AT[G]Tu + - uT[G][G]Tu= o0, (12)
dw
du _ 0" f[K+aGGTJuK + [G]Ak = F,
~Whbody (u, A)= 0 1
y(u, A dW =0," |]a k+1=AK + a[G]TuK. (13)
,» dA

2. Behavior Laws. For the finite elements model, we adopted for the column
and the base plate, and anchors bolts the behavior laws illustrated by Figs. 3 and 4,
respectively.

Fig. 3 Fig. 4

Fig. 3. Adopted stress-strain relations for the steel column and base plate connection.
Fig. 4. Adopted stress-strain relations for the anchor bolts.

For the foundation concrete, the material is considered to operate in the
elastoplastic field with the Young modulus EC = 29 GPa, Poisson ratio y C = 0.18,
tensile strength f t = 3 MPa, and compressive strength f ¢ = 38 MPa.

3. Numerical Examples. In this study, two types of connections are
analyzed. The first one consists of a base plate welded to the end of column and
attached to the reinforced concrete foundation with two anchor bolts. These bolts
are placed on the major axis of the I-shaped column cross section, one anchor bolt
on each side of the web (Fig. 5). In the second configuration, the connection
comprises a base plate and four anchor bolts placed outside the flanges of the
I-shaped section (Fig. 6). Two loading types are used. First, the connections were
subjected to shear force and a bending moment only, then the connections were
put under shear force, a bending moment and an axial compressive force (Fig. 7).
In this case a bending moment is caused by the offset compressive load.
Different eccentricities and variable axial loadings (P = 100 to 600 kN) are
chosen, in order to show the influence of these parameters of the degree of fixity
of the column base connections.

The following measures have been in order to perform correctly this study:

e An interaction between the holes in the base plate and the anchor bolts is
ensured by considering a unilateral contact between these two bodies.

* In order to simplify the mesh, the anchor bolts that are of circular sections
are simulated in this study by bolts of square sections of equivalent surface.
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70 mm 70 mm ymm
Fig. 5 Fig. 6

Fig. 5. Detail of two anchors bolts connection FT (HE100 B: A =26-102 mm2, I1x = 449.5-103
mm4, Sx = 89.91-103 mm3, h = 100 mm, b =100 mm, tf = 10 mm, tw =6 mm).

Fig. 6. Detail of four anchor bolts’ connection CFT (HE160 B: A =54.3-102 mm2, Ix =
=2492-103 mm4, Sx = 311.5-103mm3, h =160 mm, b =160 mm, f =13 mm, tw =8 mm).

Fig. 7. Finite element mesh of the 3D model.

e The simulation of the anchor bolts is made so that the nodes coincide with
the nodes of the holes of the base plate.

« To take into account the problem of contact friction between the base plate
and the foundation, the nodes as well as the degrees of freedom of the two bodies
are selected so that they coincide.

e The same precaution is also taken with regard to the nodes and the degrees
of freedom of the anchor bolts and the concrete foundation.

e Traction in the concrete develops only in the higher part of bolt (on the
third of LP).
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- The loadings are introduced in the forms of increments (ensured by
CASTEM3M code).

* Precautions are also taken with regard to the measurement of rotations in
levels which coincide with the experimental study [4] and this rotation 0 =
= (a—b)/x inwhich a and b are the displacement measured on the flanges of
the column at the imposed distances x [16] (Fig. 7).

e The deformation of the soil under the concrete foundation is neglected
owing to the fact that the bending moment developed at the column base plate
seems weak to force the foundation.

e The results of our model were compared with the experimental results
obtained in [4].

The details of connections are shown in Table 1.

Table 1
Studied Parameters Values
Connection FT1 FT4 CFT1 CFT3 CFTe CFTe CFTe CFTs CFTs
Column length L, mm 1220 1220 1220 1220 1220 1220 1220 1220 1220
Eccentricity e, mm 150 300 300 300 300 300 300
Axial load P, kN 300 200 100 200 300 400 600
Distance x with the top 0 0 0 0 0 0 0 0 0

of the base plate (mm) 70 170 170 170 170 170 170 170 170
30 30 30 30 3B 3B 3B 3B 30
430 430 430 430 430 430 430 430

4. Results. The following moment-rotation curves were obtained (Figs. 8-12).
4.1. Moment-Rotation Curves and Comparison with Laval University

Curves.

Rotation (rad)

Fig. 8. Moment-rotation curve connection HE100 B with 2 anchors (“Level 17, axial load P = 0):
(A) FT1 experimental; (w) FT1 model.
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NaC:

Rotation (rad)

Fig. 9. Moment-rotation curve connection HE160 B with 4 anchors (“Level 17, P = 0): (m) FT4
experimental; (A) FT4 model.

Rotation (rad)

Fig. 10. Moment-rotation curve connection HE160 B with 4 anchors (“Level 1”, P = 600 kN):
(m) CFTe experimental; (A) CFTs model.

4,2, Moment-Rotation Curves of Other Connections.

Rotation (rad)

Fig. 11. Moment-rotation curve HE100 B with 2 anchors under various axial loadings: (m) FT1,
P =0 (A) CFT3, P =200kN; (¢) CFT1, P =300 kN.
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Rotation (rad)
Fig. 12. Moment-rotation curve connection HE160 B with 4 anchors (FT4) for various axial load:
(¢) P =0, (A) P = 100kN; (m) P = 200kN; () P = 300kN; (+) P = 400kN; (x )P = 600 kN.

4.3. Flexibility Factor Curves were obtained (Figs. 13-15).

Fig. 13. Flexibility factor curves of FT1 and FT4 connections according to the distance to the top of
the base plate: (m), (A) theoretical curves of FT1 and FT4, respectively; (O), (A) model curves of
FT1 and FT4, respectively.

Distance to the top of the base plate (mm)

Fig. 14. Flexibility factor curves of CFT1 and CFT3 connections according to the distance to the top
of the base plate: (m) theoretical curve of pinned column; (A) theoretical curve of fixed column;
(*) CFT1 model; (O) CFT3 model.
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Distance to the top of the base plate (mm)

Fig. 15. Flexibility factor curves of CFTe connection according to the distance to the top of the base
plate for various axial load: (+) theoretical curve of pinned column; (m) CFTe model, P = 100 kN;
(A) CFTe model, P = 200 kN; (¢) CFTs model, P = 300 kN; (X) CFTe model, P = 400 kN; (*)
CFTe model, P = 600 kN; dashed line corresponds theoretical curve of fixed column.

4.4, Calculation of the Fixity Degree. Once flexibility factor is calculated,
we carried out the fixity degree of the various connections. For FT connections
subjected only to shear force and bending moment, their fixity degrees are
calculated by using the Eq. (14) suggested by Brun and Picard [18] and we
obtained the results of Table 2,

3EIX,

For the CFT connections subjected to the axial load in addition to shear force
and bending moment, the fixity degrees are calculated by using the linear portion
of the moment-rotation curve obtained by the model. For each position of the
column where rotations are evaluated, a factor is calculated by the Eq. (15) and
the fixity degree of connection is given by the Eq. (16) [4]:

X modx _Xfx
(15)
Xrx  Xfx
with
2xL —3x
Xfx = — — (fixed connection), (16)
AEIL
and
_ L2 - 3x2 ] d i (17)
inned connection),
x_  BEIL (P )
y_1— (18)
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Table 2
Fixity Degrees of the FT Connections
Connection 20, (kN- mm)™!
FT1 13-10" 7 0.258
FT4 0.8-10"7 0.505
Table 3
The Fixity Degrees of CFT Connections
Connections FT1 CFT3 CFTs, CFTs, CFTs, CFTs, CFTs,
P=100kN P =200kN P =300kN P =400 kN P =600 kN
Fixity degree 0.715 0.855 0.690 0.710 0.790 0.910 0.990

For CFT1, CFT3 and CFTe connections, the values of fixity degree are
summarized in Table 3.

4.5, Influence of the Fixity Degree on the Efforts and Deformations.

illustrate the influence of the rigidity of column base connection in structure
analysis, a study on a simple frame (Fig. 16) subjected to axial loads P = 350 kN
and lateral load F = 44.5 kN is carried out by considering different cases of fixity
degree (y =0,0.5, and 0.7, and X=12).

Fig. 16. Frame used to evaluate the efforts and displacements for various fixity degrees [(A D)
joints with variable rigidity; (B, C) joints with fixed rigidity; E = 2-105 MPa].

The analysis of the frame has been carried out using a matrix method of
structural analysis with pure linear deformation joints [20]. This method consists
in modifying the rigidity matrix of the frame elements to take into account the
joint rigidity using a fixity degree, which can vary from 0 to 1. The (P —A)
effects are included in calculations. The bending moments and lateral
displacements obtained of first order analysis are multiplied by a factor of
amplification U o0 [4]
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Uuo= (19)
S p Al
1=1
Fh

where F is the lateral load, Pt the axial load in the column, At the lateral
displacement of the column, and h the height of column.

Table 4 gives the moments as well as the side displacement at the head and
the base of column for each degree of fixity.

Table 4
Efforts and Deformations in the Column for the Various Degrees of Fixity
Fixity degree Case 1 Case 2 Case 3 Case 4
y=0 y =05 y =07 y=1
Moment at the head 56.20 329 28.0 24.6
of column (KN sm)
Moment at the base O 281 319 343
of column (kKN sm)
Side displacement 3L15 12.2 9.6 6.7

of the column (mm)

4.6. Comparison of the Results. We compared the results obtained for
various fixity degrees used in the study (Table 5).

Table 5
Comparison of the Moments and Displacements at the Head of Column
According to the Degrees of Fixity

Case 1/Case 2 Case 1/Case 3 Case 1/Case 4
Reduction of the moment 40% 50% 56%
at the head of column
Reduction of the side 60% 69% 78%

displacement

Conclusions. The model gives good results; the various comparisons reflect
it well (see Figs. 8-10).

The assumptions that we adopted are not far from reality; the results
obtained by the model fit well with the experimental results for the first steps of
loadings and then under the estimated rotations. That is certainly with the fact
that in reality the rotation of the foundation is not negligible. The results obtained
are the following:

O] for the connections with two anchors bolts without axial load, the model
sticks very well the experimentation for 0<0O.O1 rad, after the model gives
rotations lower by 10% of the experimental ones (Fig. 8);
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(ii) for the connections with four anchors bolts without axial load, the model
stick very well with the experiment for o < o0.001 rad, after the model gives
rotations lower by 20% of those of the experiment (Fig. 9);

(iii) for the connections with four anchors bolts with axial load, the model
stick very well with the experiment for 0 < 0.005 rad, after the model gives
rotations lower by 25% of those of the experiment (Fig. 10).

According to these results, presence of more anchor bolts in the connection
prevents rotations of the column base plate to foundation. On the other hand,
presence of axial load on the level of connection does not eliminate the rotation of
the foundation to soil as reported in [3]. Even without axial load applied to the
column, the connections FT1 and FT4 have a flexional rigidity (quite significant
resistance to rotation to be considered in calculations). The connections with four
anchor bolts have a higher rigidity than the connections with two anchor bolts.
Presence of axial load on the top of column produces a significant increase in
fixity degree of the connections compared to that obtained when no axial load is
applied. If we take into account the rigidity of the column base connections as a
beam-column behavior; the principal advantages are: effective reduction length of
the column, reduction of the moment at the head of column, increase in the
moment at the base of column, reduction of side displacement at the head of
column, and reduction of the second order (P —[) effects.

If the minimum of fixity degree of the studied connections is equal to 0.5 in
the presence of an axial load of compression, real displacement will be equal only
to 40% of the displacement taken in calculations. We also see that the columns
bear only about 60% of their capacity. The decrease is due not only to the
(P — ) effects, but also because the column operaty in double curve and that
maximum bending moment in the column decreases when a moment is developed
in the joint at the base of columns column. We propose to take the fixity degree of
column base connections equal to 0.5 (y = 0.5) in calculation of steel frames, since
beyond this value, the reduction of the moments and displacements at the head of
column is of less importance. If the rigidity of the joint at the base of the column
is considered, one can make the choice of a more economic section for the
columns.

Pesome

13 BUKOPUCTAHHAM CKiHYEHHOeNeMeHTHOro MigxoAy BM3HA4YeHO 3HauvyeHHA Koedi-
LiEHTAa THYYKOCTi Ta CTemeHsa CTiliKOCTi BY3NiB 3’€eAHaHHA CTanbHOI 6ankn i3
3ani306eTOHHOK OCHOBOK. [ocnifKeHO ABa TUNW 3’€fHaHb: y MepWoMy cTanbHa
onopHa nnacTuHa 3 NPUMBapeHOl L0 Hel BepTUKaNbHOK 6ankokw Kpinutbecs Ao
3ani306eTOHHOT OCHOBW ABOMa aHKepHMMU 6GonTamm, sKi 3HaxogAaTbcs Ha oci
CUMeTpil fBOTaBpoBOT GankW, y Apyromy - 4yoTupma 60nTamu. HaBaHTaXeHHS
NPUIAHATO ABOX TWUMIiB: Neplle 3’efiHAHHS 3a3HaBano fii nepepisyBanbHOT cun i
3rMHaNbHOr0 MOMEHTY, Apyre - nepepisyBasbHOT CUIW, 3TMHANIBHOTO MOMEHTY Ta
0CbOBOT CUAN CTUCKY. PeanbHy NoBefiHKY UWX 3’€4HaHb OMNuMcyBanu 3a fOMNO-
MOTOl MifAXoAy, KW BPaxOBYE YMOBU KOHTAKTy Ta TepTs MiX OMOPHOK Mau-
TOK i 3ani306eTOHHO OCHOBOM. lMigxig 6a3yeTbCs Ha O4HOGIYHOCTI 3aNeXHOCTI
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ONA KOHTaKTHOT 3afadvi 3 Ky/NOHIBCbKMM TepTam. [ns nifBULLEHHA TOYHOCTI
YMUCNOBMX PO3pPaxyHKIB 3aCTOCOBAHO MoAMPiKoBaHUIA MeTof JlarpaHxa. OTpuma-
HO Aiarpamu B KOOpAMHaTax MOMEHT-KYTOBe MepemilleHHs Ta KOeilieHT rHyu-
KOCTi-BifiCTaHb BifJ BepLMHWN BePTUKaNbHOI 6afky A0 ONOPHOI NAUTU. Bu3Ha-
YeHO BMMB CTEMEHN CTIMKOCTI 3’€AHaHb Ha AOMYCTWMMi HaBaHTaXeHHs i gedop-
maLlii.
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