УДК 539.4:678.067

Исследование изгибной жесткости в асимметричных многослойных балках

Й. Барейшис^a, В. Клейза^a, Й. Клейза^б

^а Каунасский технологический университет, Каунас, Литва

⁶ Вильнюсский технический университет, Вильнюс, Литва

Представлены результаты исследования изгибной жесткости в многослойных балках, имеющих геометрическую и (или) жесткостную асимметрию. Предложен алгоритм для установления координат геометрического и жесткостного центров и расчета изгибной жесткости в любом направлении с определением ее экстремальных значений в многослойных балках с любой асимметрией. Изучены кинетика координат геометрического и жесткостного центров, а также изгибной жесткости в зависимости от изменения геометрических параметров и отношения модулей упругости слоев и формы поперечного сечения многослойной балки.

Ключевые слова: многослойная балка, нейтральная плоскость, центр жесткости, изгибная жесткость.

Введение. Композиционные системы слоистой структуры используются в разных областях техники, поскольку они сочетают прочность, жесткость и легкость конструкционного элемента. В основном работы [1–6] по многослойным конструкционным элементам посвящены исследованию элементов с одной или двумя осями симметрии. Влияние разных факторов на закономерности изменения прочности и жесткости в симметричных многослойных стержнях и балках изучалось в [7, 8]. Во всех случаях необходимо определить положение нейтрального слоя. Методы его определения при наличии одной оси симметрии приведены в [1, 7, 9]. Однако пользоваться ими в общем случае, т.е. когда имеет место геометрическая и жесткостная асимметрии, затруднительно. В [7] показано, что на положение нейтрального слоя, а значит, и на жесткость балки влияют разные факторы. Поэтому для изучения кинетики изгибной жесткости в многослойных балках, имеющих геометрическую и жесткостную асимметрию, необходимо определить координаты геометрического и жесткостного центров.

Современные технологии изготовления изделий из слоистых композитных материалов позволяют получить конструкционные элементы любого требуемого профиля [10]. К числу наиболее широко используемых конструкционных элементов прокатной стали относятся угольники, швеллеры, двутавровые и другие профили. Однако применение таких профилей из слоистых композитных материалов ограничено асимметричностью конструкционного элемента и отсутствием методики их расчета и экспериментального исследования.

Цель данной работы заключалась в представлении основанной на математической модели методики расчета изгибной жесткости при упругом деформировании в любом направлении с определением ее экстремальных значений в многослойных балках с любой асимметрией и изучении кинетики координат геометрического и жесткостного центров, а также изгибной жесткости в зависимости от изменения отношения модулей упругости и геометрических параметров слоев и формы поперечного сечения многослойной балки.

1. Математическая модель многослойной балки. Пусть многослойная балка (МСБ) – рис. 1 состоит из n слоев, имеющих модули упругости $E_1, E_2, ..., E_n$, сечения которых занимают односвязные области K_i , и при этом выполняются условия

$$K \subseteq K_{\Box} = [0, 1] \times [0, 1], \qquad K = \bigcup_{i=1}^{n} K_{i}, \qquad K_{i} \bigcap K_{j} = \emptyset, \qquad i \neq j.$$
(1)

Тогда координаты центра жесткости сечения МСБ, направления нейтральных плоскостей и экстремальные значения изгибной жесткости представим через тензор инерции и его собственные значения и векторы. Плотность осевой упругости МСБ определим функцией

$$E(x, y) = \sum_{i=1}^{n} E_i \operatorname{Ind}_i(x, y),$$
 (2)

где $\operatorname{Ind}_{i}(x, y) = \begin{cases} 0, & (x, y) \notin K_{i} \\ 1, & (x, y) \in K_{i} \end{cases}$ – индикаторная функция множества.

Рис. 1. Геометрия поперечного сечения многослойной балки. (Глобальная, жесткостная и главная системы координат.)

Пусть $\mathbf{E} = (E_1, E_2, ..., E_n), \mathbf{1} = \underbrace{(1, 1, ..., 1)}_{n}. \mathbf{C}$ учетом (2) определим числа

$$m_{pq}(\mathbf{E}) = \iint_{K} x^{p} y^{q} E(x, y) dx dy, \qquad (3)$$

через которые выразим моменты сечения МСБ всех порядков, ее координаты центра жесткости сечения, а также осевую и изгибную жесткость. Далее будем использовать следующие векторы:

Исследование изгибной жесткости ...

$$\mathbf{S}(\mathbf{E}) = \begin{pmatrix} m_{01} \\ m_{10} \end{pmatrix}, \qquad \mathbf{g}(\mathbf{E}) = \frac{S(\mathbf{E})}{m_{00}(\mathbf{E})}$$
(4)

и матрицы

$$P(\mathbf{E}) = \begin{bmatrix} m_{01}^2 & m_{01}m_{10} \\ m_{01}m_{10} & m_{10}^2 \end{bmatrix}, \qquad I(\mathbf{E}) = \begin{bmatrix} m_{02} & -m_{11} \\ -m_{11} & m_{20} \end{bmatrix}.$$
 (5)

С учетом (2) площадь A сечения и осевая жесткость B(E) МСБ равны:

$$A = m_{00}(1), \qquad B(\mathbf{E}) = m_{00}(\mathbf{E}), \tag{6}$$

радиусы-векторы геометрического **C** и жесткостного **C**_E центров сечения в глобальной системе координат $\{x, y\}$ соответственно таковы:

$$\mathbf{C} = \mathbf{g}(\mathbf{1}), \qquad \mathbf{C}_E = \mathbf{g}(\mathbf{E}). \tag{7}$$

При принятых обозначениях (5) тензор инерции сечения МСБ в системе координат $\{x, y\}$ будет

$$\hat{I}_E(\mathbf{E}) = I(\mathbf{E}). \tag{8}$$

В жесткостной системе координат $\{x_E, y_E\}$ (рис. 1), ориентация которой такая же, как у системы $\{x, y\}$, а начало определено радиусом-вектором C_E , тензор инерции сечения МСБ равен (это следует из теоремы о параллельной оси)

$$\hat{J}_E(\mathbf{E}) = I(\mathbf{E}) - P(\mathbf{E}) / m_{00}(\mathbf{E}).$$
(9)

Теперь можно представить момент инерции сечения МСБ по отношению к любой оси, проходящей через центр жесткости и составляющей угол φ с положительным направлением оси абсцисс системы { x_E , y_E } (рис. 1):

$$M(\varphi) = \tau(\varphi) \hat{J}_E(\mathbf{E}) \tau(\varphi)^T , \qquad (10)$$

где $\tau(\varphi) = (\cos \varphi \sin \varphi) - единичный вектор направления <math>\varphi$.

Поскольку тензор инерции (9) симметричный и эллиптический, что следует из неравенства Шварца, его собственные значения λ_1 , λ_2 действительны и положительны. Заметим, что при геометрической и жесткостной симметрии поперечного сечения $\lambda_1 = \lambda_2$, и тензор (9) становится шаровым, т.е. изгибная жесткость МСБ не зависит от угла φ . Поэтому ниже рассматриваются различные собственные значения $\lambda_1 \neq \lambda_2$, при которых соответствующие им собственные векторы \mathbf{v}_1 и \mathbf{v}_2 ортогональны. Они и определяют направления нейтральных слоев МСБ. Таким образом, если изгибающий момент действует в плоскости, проходящей через центр жесткости и перпендикулярной к плоскости сечения МСБ, при этом составляя угол θ с положительным направлением оси абсцисс системы $\{x_E, y_E\}$, то изгибная жесткость МСБ равна

$$D(\theta) = \mathbf{v}(\theta) \hat{\mathbf{J}}(\mathbf{E}) \mathbf{v}(\theta)^{T}, \qquad (11)$$

где $\mathbf{v}(\theta) = (-\sin \theta \cos \theta) - единичный вектор, перпендикулярный к направлению <math>\varphi$.

Найдем теперь главную систему координат $\{x_v, y_v\}$, начало которой определено радиусом-вектором C_E , а ось абсцисс коллинеарна собственному вектору, соответствующему максимальному собственному значению тензора инерции (8), и составляет угол φ_{\max} ($-\pi/2 \le \varphi \le \pi/2$) с положительным направлением оси абсцисс системы координат $\{x_E, y_E\}$. Пусть ось ординат направлена так, что система координат $\{x_v, y_v\}$ – правая. Заметим, что такой выбор всегда возможен и однозначен, при этом данная система координат удовлетворяет следующим условиям:

1) начало системы находится в центре жесткости (x_E, y_E) ;

2) момент инерции по отношению к оси абсцисс максимален;

3) момент инерции по отношению к оси ординат минимален;

4) система $\{x_v, y_v\}$ – правая, а ее ортами являются нормированные собственные векторы тензора инерции;

5) тензор (9) в системе $\{x_v, y_v\}$ имеет диагональный вид

$$\hat{\mathbf{J}}'(\mathbf{E}) = \begin{bmatrix} J'_{x_E x_E} & 0\\ 0 & J'_{y_E y_E} \end{bmatrix} = \begin{bmatrix} \max\{\lambda_1, \lambda_2\} & 0\\ 0 & \min\{\lambda_1, \lambda_2\} \end{bmatrix}.$$
 (12)

2. Расчет жесткостно-геометрических характеристик многослойных балок. Рассмотрим случай, когда области K_i представляют собой многоугольники (это, вообще говоря, не ограничивает общности, так как стороны многоугольников могут быть сколь угодно малы), необязательно выпуклые, но односвязные. Пусть $P_i^{(j)}$ – упорядоченные последовательности вершин контуров ∂K_i многоугольников K_i . Тогда контур любого многоугольника будет

$$\partial K_i = \bigcup_{k=1}^{j_i} \{ \overline{P_i^{(j)} P_i^{(j+1)}} \}.$$
(13)

Покажем, что в этом случае все моменты $m_{pq}(\mathbf{E})$ можно выразить в алгебраической форме. В действительности уравнение любой стороны *i*-го многоугольника

$$P_i^{(j)}(x_{ij}, y_{ij})P_i^{(j+1)}(x_{i(j+1)}, y_{i(j+1)}), \quad i = 1, 2, ..., n, \quad j = 1, 2, ..., j_i$$
(14)

представим в параметрическом виде

$$\begin{cases} x_{ij}(t) = x_{ij} + \bar{x}_{ij}t, \\ y_{ij}(t) = y_{ij} + \bar{y}_{ij}t \end{cases} \quad \text{для} \quad 0 \le t \le 1,$$
(15)

где $\overline{x}_{ij} = x_{i(j+1)} - x_{ij}; \ \overline{y}_{ij} = y_{i(j+1)} - y_{ij}.$

ISSN 0556-171Х. Проблемы прочности, 2006, № 6

54

Тогда все моменты $m_{pq}(\mathbf{E})$ равны

$$m_{pq}(\mathbf{E}) = \iint_{K} E(x, y) x^{p} y^{q} dx dy = \frac{1}{q+1} \oint_{\partial K} E(x, y) x^{p} y^{q+1} dy =$$

$$= \frac{1}{q+1} \sum_{i=1}^{n} E_{i} \oint_{\partial K_{i}} x^{p} y^{q+1} dy = \frac{1}{q+1} \sum_{i=1}^{n} E_{i} \sum_{j=1}^{j_{i}} \iint_{(P_{i}^{(j)}) P_{i}^{(j+1)}} x^{p} y^{q+1} dy =$$

$$= \frac{1}{q+1} \sum_{i=1}^{n} E_{i} \sum_{j=1}^{j_{i}} \overline{y}_{ij} \int_{0}^{1} (x_{ij}(t))^{p} (y_{ij}(t))^{q+1} dt = \frac{1}{q+1} \sum_{i=1}^{n} E_{i} \sum_{j=1}^{j_{i}} \overline{y}_{ij} s_{pq}^{(ij)}, \quad (16)$$

причем определенные интегралы в выражении (16)

$$s_{pq}^{(ij)} = \int_{0}^{1} (x_{ij}(t))^{p} (y_{ij}(t))^{q+1} dt$$
(17)

при $p \ge 0, q \ge 0, p + q \le 2$ окончательно можно записать в виде:

$$\begin{cases} s_{00}^{(ij)} = \frac{1}{2} \,\overline{y}_{ij} + y_{ij}; \\ s_{10}^{(ij)} = \frac{1}{3} \,\overline{x}_{ij} \,\overline{y}_{ij} + \frac{1}{2} (x_{ij} \,\overline{y}_{ij} + \overline{x}_{ij} \,y_{ij}) + x_{ij} \,y_{ij}; \\ s_{01}^{(ij)} = \frac{1}{3} \,\overline{y}_{ij}^{2} + y_{ij} (y_{ij} + \overline{y}_{ij}); \\ s_{20}^{(ij)} = \frac{1}{4} \,\overline{x}_{ij}^{2} \,\overline{y}_{ij} + \frac{1}{3} \,\overline{x}_{ij} (2x_{ij} \,\overline{y}_{ij} + \overline{x}_{ij} \,y_{ij}) + \frac{1}{2} \,x_{ij}^{2} \,\overline{y}_{ij} + x_{ij} \,y_{ij} (\overline{x}_{ij} + x_{ij}); \\ s_{02}^{(ij)} = \frac{1}{4} \,y_{ij}^{3} + \frac{1}{3} (\frac{1}{2} \,y_{ij}^{2}) + y_{ij} (y_{ij}^{2} + \overline{y}_{ij}^{2}); \\ s_{02}^{(ij)} = \frac{1}{4} \,y_{ij}^{3} + \frac{1}{3} (\frac{1}{2} \,y_{ij}^{2}) + y_{ij} (y_{ij}^{2} + \overline{y}_{ij}^{2}); \\ s_{11}^{(ij)} = \frac{1}{4} \,\overline{x}_{ij} \,\overline{y}_{ij}^{2} + \frac{1}{3} \,\overline{y}_{ij} (x_{ij} \,\overline{y}_{ij} + 2y_{ij} \,\overline{x}_{ij}) + \frac{1}{2} \,y_{ij}^{2} \,\overline{x}_{ij} + x_{ij} \,y_{ij}^{2}. \end{cases}$$
(18)

Рассмотрим важный для практики случай, когда $K \subset K_{\Box}$, а дополнение области $K_c = K_{\Box} \setminus K \neq \emptyset$ (геометрия области K_c , как правило, сложнее, чем областей K_i , область K_c часто оказывается многосвязной) имеет модуль упругости $E_c \neq 0$. Тогда моменты всего квадрата, т.е. когда МСБ состоит из *n* слоев, а оставшаяся часть до квадрата $K_{\Box} = K \cup K_c$ заполнена материалом с модулем упругости $E_c \neq 0$, равны

$$m_{pq}^{\Box}(\mathbf{E}_{c}) = E_{c}(m_{pq}^{\Box}(\mathbf{1}^{\Box}) - m_{pq}(\mathbf{1})) + m_{pq}(\mathbf{E}) =$$
$$= E_{c}((1 + p + pq + q)^{-1} - m_{pq}(\mathbf{1})) + m_{pq}(\mathbf{E}),$$

где $m_{pq}^{\Box}(1)$ – моменты, через которые можно вычислить все геометрические и механические характеристики МСБ всего квадрата:

$$\mathbf{E}_{c} = (E_{1}, E_{2}, ..., E_{n}, E_{c}), \qquad \mathbf{1}^{\square} = \underbrace{(1, 1, ..., 1)}_{n+1}.$$

Таким образом, получен алгоритм вычисления моментов $m_{pq}(\mathbf{E})$ без применения операции интегрирования. Заметим, что через моменты $m_{pq}(\mathbf{E})$ с использованием полученных соотношений можно определить площадь сечения, представляющую собой любой многоугольник (необязательно выпуклый и односвязный), и осевую жесткость (6), координаты геометрического и жесткостного центров МСБ (7), тензор инерции поперечного сечения МСБ (9), изгибную жесткость в любом направлении (11), экстремальные ее значения (12) и направления нейтральных слоев.

3. Объект экспериментальных исследований. Предложенная схема расчета МСБ позволяет легко осуществить расчеты изгибной жесткости в любом направлении с выявлением ее экстремальных значений в МСБ с любой асимметрией, а также изучить кинетику координат геометрического и жесткостного центров при изменении отношения модулей упругости и геометрических параметров слоев. Изгибаемые МСБ часто формируются из слоев, поперечное сечение которых имеет различную форму, а МСБ – прямоугольную форму. В общем случае размеры слоев неодинаковые, а поперечное сечение МСБ не имеет ни одной оси симметрии. Кроме того, для формирования слоев используются материалы с разными модулями упругости.

Описанные выше конструкции находят применение в конструктивных узлах планеров и самолетов [10]. Предложенный метод использовался для расчета изгибной жесткости в разных направлениях (что особенно важно) лонжеронов крыльев планеров LAK-17A, LAK-19 и LAK-20, проектируемых и производимых в Литве. Лонжероны представляют собой МСБ (двойной Т-профиль, изготовленный из следующих материалов: кевлар, угольные стержни GRAPHLITE SM315, стекловолокно и др.), поперечные сечения которых удовлетворяют условиям применимости предлагаемого авторами метода.

Ранее [11] получены интересные данные об изменении изгибной жесткости МСБ, имеющей форму угольника, сформированного из двух прямоугольников с общей частью контура (прямая AB на рис. 2). Данный двухслойный угольник сформирован с использованием материалов, модули упругости которых E_1 и E_2 , причем $E_1 = 30$ МПа; $E_2/E_1 = 50$; 20; 5; 1; 0,5; 0,1. Исследовалась [11] кинетика изгибной жесткости, когда геометрия угольника определялась перемещением общей точки B по диагонали (на рис. 2 прямая 3). В настоящей работе представлены результаты исследований изменения формы угольника путем перемещения точки B по кривым 1-5(рис. 2), которые являются графиками семейства (параметра m) функций $f(t) = t^m$. От величины степенного показателя m зависит траектория формирования сечения МСБ, поэтому далее параметр m будем называть показателем формы. Исследования проводили при значениях показателя формы m = 0,2; 0,5; 1,0; 2,0; 5,0.

Таким образом, один из исследуемых объектов – двухслойный угольник, удовлетворяющий условию (1), а также условиям

$$\begin{array}{ll} n=2, & K_1=[0,1]\times[0,\,t^m\,], & K_2=[0,\,t^m\,]\times[t^m\,,1], & t\in[0,1]; \\ P_1^{(1)}=(0,\,0), & P_1^{(2)}=(1,\,0), & P_1^{(3)}=(1,\,t^m\,), & P_1^{(4)}=(0,\,t^m\,), & j_1=4; \\ P_2^{(1)}=(0,\,t^m\,), & P_2^{(2)}=(t^m\,,t^m\,), & P_2^{(3)}=(t^m\,,1), & P_2^{(4)}=(0,\,1), & j_2=4, \end{array}$$

где P_i^j – вершины прямоугольных слоев, при этом геометрия сечения МСБ зависит от показателя формы *m* и одного параметра *t*.

Рис. 2. Методика формирования поперечного сечения двухслойной балки с помощью функции формы $f(t) = t^m$ при m = 0,2 (1); 0,5 (2); 1,0 (3); 2,0 (4); 5,0 (5).

Поскольку предложенная математическая модель и основанный на ней алгоритм расчета позволяют изучить кинетику изгибной жесткости МСБ, состоящей из слоев любой формы, представляет интерес, какое влияние на изгибную жесткость оказывает форма поперечного сечения МСБ (рис. 3). В работе [11] для двухслойного угольника (на рис. 3 форма 1) получено, что первый максимум изгибной жесткости наблюдается при значении t = 0,3, $E_1 = 30$ МПа, $E_2/E_1 = 50$. Если параметр t = 0,3, то площадь поперечного сечения первого слоя $A_1 = 0,3$ м², второго слоя $A_2 = 0,2$ м², поэтому для всех десяти форм поперечного сечения МСБ (рис. 3) размеры слоев рассчи-*ISSN 0556-171Х. Проблемы прочности, 2006, № 6* 57 тывали исходя из указанных площадей ($A_1 = 0,3 \text{ м}^2$, $A_2 = 0,2 \text{ м}^2$) и условия $E_1 = 30 \text{ МПа}$, $E_2/E_1 = 50$. Следовательно, осевая жесткость всех форм МСБ (рис. 3) будет одинаковой. Хотя размеры слоев изменялись в относительных координатах от нуля до единицы, а габаритные размеры МСБ были ограничены единичным квадратом, такое ограничение не уменьшило общности исследований, так как, изменяя параметры слоев, можно получить МСБ с разными формами поперечного сечения (рис. 3).

Рис. 3. Исследованные поперечные сечения многослойных балок (1-10 – формы поперечного сечения балки).

4. Результаты исследования.

4.1. Кинетика положения геометрических и жесткостных центров. При изучении проблем жесткости в асимметричных МСБ важной задачей является определение координат жесткостного центра, через который проходят главные оси инерции, совпадающие с направлениями нейтральных слоев. На рис. 4 представлены траектории изменения геометрического и жесткостного центров в зависимости от способа формирования сечения двухслойной балки при отношении модулей упругости материалов слоев $E_2/E_1 = 50$. Если формирование сечения МСБ происходит по диагонали единичного квадрата, то геометрический центр перемещается по прямым 1, а жесткостной – по кривым 4 (рис. 4). Из расположения кривых следует, что расстояние между центрами не изменяется, если параметр t изменяется от нуля до 0,855. Затем расстояние между центрами уменьшается до нуля, так так конструкция из двухслойной превращается в однослойную. Если формирование сечения МСБ описывается функцией $f(t) = t^m$ с показателем формы, меньшим единицы, т.е. по выпуклым вверх кривым 1, 2 (рис. 2), то положение геометрических центров представляют кривые 2, 3 (рис. 4,a), а жесткостных – кривые 5, 6 (рис. 4,*a*). С уменьшением показателя формы *m* положение жесткостного центра изменяется по более выпуклой кривой 6 (рис. 4,a), а его расстояние от геометрического центра возрастает.

Рис. 4. Кинетика положения геометрического (1-3) и жесткостного (4-6) центров в зависимости от геометрической формы МСБ при отношении $E_2/E_1 = 50$ (*a*: 1, 4 – m = 1,0; 2, 5 – m = 0,5; 3, 6 – m = 0,2; 6: 1, 4 – m = 1,0; 2, 5 – m = 2,0; 3, 6 – m = 5,0).

С увеличением показателя формы, определяющего траекторию формирования при m > 1, траектории геометрических центров приближаются к горизонтальной оси симметрии единичного квадрата (на рис. 4,6 кривые 2, 3), а траектории жесткостных центров (на рис. 4,6 кривые 5, 6) – к траекториям геометрических центров. При этом кривые 2, 3 и 5, 6 (рис. 4,6) имеют выпуклость, направленную вниз. Следовательно, расхождение между этими центрами уменьшается с увеличением показателя формы m.

Все траектории сходятся в точке *C* с координатами $x_E(1) = 0,5$ и $y_E(1) = 0,5$, так как в этой точке конструкция превращается в однослойный квадрат. Интересно отметить, что для исследованных конструкций траектории геометрического и жесткостного центров не пересекают прямую *AB* (рис. 4), уравнение которой y = -x + 0,5. Вид траектории (кривой) жесткостного центра также зависит от отношения модулей упругости слоев [11], а кривизна кривых тем больше, чем больше данное отношение. Форма поперечного сечения большинства исследованных МСБ (рис. 3) незначительно влияет на величины координат геометрического и жесткостного центров (таблица). Наибольшее несовпадение между геометрическим и жесткостным центрами наблюдается для МСБ с формами поперечного сечения *I*, *2* (рис. 3), которые являются асимметричными по отношению к обеим осям.

Й. Барейшис, В. Клейза, Й. Клейза

Форма поперечного сечения МСБ (рис. 3)	Координаты центров. м				$\theta_{\rm max}$,	Изгибная жесткость	
	геометрического		жесткостного		град	$D_{\min} \cdot 10^{-9}$,	$D_{\text{max}} \cdot 10^{-9}$,
	x_c	Уc	x_E	y_E		$H \cdot m^2$	$H \cdot м^2$
1	0,357	0,350	0,153	0,635	98,21	3,6804	14,7269
2	0,313	0,400	0,491	0,115	176,50	3,5812	26,0421
3	0,313	0,500	0,490	0,500	90,02	25,9588	61,4799
4	0,499	0,499	0,499	0,499	112,70	11,1025	63,6425
5	0,500	0,500	0,500	0,500	90,02	25,1055	61,4799
6	0,500	0,456	0,500	0,394	90,02	19,1200	54,7500
7	0,428	0,444	0,326	0,365	88,60	4,0760	13,1173
8	0,433	0,411	0,497	0,496	68,70	45,2200	45,6000
9	0,500	0,550	0,500	0,176	180,00	8,6900	42,2500
10	0,500	0,500	0,500	0,500	45,00	2,0791	31,2762

Координаты геометрического и жесткостного центров, углы максимальной жесткости θ_{\max} , минимальная D_{\min} и максимальная D_{\max} изгибные жесткости для различных форм поперечного сечения многослойной балки

4.2. Кинетика углов наклона направлений нейтральных слоев. Если известны направления нейтральных слоев, это позволяет рассчитать экстремальные значения изгибной жесткости МСБ, а также определить положения плоскостей, в которых должны быть приложены внешние изгибающие моменты. Поэтому важно изучить, как изменяется угол θ_{\max} между положительным направлением абсциссы глобальной системы координат и направлением максимальной жесткости МСБ. Кинетика угла θ_{\max} в зависимости от способа формирования МСБ по кривым 1-5 (рис. 2), т.е. от ее геометрии, представлена на рис. 5. Из приведенных данных следует, что траектория формирования МСБ существенно влияет на угол максимальной жесткости θ_{\max} . Если показатель формы m > 0,5, то кривые угла наклона имеют явно выраженные максимумы, и чем больше этот показатель, тем больше скорость изменения угла (на рис. 5 кривые 2-5). Это связано с тем, что только при больших значениях t (t > 0, 7, на рис. 5 кривая 5) существенное влияние начинает оказывать слой с наибольшей жесткостью. Если показатель формы МСБ m = 0,2, то угол наклона θ_{max} изменяется по кривой l (рис. 5), которая уже не имеет максимумов, и до t = 0,7 значение угла θ_{max} мало изменяется, так как в данном случае моменты инерции более жесткого второго слоя увеличиваются незначительно.

На кривых 2–5 (рис. 5) можно выделить три зоны с разными скоростями изменения угла θ_{max} . Если параметр t изменяется от нуля до 0,4...0,7, то в зависимости от показателя формы m скорость увеличения угла θ_{max} небольшая. Ранее [11] получено, что чем больше значение соотношения модулей упругости, тем меньше численные значения угла θ_{max} . При дальнейшем увеличении t скорость роста угла θ_{max} резко повышается, и это очень зависит от показателя формы m и соотношения модулей упругости [11]. С увеличением этих двух параметров скорость изменения угла повышается (на рис. 5 кривые l и 5). Это означает, что незначительное изменение ширины второго слоя может существенно изменить положение плоскости нейтраль-

ного слоя, а ее неучет может вызвать косой изгиб с увеличением неучтенных напряжений. Максимальные значения угла θ_{\max} для исследованных конструкций находятся в интервале t = 0,7...0,9 и зависят от показателя формы МСБ и отношения E_2/E_1 [11]. С дальнейшим ростом параметра t происходит переход от двухслойной конструкции к однослойной, а значения угла θ_{\max} изменяются очень интенсивно до нуля. Это свидетельствует о том, что использование в МСБ элементов даже небольших размеров из материала с большим модулем упругости может существенно изменить положение нейтральных слоев.

Рис. 5. Изменение угла θ_{\max} при отношении $E_2/E_1 = 50$ и различных значениях показателя формы МСБ *m*: 1 - m = 0,2; 2 - m = 0,5; 3 - m = 1,0; 4 - m = 2,0; 5 - m = 5,0.

Для МСБ с разной формой поперечного сечения (рис. 3) угол θ_{max} изменяется от 45 до 180°. Эти значения получены для МСБ с формами поперечного сечения 9 и 10 (рис. 3). Данные в седьмой и восьмой строках таблицы показывают, что при одинаковой форме поперечного сечения МСБ величина угла θ_{max} зависит от того, какой элемент балки имеет наибольшую жесткость.

Таким образом, углы направлений нейтральных слоев зависят от геометрических параметров последних, модулей упругости материалов, используемых в МСБ, и формы поперечного сечения. Сложность зависимостей изменения углов требует точного определения положения нейтральных слоев, поскольку это непосредственно влияет на изгибную жесткость МСБ.

Й. Барейшис, В. Клейза, Й. Клейза

4.3. Кинетика максимальной изгибной жесткости двухслойной балки. Данные рис. 6,а иллюстрируют влияние отношения модулей упругости на максимальную жесткость, если МСБ формируется по диагонали квадрата, т.е. при m = 1. При изменении параметра t от нуля до единицы изгибная жесткость D_{\max} изменяется от нуля до определенного значения, общего для всех кривых. Общее значение D_{\max} обусловлено тем, что при t=1 МСБ превращается в однослойную конструкцию с квадратным сечением. Характер кривых изменения D_{max} в зависимости от параметра t при m=1 зависит от отношения модулей упругости слоев. Если отношения модулей упругости используемых материалов меньше 20, то кривые D_{max} имеют один максимум (на рис. 6,а кривые 3-5), с увеличением данного отношения формируются два максимума (на рис. 6, а кривые 1, 2). Это указывает на влияние двух конкурирующих факторов: геометрии конструкции и механических характеристик используемых материалов. С увеличением t до 0,5 площади сечений обоих слоев увеличивается, хотя для второго слоя, жесткость которого больше, площадь увеличивается медленнее (при t = 0.5 она в два раза меньше площади первого слоя). Появление минимума при t = 0, 3...0, 75 (на рис. 6, *a* кривые 1, 2) связано с резким, ранее описанным изменением угла наклона направления нейтральных слоев.

Результаты, приведенные на рис. 6,6, показывают, как значение показателя формы *m* влияет на изгибную жесткость двухслойного конструкционного элемента при $E_2/E_1 = 50$. При небольших значениях показателя формы *m* (на рис. 6,6 кривые 1, 2) изменения изгибной жесткости D_{max} имеют один слабо выраженный максимум, что согласуется с наиболее равномерным изменением угла наклона θ_{max} нейтральных слоев. Такие результаты объясняются преобладающей ролью первого слоя ($E_1 = 30$ МПа), так как площадь поперечного сечения во всем интервале изменения параметра *t* составляет более 90% всей площади поперечного сечения МСБ.

С ростом показателя формы *т* изгибная жесткость *D*_{тах} увеличивается, а на кривых 3, 4 (рис. 6,б) появляются два максимума. Если при m = 1,0 значения D_{max} в обоих экстремумах одинаковы, то при m > 1,0 максимальное значение D_{\max} в первом экстремуме, который перемещается в сторону наиболее высоких значений t, отличается от такового во втором. Учет характера траектории формирования МСБ показал, что такие результаты изменения изгибной жесткости связаны с преобладающей ролью более жесткого второго слоя. О существенном влиянии формы поперечного сечения МСБ на изгибную жесткость свидетельствуют данные таблицы. Для исследованных МСБ с одинаковой осевой жесткостью, но разными формами поперечного сечения (рис. 3) изгибная жесткость D_{max} изменяется более чем 4,8 раза. Максимальная изгибная жесткость D_{max} получена для МСБ с формой поперечного сечения Z (на рис. 3 форма 4). Приблизительно такую же жесткость имеют балки с формами поперечного сечения типа швеллера (форма 3) и двутавра (форма 5) – рис. 3. Толщины этих слоев почти одинаковы и удалены от нейтрали на ту же величину, однако жесткость D_{тах} для МСБ с формой поперечного сечения Z на 12,5% больше, чем балки с формами типа швеллера и двутавра (рис. 3). Минимальную жесткость имеет балка с треугольником в квадратной трубе (на рис. 3 форма 7).

Ее жесткость почти в пять раз меньше жесткости МСБ с формой поперечного сечения Z. Сравнение жесткостей балок с треугольником в квадратной трубе (для форм 7 и 8 данные в таблице) показывает, что жесткость МСБ зависит также от того, какой элемент сформирован из материала с наибольшим модулем упругости. Если квадратная труба сформирована из материала с наибольшим модулем упругости (E_2), то жесткость балки будет почти в 3,5 раза больше для формы 8, чем для формы 7 (рис. 3). Изменение формы или положения треугольника в квадратной трубе (формы 7 и 8) с сохранением неизменной площади поперечного сечения приводит к незначительному изменению максимальной жесткости D_{max} , особенно для формы 7 (результаты расчетов в данной работе не приведены).

Рис. 6. Изменение максимальной изгибной жесткости МБС в зависимости от параметра t (a: $1 - E_2/E_1 = 50$; $2 - E_2/E_1 = 20$; $3 - E_2/E_1 = 5$; $4 - E_2/E_1 = 1,0$; $5 - E_2/E_1 = 0,5$, m = 1,0; 6: 1 - m = 0,2; 2 - m = 0,5; 3 - m = 1,0; 4 - m = 5,0, $E_2/E_1 = 50$).

Следовательно, изгибная жесткость асимметричной МСБ существенно зависит от жесткостей, геометрических параметров, расположения слоев и формы поперечного сечения балки. Несмотря на сложный характер изменения изгибной жесткости $D_{\rm max}$, с помощью предложенной математической модели можно легко определить все необходимые параметры.

Выводы

1. Предложена математическая модель, позволяющая полностью определить изгибную жесткость МСБ в любом направлении, экстремальные значения жесткости и соответствующие им направления нейтральных слоев, а также координаты геометрического и жесткостного центров для любой конфигурации поперечного сечения МСБ.

Й. Барейшис, В. Клейза, Й. Клейза

2. Эффективность предложенной математической модели для расчета многослойных балок показана на примере изучения кинетики экстремальной изгибной жесткости, углов направления нейтральных слоев, а также изменения координат геометрического и жесткостного центров для двух-компонентных балок с разными формами поперечного сечения, геометрические параметры и характеристики жесткости которых изменялись в широких пределах.

3. Получено, что на значение максимальной изгибной жесткости существенно влияет отношение модулей упругости слоев и траектория формирования сечения многослойной балки. Экстремальные значения изгибной жесткости D_{\max} в зависимости от параметра формы *m* изменяются по кривым, имеющим один или два экстремума. Характер кривых зависит от отношения модулей упругости слоев и значения показателя формы *m*. Если отношение $E_2/E_1 \ge 20$ или показатель формы $m \ge 1,0$, то кривые кинетики максимальной изгибной жесткости имеют два максимума. Это свидетельствует о влиянии как минимум двух конкурирующих факторов: геометрических и жесткостных. При *m* > 1,0 максимальное значение изгибной жесткости D_{\max} наблюдается в первом экстремуме, который смещен в сторону наибольших значений параметра *t*.

4. Исследования влияния разных форм поперечного сечения МСБ показали, что при одинаковом количестве материалов и одинаковой осевой жесткости всех форм балок наибольшую изгибную жесткость D_{\max} имеет балка с асимметричной Z формой. Ее жесткость D_{\max} на 12% больше жесткости балки с двутавровым профилем. Жесткость МСБ зависит также от того, какой элемент сформирован из материала с наибольшим модулем упругости и месторасположения этого элемента.

5. Углы направлений нейтральных слоев МСБ зависят от геометрических параметров и модулей упругости материалов слоев, а также формы поперечного сечения балки. Сложность зависимостей изменения углов требует точного определения положения нейтральных слоев, поскольку это непосредственно влияет на изгибную жесткость МСБ.

6. Установлены закономерности изменения координат геометрического и жесткостного центров.

7. С увеличением отношения модулей упругости слоев расстояние между геометрическим и жесткостным центрами возрастает.

8. Предложенный метод применялся для расчета изгибной жесткости в разных направлениях изгибающего момента лонжеронов крыльев планеров LAK-17A, LAK-19 и LAK-20, проектируемых и производимых в Литве.

Резюме

Представлено результати досліджень згинальної міцності в багатошарових балках, що мають геометричну та (або) жорсткісну асиметрію. Запропоновано алгоритм для визначення координат геометричного і жорсткісного центрів та розрахунку згинальної жорсткості у любому напрямі з визначенням її екстремальних значень у багатошарових балках із любою асиметрією. Вивчено кінетику координат геометричного і жорсткісного центрів, а також згинальну жорсткість у залежності від зміни геометричних параметрів і відношення модулей пружності шарів та форми поперечного перетину багатошарової балки.

- 1. Васильев В. В., Тарнопольский Ю. М. Композиционные материалы. М.: Машиностроение, 1990. 512 с.
- 2. *Piskunov V*. The iterative analytical theory in the mechanics of layered composite systems // Mech. Comp. Mater. 2003. **39**, No. 1. P. 3 24.
- Bareisis J. Design and stress state of tensions in multilayer bars // J. Comp. Mater. - 2004. - 38, No. 5. - P. 389 - 397.
- De Lorenzis L., Miller B., and Nanni A. Bond of FRP laminates to concrete // ACI Mater. J. – 2001. – 98, No. 3. – P. 256 – 264.
- 5. Carvelli V. and Savoia M. Assessment of plate theories for multilayered angle-ply plates // Comp. Struct. 1997. **39**, No. 3-4. P. 197 207.
- Altenbach H., Altenbach J., and Nast E. Modeling and analysis of multilayered shells based on a Timoshenko type with six degrees of freedom // Mech. Comp. Mater. – 1993. – 29, No. 4. – P. 500 – 511.
- Garuckas D. and Bareisis J. The influence of different factors on the stiffness and strength of multilayered composite elements // Ibid. 2003. 39, No. 2. P. 153 164.
- 8. *Bareisis J. and Garuckas D.* The stifness and strength of multilayer bars // Mechanika. 2000. No. 4 (24). P. 23 30.
- Zabulionis D., Marciukaitis G., and Samofalov M. Strain and stress states of laminated plates subjected to mechanical and hygrothermal loads: Proc. 8th Int. Conf. "Modern Building Materials, Structures, and Techniques". – 2004. – P. 679 – 688.
- Schwartz Mel M. Composite Materials. New Jersey: Prentice-Hall Inc., 1997. – Vol. 2. – 572 p.
- 11. *Bareisis J. and Kleiza V.* Stiffness center and neutral layer direction investigation method and its application to asymmetric multilayer structural elements // Mechanika. 2004. No. 4 (48). P. 5 12.

Поступила 09. 11. 2005