## УДК 539.3

## Влияние компоновки реакторов ВВЭР "малой" и "большой" серий атомных электростанций на напряженно-деформированное состояние узла приварки коллектора к патрубку парогенератора

Г. В. Степанов<sup>а</sup>, В. В. Харченко<sup>а</sup>, А. И. Бабуцкий<sup>а</sup>, С. В. Кобельский<sup>а</sup>, И. В. Орыняк<sup>а</sup>, С. В. Романов<sup>6</sup>, Н. Б. Трунов<sup>в</sup>, В. В. Денисов<sup>в</sup>, В. А. Пиминов<sup>в</sup>

<sup>а</sup> Институт проблем прочности им. Г. С. Писаренко НАН Украины, Киев, Украина

<sup>6</sup> Ассоциация "Надежность машин и сооружений", Киев, Украина

<sup>в</sup> ОКБ "Гидропресс", Подольск, Россия

Приведены уточненные результаты оценки напряженно-деформированного состояния узла приварки "горячего" коллектора к корпусу парогенератора реакторов ВВЭР-1000 "малой" и "большой" серий с использованием трехмерных моделей. Показано, что компоновка парогенераторов в реакторах оказывает влияние на максимальные напряжения в области сварного шва.

*Ключевые слова*: напряженно-деформированное состояние, узел приварки, коллектор, парогенератор.

Введение. Традиционно напряженно-деформированное состояние (НДС) узла приварки рассчитывали исходя из учета давления в первом и втором контурах парогенератора (ПГ) как доминирующего фактора нагружения. При этом использовались упрощенные осесимметричные расчетные схемы. Результаты расчетов показали, что ПГ может безопасно эксплуатироваться в пределах расчетного срока в 30 лет.

Однако в связи с обнаружением трещин в узле приварки "горячего" коллектора к патрубку парогенератора ПГВ-1000 на ряде АЭС с реакторами ВВЭР-1000 "малой" серии при эксплуатации в пределах расчетного срока службы [1, 2] возникла необходимость выполнения уточненных расчетов НДС. Из детального анализа конструкции ПГ следует, что сопряжение патрубка меньшего диаметра с корпусом существенно большего диаметра выполнено со значительным эксцентриситетом их осей. Поэтому расчеты НДС с использованием осесимметричных моделей узла не обеспечивают необходимой точности результатов. Кроме того, анализ процесса разогрева конструкции и вызванного им термического расширения элементов ПГ при гидроиспытаниях (ГИ), нормальных условиях эксплуатации (НУЭ), испытаниях главного циркуляционного насоса (ГЦН) выявил дополнительный фактор нагружения узла приварки – изгибающий момент в плоскости гиба горячей ветви главного циркуляционного трубопровода (ГЦТ), возникающий вследствие некомпенсированного термического расширения элементов конструкции. Уточненные расчеты НДС этого узла с использованием трехмерных расчетных моделей, учитывающих изгибающий момент, подтвердили существенное влияние этих факторов на его максимальную напряженность [2].

© Г. В. СТЕПАНОВ, В. В. ХАРЧЕНКО, А. И. БАБУЦКИЙ, С. В. КОБЕЛЬСКИЙ, И. В. ОРЫНЯК, С. В. РОМАНОВ, Н. Б. ТРУНОВ, В. В. ДЕНИСОВ, В. А. ПИМИНОВ, 2007 114 ISSN 0556-171X. Проблемы прочности, 2007, № 5 В настоящее время данные о наличии повреждений в реакторах "большой" серии отсутствуют, в связи с чем возникает вопрос о причинах различия в долговечности узлов приварки в реакторах малой и большой серий. В данной работе рассматривается влияние компоновки реакторов на уровень максимальных напряжений в области сварного шва.

Особенности компоновки реакторов малой и большой серий. Анализ конструкции узла приварки, идентичного для реакторов обеих серий, выполнен ранее [2]. Поэтому будут рассмотрены только различия в их компоновке. Общий вид одной из четырех горячих ветвей первого контура реакторов малой и большой серий, включающий парогенератор, горячую ветвь ГЦТ и корпус реактора (КР), представлен на рис. 1. Холодная ветвь ГЦТ с ГЦН является более протяженной и имеет сложную конфигурацию (на рисунках не показана).



Рис. 1. Схемы подсоединения горячей ветви ГЦТ к парогенератору для ВВЭР малой (*a*) и большой (*b*) серий (вид сверху и сбоку): 1 – ПГ; 2 – горячая ветвь ГЦТ; 3 – КР; 4 – опорный бурт; 5 – патрубок холодной ветви ГЦТ; А – места разрушения.

Принципиальное различие в компоновке ПГ реакторов малой и большой серий заключается в том, что в первом случае горячая ветвь ГЦТ подсоединяется к ближайшему (по отношению к КР) коллектору ПГ (рис. 1,*a*), а в реакторах большой серии при незначительном изменении угла между осью ПГ и осью горячей ветви ГЦТ последняя подсоединяется к коллектору ПГ, расположенному с противоположной стороны относительно оси парогенератора (рис. 1, $\delta$ ). Далее будет показано, что такое различие в компоновке оказывает влияние на перераспределение напряжений в узле приварки, вызванное действием изгибающего момента, на их максимальную величину и местоположение.

**Термосиловое нагружение узла приварки**. Конструкция ПГ предусматривает максимальную компенсацию перемещения элементов ПГ в горизонтальной плоскости вследствие термического расширения при разогреве реак-

ISSN 0556-171Х. Проблемы прочности, 2007, № 5

тора [2]. Однако анализ показал, что в узле приварки горячего коллектора к патрубку ПГ возникает изгибающий момент, действующий в плоскости гиба горячей ветви ГЦТ. Таким образом, данный фактор нагружения следует определять и учитывать в расчетах НДС.

Для уточненной оценки изгибающего момента в узле приварки вследствие некомпенсированного расширения ГЦТ и КР было выполнено численное моделирование поведения первого контура реакторов малой и большой серий, включая все его элементы (КР, горячую и холодную ветви ГЦТ, ГЦН, корпус ПГ с патрубками и коллекторами, опоры), с учетом нагружения давлением и повышения температуры. Для этого использовали специализированную программу для расчетов трубопроводов сложной пространственной конфигурации, основанную на методе начальных параметров. Подробное описание и методика расчетов с помощью этой программы, а также условия, по которым определяются начальные параметры, приведены в [3]. При моделировании учитывали пространственную геометрию петли первого контура реактора соответствующей серии, свойства материалов составляющих елементов, а также действующие нагрузки (давление, вес, изменение температуры от исходной до рабочей  $\Delta T$ ) и условия крепления элементов петли (в расчетах ограничивали перемещения таких элементов конструкции, как КР, ГЦТ, ГЦН в вертикальном направлении). Результаты расчетов изгибающего момента (табл. 1) были использованы при расчете НДС узла приварки.

| Режим<br>нагружения | Давление $p_1/p_2$ . | Темпера              | тура, °С              | Изгибающ<br>М, N | ий момент<br>1Н·м |
|---------------------|----------------------|----------------------|-----------------------|------------------|-------------------|
|                     | MΠā                  | горячая<br>ветвь ГЦТ | холодная<br>ветвь ГЦТ | малая<br>серия   | большая<br>серия  |
| НУЭ                 | 16/6                 | 300                  | 260                   | 2,279            | 2,035             |
| ГИ на прочность     | 25/11                | 110                  | 110                   | 1,082            | 0,935             |
| ГИ на плотность     | 18/8                 | 110                  | 110                   | 0,977            | 0,845             |
| Испытания ГЦН       | 16/6                 | 90                   | 90                    | 0,827            | 0,835             |

## Исходные данные и результаты расчетов изгибающего момента в узле приварки

**Примечание**: *p*<sub>1</sub> – давление теплоносителя в первом контуре; *p*<sub>2</sub> – давление теплонисителя во втором контуре.

Результаты расчетов НДС узла приварки. Расчеты НДС основываются на положениях линейной теории упругости и теории малых упругопластических деформаций для трехмерных изотропных и кусочно-неоднородных тел. Решение формулируемых этими теориями краевых задач осуществлялось с помощью смешанной вариационной схемы метода конечных элементов [4, 5], реализованной в программе SPACE для трехмерного анализа [6].

Геометрическую модель ПГ выбирали с учетом всех силовых воздействий на узел приварки. Принимали, что нагрузки от веса внутреннего оборудования ПГ незначительны, и ими можно пренебречь. Расчеты выполняли

Таблица 1

для геометрической модели ПГ с одним "горячим" коллектором и для модели ПГ с горячим и холодным коллекторами.

Расчет с использованием модели с двумя коллекторами был выполнен для оценки взаимного влияния узлов приварки горячего и холодного коллекторов при действии давления в коллекторах и корпусе III. Как показали расчеты, такое влияние практически отсутствует, различие в напряжениях не превышает 2%. Поэтому основная часть расчетов была выполнена для модели с одним горячим коллектором, сечение которого плоскостью x0zпоказано на рис. 2.



Рис. 2. Расчетная модель парогенератора.

Внешние воздействия на узел приварки моделировали изгибающим моментом, приложенным к нижнему торцу коллектора, с учетом различия в его ориентации для реакторов малой и большой серий. Давление теплоносителя в коллекторе и корпусе ПГ принимали в соответствии с режимами испытаний и эксплуатации.

НДС узла приварки определяли для режима НУЭ, режимов ГИ на прочность и плотность, а также испытаний ГЦН (табл. 1).

Расчеты выполняли в линейной постановке, т.е. определяли условно упругие перемещения, деформации и напряжения, а НДС в соответствующих точках получали суммированием напряжений, вызванных отдельными нагрузками. Основные результаты расчетов представлены на рис. 3–5.

Согласно этим результатам максимальные напряжения в области "кармана" – кольцевой полости между коллектором и патрубком [2], локализованы несколько ниже линии сопряжения галтели с внутренней цилиндрической поверхностью патрубка ПГ (приблизительно 15 мм от дна кармана), что практически соответствует месту выявленного разрушения – рис. 2. Изгибающий момент, действующий со стороны ГЦТ и вызванный некомпенсированным термическим расширением ГЦТ и КР, оказывает существенное влияние на НДС узла приварки, повышая уровень максимальных растягивающих напряжений на поверхности кармана в области галтельного перехода в реакторах малой серии. В реакторах большой серии изгибающий момент со стороны ГЦТ вызывает более низкие растягивающие напряжения.



Рис. 3. Распределение напряжений  $\sigma_z$  на стенке кармана со стороны патрубка ПГ по его окружности на высоте 20 мм от дна кармана – a и вдоль образующей кармана при  $\varphi = 4,3$  рад –  $\delta$ , вызванное совместным действием теплоносителя и изгибающего момента при ГИ ( $p_1/p_2 = 25/11$  МПа): малая серия M = 1,082 МН·м; большая серия M = 0,935 МН·м.



Рис. 4. Распределение напряжений  $\sigma_z$  на стенке кармана со стороны патрубка ПГ по его окружности на высоте 20 мм от дна кармана – *а* и вдоль образующей кармана при  $\varphi = 4,3$  рад (малая серия) и  $\varphi = 1,8$  рад (большая серия) –  $\delta$ , вызванное совместным действием теплоносителя и изгибающего момента при ГИ ( $p_1/p_2 = 18/8$  МПа): малая серия M = 0,977 МН · м; большая серия M = 0,845 МН · м.



Рис. 5. Распределение напряжений  $\sigma_z$  на стенке кармана со стороны патрубка ПГ по его окружности на высоте 20 мм от дна кармана – *а* и вдоль образующей кармана при  $\varphi = 4,1$  рад (малая серия) и  $\varphi = 1,6$  рад (большая серия) – *б*, вызванное совместным действием теплоносителя и изгибающего момента при ГИ ( $p_1/p_2 = 16/6$  МПа): малая серия M = 2,279 МН · м; большая серия M = 2,035 МН · м.

ISSN 0556-171Х. Проблемы прочности, 2007, № 5

Влияние изгибающего момента на НДС узла приварки для реакторов малой и большой серий вызвано различием в их компоновке. В реакторах большой серии изгибающий момент не повышает уровня максимальных растягивающих напряжений, так что максимальная напряженность узла приварки определяется практически давлением теплоносителя в первом и втором контурах. При нормальных условиях эксплуатации максимальные напряжения не превышают предела текучести материала. При ГИ на прочность и плотность максимальные условно-упругие напряжения выше предела текучести, однако они ниже, чем в реакторах малой серии.

В табл. 2 представлены значения максимальных осевых ( $\sigma_z$ ), главных ( $\sigma_1$ ) и приведенных упругих напряжений ( $\sigma_1 - \sigma_3$ ) [7] в области галтельного перехода в кармане узла приварки, возникающих в результате совместного действия давления и изгибающего момента, для реакторов малой и большой серий.

| Режим нагружения | Максимальные напряжения, МПа |            |                       |  |
|------------------|------------------------------|------------|-----------------------|--|
|                  | $\sigma_z$                   | $\sigma_1$ | $\sigma_1 - \sigma_3$ |  |
| НУЭ              | 356                          | 382        | 356                   |  |
|                  | 272                          | 293        | 275                   |  |
| ГИ на прочность  | 489                          | 522        | 490                   |  |
|                  | 447                          | 476        | 448                   |  |
| ГИ на плотность  | 365                          | 390        | 366                   |  |
|                  | 328                          | 349        | 329                   |  |
| Испытания ГЦН    | 276                          | 295        | 277                   |  |
|                  | 242                          | 258        | 243                   |  |

Максимальные напряжения в кармане (зона галтельного перехода) узла приварки

Примечание: Значение над чертой соответствует реакторам малой серии, под чертой – реакторам большой серии.

Как показали расчеты, дополнительные напряжения в узле приварки, вызванные термическим расширением пучка теплообменных трубок, расширением коллекторов и искривлением их осей при запрессовке теплообменных трубок, являются незначительными (менее одного процента от величины изгибающего момента со стороны ГЦТ) и могут не учитываться в расчетах НДС.

Заключение. С использованием современных методов трехмерного численного моделирования сложных пространственных конструкций установлено, что влияние изгибающего момента, вызванного некомпенсированным расширением ГЦТ, на НДС и уровень максимальных напряжений в узле приварки для реакторов малой и большой серий зависит от их компоновки, что определяет различный уровень максимальных напряжений. Конструктивное исполнение узла приварки реакторов большой серии обеспечивает их повышенную долговечность.

ISSN 0556-171Х. Проблемы прочности, 2007, № 5

Таблица 2

## Резюме

Наведено уточнені результати оцінки напружено-деформованого стану вузла приварки "гарячого" колектора до корпусу парогенератора реакторів ВВЕР-1000 "малої" і "великої" серій з використанням тривимірних моделей. Показано, що компоновка реакторів впливає на максимальні напруження в області зварного шва.

- 1. Зубченко А. С., Разыграев Н. П., Харина И. Л. и др. Результаты исследований характера эксплуатационных повреждений металла в зонах сварных узлов коллекторов с патрубками Ду 1200 парогенераторов ПГВ-1000: Тр. VII Междунар. конф. "Проблемы материаловедения при проектировании, изготовлении и эксплуатации оборудования АЭС". СПб., 2002.
- 2. Степанов Г. В., Харченко В. В., Бабуцкий А. И. и др. Оценка напряженно-деформированного состояния узла сварного соединения "горячего" коллектора с патрубком парогенератора ПГВ-1000 АЭС // Пробл. прочности. – 2003. – № 5. – С. 142 – 153.
- 3. Орыняк И. В., Тороп В. М., Ромащенко В. А., Жураховский В. Н. Расчет пространственного разветвленного трубопровода в программном комплексе оценки прочности оборудования АЭС // Там же. 1998. № 2. С. 87 100.
- 4. Зенкевич О. Метод конечных элементов в технике. М.: Мир, 1975. 541 с.
- 5. *Сахаров А. С., Альтенбах И.* Метод конечных элементов в механике твердых тел. Киев: Вища шк., 1982. 478 с.
- 6. Програмне забезпечення "Тривимірне скінченноелементне моделювання теплового і термонапруженого стану елементів машинобудівних конструкцій (SPACE)" // Система сертифікації УкрСЕПРО. Сертифікат відповідності № UA1. 017.0084261-02. 2002.
- ПНАЭ Г-7-002-86. Нормы расчета на прочность оборудования и трубопроводов атомных энергетических установок. – М.: Энергоатомиздат, 1989. – 525 с.

Поступила 14. 06. 2006