Аналитическое описание порообразования при установившейся ползучести металлов

А. К. Русинко^а, Й. Гинстлер⁶, Л. Девени⁶

На основании обобщения синтезной теории пластичности и ползучести аналитически описан процесс порообразования в металле во время установившейся ползучести. Получены соотношения между объемом микропор и деформацией установившейся ползучести при разных уровнях напряжения. Аналитически полученные результаты хорошо согласуются с экспериментальными.

Ключевые слова: микропоры, деформация установившейся ползучести, интенсивность деформации, интенсивность пустот.

Введение. Работа элементов конструкций при повышенных температурах неизбежно сопровождается деформацией ползучести, диаграмма которой, как известно, состоит из неустановившегося, установившегося и третичного участков. С точки зрения прочности материала опасным является третий участок диаграммы, начало которого характеризуется возникновением микротрещин, что в результате приведет к разрушению испытуемого образца. Микротрещины возникают в местах скоплений микропор, которые зарождаются во время установившейся ползучести.

В связи с техническими сложностями и дороговизной проведения экспериментов по изучению количества и кинетики образования микропор возрастает актуальность аналитического моделирования этих процессов.

Целью работы является построение математической модели процесса образования микропор в металлах во время установившейся ползучести на основе сентезной теории пластичности и ползучести [1, 2]. Основная особенность данной теории – установление зависимости между макродеформацией и физическими процессами, происходящими на микроуровне. Это позволяет определить взаимосвязь между деформацией ползучести и сопровождающим ее процессом порообразования. В этом и состоит научная новизна работы.

Основные соотношения синтезной теории. Синтезная теория [1, 2] сочетает концепцию скольжения Батдорфа—Будянского [3] и теорию течения Койтера—Сандерса [4]. Постоянный во времени вектор скорости установившейся ползучести определяется из формулы [2]

$$\frac{d\vec{\mathbf{e}}}{dt} = \int_{\alpha} \int_{\beta} \int_{\lambda} \frac{d\varphi}{dt} \, \vec{\mathbf{n}} \cos \lambda dV \,, \tag{1}$$

где φ – интенсивность деформации, являющаяся скалярной мерой пластического сдвига в одной системе скольжения, ориентацию которой задает

^а Национальный университет "Львівська політехніка", Львов, Украина

⁶ Будапештский политехнический университет, Будапешт, Венгрия

единичный вектор $\vec{\mathbf{n}}$, а направление сдвига характеризует угол λ . Интегрирование символизирует суммирование приростов необратимой деформации по системам скольжения, где произошли сдвиги.

Для случая установившейся ползучести интенсивность деформации определяется из соотношения [1, 2]

$$\frac{d\varphi}{dt} = \frac{K}{r}\psi,\tag{2}$$

где ψ — интенсивность дефектов строения кристаллической решетки материала (дислокации, вакансии и т.п.), возникающих в результате пластического деформирования в определенной системе скольжения, ψ является скалярной усредненной мерой дефектов в однородном теле; функция K описывает влияние напряжения и температуры на установившуюся ползучесть:

$$K = K_1 \exp(K_2 \Theta) (\tau_i / \sigma_p)^{K_3}$$
(3)

 $(\tau_i$ — интенсивность касательных напряжений; Θ — гомологическая температура испытания). Размерности констант материала в формулах (2) и (3) следующие: $[K_1] = c^{-1}$; $[K_2, K_3] = 1$; $[r] = M\Pi a^2$. Эти константы определяются при построении диаграмм установившейся ползучести для разных значений напряжения и температуры [2].

Величина ψ задается так [2]:

$$\psi = (\vec{\mathbf{S}}\,\vec{\mathbf{n}}\cos\lambda)^2 - 2/3\,\sigma_{\mathrm{p}}^2,\tag{4}$$

где $\vec{\mathbf{S}}$ – вектор напряжений в трехмерном подпространстве девиаторов напряжений; $\sigma_{\rm p}$ – граница ползучести материала при одноосном растяжении. Длина вектора $\vec{\mathbf{S}}$ равна интенсивности касательных напряжений τ_i . Формула (4) описывает увеличение дефектов строения кристаллической решетки металла с ростом приложенного напряжения.

Из формул (1), (2) и (4) следует, что синтезная теория является двухуровневой: соотношения (2) и (4) задают связь на микроуровне между деформацией и порождающими ее дефектами, а по формуле (1) определяется макродеформация как сумма микродеформаций по системам скольжения, где происходили пластические сдвиги.

При установившейся ползучести, когда $\tilde{\mathbf{S}}(t) = \mathrm{const}$, из формул (2) и (4) следует, что величины ψ и $d\varphi/dt$ постоянны во времени. Выражение $\psi(t) = \mathrm{const}$ свидетельствует о том, что деформация установившейся ползучести вырабатывается при равновесии процессов упрочнения и разупрочнения, т.е. при неизменном во времени количестве дефектов.

Экспериментальные данные и построенные на их основании мо- дельные соотношения. Определим объем микропор исходя из таких экспериментально установленных зависимостей [5–8]:

- 1) высокотемпературная ползучесть обусловлена не только внутризеренным, но и межзеренным скольжением, которое приводит к зарождению микропор по границам зерен; когда плотность микропустот достигает критического значения, они преобразуются в микротрещину;
- 2) интенсивность межзеренного проскальзывания, а значит, и объем микропор пропорциональны деформации ползучести (рис. 1);
- 3) объем микропор зависит не только от действующего напряжения, но и от длительности пребывания материала под нагрузкой.

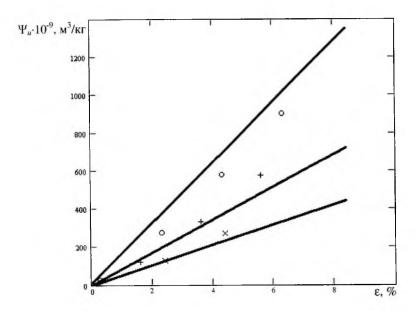


Рис. 1. Экспериментальные [8] (точки) и расчетные (линии) зависимости объема микропор Ψ_u от деформации установившейся ползучести ε для меди ($T=260^{\circ}$ C) при разных напряжениях: $\bigcirc -\sigma = 21$ МПа; $+ -\sigma = 28$ МПа; $\times -\sigma = 35$ МПа.

Следовательно, в каждой системе скольжения элементарный объем образовавшихся микропор $d\psi_u$ запишем так:

$$d\psi_u = f(\tau_i)d\varphi; \tag{5}$$

$$f(\tau_i) = A_1 \left(\frac{\tau_i}{\sigma_p}\right)^{A_2},\tag{6}$$

где A_1 — константа, являющаяся масштабным множителем (м 3 /кг); A_2 — безразмерная константа, характеризующая влияние напряжения на объем микропор (конкретизация A_2 приведена ниже). Формула (5) задает соотношение между интенсивностью дефектов, возникших в результате пластических сдвигов, и объемом микропор.

Учитывая, что при установившейся ползучести $d\varphi/dt = (K/r)\psi = {\rm const},$ на основании формулы (5) получаем

$$\psi_u = f(\tau_i) \frac{d\varphi}{dt} t = f(\tau_i) \frac{K}{r} \psi t, \tag{7}$$

причем момент времени t=0 соответствует началу установившейся ползучести. Как следует из этой формулы, величина ψ_u зависит не только от скорости ползучести, но и от длительности действия нагрузки.

Формулы (5) и (7) действительны только для одной системы скольжения. Для того чтобы определить объем микропор Ψ_u на макроуровне, необходимо просуммировать (проинтегрировать) значения ψ_u , реализуемые в системах скольжения, где проходила деформация ползучести:

$$\Psi_{u} = \int_{\alpha} \int_{\beta} \int_{\lambda} \psi_{u} dV = f(\tau_{i}) t \int_{\alpha} \int_{\beta} \int_{\lambda} \frac{d\varphi}{d\tau} dV = \frac{K}{r} f(\tau_{i}) t \int_{\alpha} \int_{\beta} \int_{\lambda} \psi dV.$$
 (8)

При одноосном растяжении, когда вектор $\bar{\bf S}$ имеет единственную ненулевую компоненту: $(\sqrt{2/3}\,\sigma_x,0,0)$, интенсивность дефектов определяется по формуле $\psi=\frac{2}{3}(\sigma_x^2\sin^2\beta\cos^2\lambda-\sigma_p^2)$ [2], интенсивность касательных напряжений $\tau_i=\sigma_x$ [1], формула (8) преобразуется следующим образом:

$$\Psi_{u} = \frac{4\pi K}{3r} f(\sigma_{x}) t \int_{\beta_{1}}^{\pi/2} \int_{0}^{\lambda_{1}} [\sigma_{x}^{2} \sin^{2} \beta \cos^{2} \lambda - \sigma_{p}^{2}] \cos \beta d\lambda d\beta; \tag{9}$$

определение значения границ интегрирования приведено в [2]. После интегрирования (9) получим

$$\Psi_{\nu} = Kaf(\sigma_{\nu})tR(\xi), \tag{10}$$

$$a = \frac{\pi}{9r} \sigma_{p}^{2};$$

$$R(\xi) = \frac{2(1 - 6\xi^{2})}{\xi^{2}} \arccos \xi + \frac{2}{\xi} \sqrt{1 - \xi^{2}} + 8\xi \ln \frac{1 + \sqrt{1 - \xi^{2}}}{\xi};$$

$$\xi = \frac{\sigma_{p}}{\sigma_{x}}.$$
(11)

Поскольку при установившейся ползучести справедливо соотношение $t=e_1/\dot{e}_1$ (e_1 — компонента вектора $\vec{\bf e}$, направленная по линии действия вектора $\vec{\bf S}$ ($e_2=0,\ e_3=0$ [2])), формула (10) примет вид

$$\Psi_u = Kaf(\sigma_x)R(\xi)\frac{e_1}{\dot{e}_1}.$$
 (12)

Величина \dot{e}_1 определяется следующим образом [2]:

$$\dot{e}_1 = Ka\Phi(\xi), \quad \Phi(\xi) = \frac{1}{\xi^2} \left(2\sqrt{1 - \xi^2} - 5\xi^2 \sqrt{1 - \xi^2} + 3\xi^4 \ln \frac{1 + \sqrt{1 - \xi^2}}{\xi} \right). \quad (13)$$

Графически функции $R(\xi)$, $\Phi(\xi)$ и $R(\xi)/\Phi(\xi)$ (при использовании правила Лопиталя получим $\lim_{\xi \to 1} R(\xi)/\Phi(\xi) = 1$) представлены на рис. 2. Видно, что все три функции есть возрастающими функциями напряжения

видно, что все три функции есть возрастающими функциями напряжения σ_x , поскольку величины ξ и σ_x находятся в обратно пропорциональной зависимости.

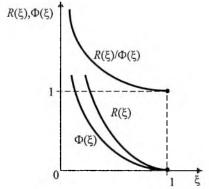


Рис. 2. Графики функций $R(\xi)$, $\Phi(\xi)$ и их отношение.

Связь между компонентой вектора e_1 и компонентой тензора деформации ε_x такова: $\varepsilon_x = \sqrt{2/3} \, e_1$ [1, 2]. Далее величины ε_x и σ_x будем обозначать через ε и σ соответственно.

На основании формул (6), (12) и (13) получим

$$\Psi_{u} = A_{1} \left(\frac{\sigma}{\sigma_{p}} \right)^{A_{2}} \frac{R(\xi)}{\Phi(\xi)} \varepsilon. \tag{14}$$

Формула (14) задает соотношение между объемом микропор и деформацией установившейся ползучести.

Построение графиков зависимости $\Psi_u - \varepsilon$. Обоснование значения константы модели A_2 . Рассмотрим отношение Ψ_{u_1}/Ψ_{u_2} при напряжениях σ_1 и σ_2 , причем $\sigma_1 > \sigma_2$. Из формулы (14) имеем

$$\frac{\Psi_{u_1}}{\Psi_{u_2}} = \left(\frac{\sigma_1}{\sigma_2}\right)^{A_2} \frac{R(\xi_1)/\Phi(\xi_1)}{R(\xi_2)/\Phi(\xi_2)} \frac{\varepsilon_1}{\varepsilon_2}.$$
 (15)

Из рис. 1 видно, что для одинакового объема микропор справедливо неравенство $\varepsilon_1 > \varepsilon_2$ при $\sigma_1 > \sigma_2$. Чтобы формула (15) при $\Psi_{u_1} / \Psi_{u_2} = 1$ удовлетворяла этим неравенствам, константа A_2 должна быть отрицательной, поскольку из рис. 2 следует, что $R(\xi)/\Phi(\xi) \ge 1$, а $R(\xi_1)/\Phi(\xi_1) \ge R(\xi_2)/\Phi(\xi_2)$ при $\sigma_1 > \sigma_2$.

Если записать отношение $\Psi_{u_1}/\Psi_{u_2}=1$ с использованием формул (3) и (10), то получим

$$1 = \left(\frac{\sigma_1}{\sigma_2}\right)^{K_3 + A_2} \frac{R(\xi_1)}{R(\xi_2)} \frac{t_1}{t_2}, \quad A_2 < 0, \tag{16}$$

где t_j (j=1,2) – моменты времени, когда возникает одинаковое количество микропор при уровнях напряжений σ_j .

Из формулы (16) получим

$$t_2 = T_{\Delta} t_1, \qquad T_{\Delta} = \left(\frac{\sigma_1}{\sigma_2}\right)^{K_3 + A_2} \frac{R(\xi_1)}{R(\xi_2)}.$$
 (17)

Величина T_{Δ} определяет соотношение между длительностями пребывания материала под нагрузкой, необходимыми для возникновения одинакового объема микропор при разных напряжениях. Очевидно, что условие $T_{\Delta}=1$ неприемлемо, поскольку невозможно, чтобы для образования одинакового количества микропор при разных напряжениях затрачивалось одинаковое время. Кроме того, при напряжении σ_1 для достижения определенной интенсивности микропор должно пройти меньше времени, чем при напряжении σ_2 . Таким образом, должно выполняться неравенство $t_2 > t_1$, т.е. $T_{\Delta} > 1$. Условие $T_{\Delta} > 1$ является вторым ограничением на значение константы A_2 .

На основании формул (11)—(14) построены расчетные зависимости $\Psi_u-\varepsilon$ для напряжений 21, 28 и 35 МПа (рис. 1). Материал — медь, для которой $\sigma_{\rm p}=18$ МПа при 260°С [9]; $K_3=1,1$ (константы K_m , m=1,2,3 для меди определены в работе [10]). Данные графики построены при таких значениях констант модели: $A_1=2,2\cdot 10^{-5}$ м $^3/{\rm kr}$; $A_2=-2,5$. Для напряжений $\sigma_1=28$ МПа и $\sigma_2=21$ МПа из формулы (17) получаем $T_\Delta=10,2,$ для $\sigma_1=35$ МПа и $\sigma_2=21$ МПа — $T_\Delta=22,6,$ что удовлетворяет условию $T_\Delta>1.$

Заключение. На основе синтезной теории пластичности и ползучести выведена формула для определения объема микропор в металле в зависимости от деформации установившейся ползучести. Хорошее соответствие между расчетными и экспериментальными результатами позволяет прогнозировать количество микропор в ходе установившейся ползучести, что способствует сокращению объема технически сложных экспериментов по изучению порообразования.

Резюме

На основі узагальнення синтезної теорії пластичності і повзучості представлено аналітичний опис процесу пороутворення за усталеної повзучості металів. Отримано співвідношення між об'ємом мікропор і деформацією усталеної повзучості за різних рівнів напруження. Аналітичні результати добре узгоджуються з експериментальними.

- 1. *Андрусик Я. Ф.*, *Русинко К. Н.* Пластическое деформирование упрочняющихся материалов при нагружении в трехмерном подпространстве пятимерного пространства девиаторов // Изв. РАН. Механика твердого тела. − 1993. № 2. С. 92 101.
- 2. *Русинко А. К.* Аналітична залежність швидкості усталеної повзучості металів від попередньої пластичної деформації // Пробл. прочности. 2002. № 4. С. 91 102.
- 3. *Batdorf S. and Budiansky B.* Mathematical Theory of Plasticity Based on the Concept of Slip. NASA, 1949. 871 p.
- 4. Sanders J. Plastic stress-strain relations based on linear loading functions: Proc. 2nd US National Congress of Applied Mechanics. 1954. P. 455 460.
- 5. Choi B. G., Nam S. W., and Ginsztler J. Life extension by cavity annihilation heat treatment in AISI 316 stainless steel under creep-fatigue interaction conditions // J. Mater. Sci. 2000. 35. P. 1699 1705.
- 6. *Devenyi L. and Biro T.* Investigation of Creep Cavities by Scanning Electron Microscope: Material Science Forum, Vol. 414-415, 2003. Trans. Tech. Publications, ISBN 0-87849-908-3.
- 7. Ginsztler J. and Devenyi L. Revalidability of high temperature ferritic/bainitic steels // Europ. J. Mech. Eng. 1991. **36**, No. 4. P. 251 253.
- 8. *Грант Н*. Разрушение в условиях высокотемпературной ползучести // Разрушение. М.: Мир, 1976. Т. 3. С. 528 578.
- 9. *Физико-химические* свойства элементов: Справочник / Под ред. Г. В. Самсонова. Киев: Наук. думка, 1965. 808 с.
- 10. *Русинко А. К.* Вплив попередньої механо-термічної обробки на усталену повзучість металів // Фіз.-хім. механіка матеріалів. 2004. № 2. С. 59 66.

Поступила 09. 03. 2005