## Исследование деградации свойств материалов при эксплуатации самолетов

## В. Н. Басов, Б. Г. Нестеренко, Г. И. Нестеренко, В. Г. Петрусенко

Центральный аэрогндродинамический институт им. Н. Е. Жуковского, Жуковский, Россия

Представлены результаты экспериментальных исследований механических характеристик, характеристик усталости, циклической трещиностойкости и остаточной прочности материалов алюминиевых сплавов обшивки крыла и фюзеляжа самолетов, имеющих наработку в эксплуатации от 8 до 38 лет.

*Ключевые слова*: деградация, усталость, скорость роста трещин, остаточная прочность.

Отдельные вопросы деградации свойств алюминиевых сплавов в процессе длительной эксплуатации самолетов исследовались рядом ученых [1–5].

В данной работе всесторонне изучаются проблемы деградации путем экспериментального определения статической прочности, усталости и трещиностойкости материалов различных типов отечественных и зарубежных самолетов.

Экспериментальное исследование деградации характеристик материалов выполнялось на образцах, вырезанных из конструкций крыла (К) и фюзеляжа (Ф) длительно эксплуатировавшихся самолетов (старые материалы) и листов, взятых со складов (новые материалы).

Механические характеристики определяли путем испытаний образцов на растяжение в соответствии со стандартами. Исследование малоцикловой усталости N проведено на образцах в виде полосы шириной 36 мм, длиной 170 мм с центральным отверстием диаметром 6 мм и коэффициентом концентрации напряжений по сечению нетто  $\alpha_{\sigma} = 2,6$ . Малоцикловая усталость образцов исследовалась при отнулевом нагружении (R=0) с максимальными напряжениями по сечению брутто  $\sigma_{\max}^{\text{брутто}} = 133 \text{ МПа и частотой}$  3 Гц. По результатам испытаний определялась средняя долговечность  $\overline{N}$ .

Исследование циклической и статической трещиностойкости материалов проводилось на неподкрепленных образцах с центральной трещиной. Все образцы испытывались в исходном состоянии (сохранялись плакировка и анодировка) без применения антивыпучивающих накладок.

Испытывались два типа образцов – широкие и узкие.

Широкие образцы из крыла имели ширину W=495...750 мм, широкие образцы из фюзеляжа — W=1200 мм. Длина образцов равнялась утроенной ширине. Для имитации трещин в центре каждого образца наносился надрез. Широкие образцы на скорость роста трещин испытывались при коэффициенте асимметрии цикла  $R=0{,}023$  и размахе напряжений  $\Delta\sigma=\sigma_{\rm max}-\sigma_{\rm min}=130$  МПа с частотой  $f=0{,}17$  Гц. После проведения экспериментов на длительность (скорость) роста трещин образцы с выращенной трещиной испытывали на остаточную прочность.

Узкие образцы имели ширину W=160...200 мм. Испытания узких образцов на длительность роста трещин проводились при асимметричном цикле нагружения с  $\Delta \sigma = \sigma_{\rm max} - \sigma_{\rm min} = 130$  МПа и с частотой 1 Гц. Часть исследуемых узких образцов предварительно подвергалась отжигу при температуре  $400^{\circ}$  С.

Испытания осуществлялись на электрогидравлических испытательных машинах PSA-10 "Schenck", MTS-100, MTS-250 и MTS-1000.

Экспериментальные данные по трещиностойкости материалов обрабатывались методами линейной механики разрушения [1]. Процентное содержание примесей железа (Fe) и кремния (Si) в полуфабрикатах было определено в лабораториях ВИАМ и ВИЛС. Сводные результаты исследований представлены в таблице (где t – толщина) и на рис. 1–6. Номера экспериментов (самолетов) в таблице совпадают с номерами кривых длительности роста трещин и прямых скорости роста трещин, указанными на рис. 1–6.

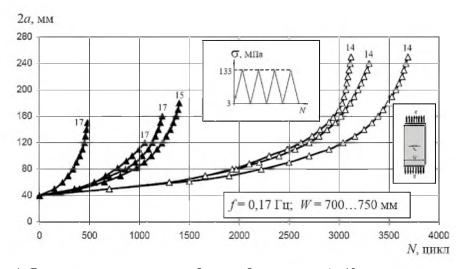



Рис. 1. Длительность роста трещин в образцах обшивки крыла Aн-12 в состоянии поставки (14) и после длительной эксплуатации (15, 17). Материал Д16ATHB.

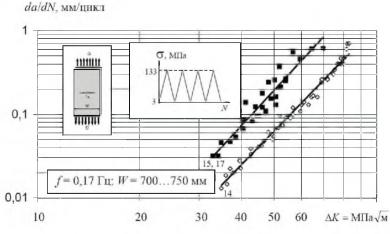



Рис. 2. Скорость роста трещин в образцах обшивки крыла Ан-10A, Ан-12 в состоянии поставки (14) и после длительной эксплуатации (15, 17). Материал Д16ATHB.

## Результаты исследований 0, Fe, Si,

|                                           | <b>№</b><br>п/п | Материал | t,      | $\sigma_{_{ m B}},$<br>МПа | $\sigma_{0,2},$ МПа | $\delta_{10}, \ \%$ | Fe,<br>% | Si,<br>% | $\overline{N},$ цикл | da/dN , мм/кцикл | $K_{app}$ ,<br>МПа· $\sqrt{M}$ | Самолет | Агрегат | T, лет |
|-------------------------------------------|-----------------|----------|---------|----------------------------|---------------------|---------------------|----------|----------|----------------------|------------------|--------------------------------|---------|---------|--------|
|                                           | 1               | 2        | 3       | 4                          | 5                   | 6                   | 7        | 8        | 9                    | 10               | 11                             | 12      | 13      | 14     |
|                                           | 1               | Д16АТВ*  | 1,2-2,0 | 460                        | 310                 | 19                  | 0,38     | 0,28     | 85000                | 4                | 98                             | _       | _       | 0      |
|                                           | 2               |          | 1,2     | 440                        | 320                 | 18                  | 0,32     | 0,21     | _                    | 8                | 84                             | Ан-12   | Φ       | 15     |
|                                           | 3               |          |         | 470                        | 340                 | 18                  | _        | _        | 73000                | 8                | _                              | Ан-12   | Φ       | 35     |
|                                           | 4               |          |         | 430                        | 320                 | 19                  | _        | _        | _                    | 5                | 74                             | Ty-124  | Φ       | 0      |
|                                           | 5               |          | 1,5     | 480                        | 360                 | 15                  | 0,30     | 0,35     | _                    | 8                | 84                             | Ил-18   | Φ       | 22     |
|                                           | 6               |          |         | 450                        | 330                 | 18                  | _        | _        | 81000                | 8                | _                              | Ил-18   | Φ       | 33     |
|                                           | 7               |          | 2,0     | 460                        | 360                 | 18                  | 0,18     | 0,20     | _                    | 6                | _                              | Ту-154Б | Φ       | 21     |
| ISS                                       | 8               |          | 2,5-6,0 | 450                        | 320                 | 19                  | 0,38     | 0,28     | 98000                | 8                | 100                            | _       | _       | 0      |
| N 05                                      | 9               |          | 5,0     | 470                        | 360                 | 19                  | 0,39     | 0,27     | 77000                | 30               | 85                             | Ил-18   | К       | 22     |
| ISSN 0556-171X. Проблемы прочности, 2006, | 10              |          |         | 470                        | 360                 | 19                  | 0,39     | 0,27     | 43000                | 30               | 85                             | Ил-18   | К       | 22     |
| 71X                                       | 11              |          | 2,5-4,0 | 480                        | 370                 | 15                  | 0,39     | 0,30     | 88000                | 25–100           | _                              | Ил-18   | К       | 33     |
| Проб                                      | 12              |          | 6,0     | 470                        | 360                 | 19                  | 0,40     | 0,40     | 60000                | _                | _                              | Ан-12   | К       | 11     |
| лемь                                      | 13              |          | 2,5     | 460                        | 350                 | 16                  | _        | _        | 89000                | 30               | _                              | Ty-134A | К       | 25     |
| odu 1                                     | 14              |          | 4,0     | 500                        | 390                 | 10                  | 0,28     | 0,28     | 94000                | 8                | 101                            | _       | _       | 0      |
| чнос                                      | 15              |          | 4,0-5,0 | 490                        | 410                 | 12                  | 0,30     | 0,24     | 83000                | 30               | 80                             | Ан-10А  | К       | 13     |
| ти,                                       | 16              |          | 6,0     | 500                        | 390                 | 13                  | _        | _        | 81000                | 20               | _                              | Ан-12   | К       | 35     |
| 2006,                                     | 17              |          | 4,0     | 490                        | 410                 | 10                  | 0,30     | 0,24     | 67000                | 20               | 82                             | Ан-12   | К       | 15     |
| <i>№ 4</i>                                | 18              |          | 5,0     | 520                        | 430                 | 15                  | 0,34     | 0,25     | 66000                | _                | _                              | Ан-12   | К       | 18     |

|    |        |         |        |         |        |        |         |       |          |        |       |         |       |         | щии    |           |        | aume.    |        |       |
|----|--------|---------|--------|---------|--------|--------|---------|-------|----------|--------|-------|---------|-------|---------|--------|-----------|--------|----------|--------|-------|
| 14 | 0      | 0       | 0      | 0       | Û      | 15     | 0       | 18    | 0        | 25     | 20    | 10      | 25    | 0       | 15     | 0         | ∞      | 0        | 24     | 1.2   |
| 13 | П      | 1       | К      | Ж       | У      | Ж      | 1       | Ж     | T        | K      | ×     | ×       | X     | 1       | Ж      | X         | K      | 1        | Ф      | +     |
| 12 | -      | 1       | Ил-62  | Ил-76   | Ил-86  | Ан-24  | ı       | Ан-12 |          | Ty-114 | 8-н-8 | 3M      | 3M    | ı       | Ty-22M | Ty-22M    | Ty-22M | ı        | B-707  | 177   |
| 11 | 105    | 108     | 102    | 107     | 107    | 91     | I       | I     | 71       | 54     | 1     | 1       | 51    | I       | 57     | 87        | 06     | 100      | 87     |       |
| 10 | 7      | 5       | 7      | 7       | 10     | 15     |         | ı     | 20       | 09     |       | 40      | 80    | ı       | 22     | 15        | 15     | 9        | 2      |       |
| 6  | 164000 | 181000  | 159000 | 167000  | 174000 | 116000 | 200000  | 84000 | 48000    | 41000  | 40000 | 44000   | 45000 | 100000  | 41000  | 110000    | 110000 | 79000    | 121000 | 00000 |
| ×  | ı      | 0,13    | 0,13   | 60'0    | 0,15   | 0,27   | 0,21    | 0,20  | ı        | 1      | 1     | 1       | 1     | 0,17    | 0,22   | 0,07      | 0,07   | 0,15     | 0,13   | 500   |
|    | 1      | 0,16    | 0,35   | 0,15    | 0,16   | 0,38   | 0,25    | 0,40  | 1        | 1      | 1     | 1       | I     | 0,36    | 0,30   | 0,28      | 0,37   | 0,19     | 0,32   | 010   |
| 9  | П      | Ε       | 10     | 13      | 13     | 12     | 12      | I     | 10       | 8,1    |       | 12      | 0,6   | 7,5     | 7,9    | 8.8       | 9,3    | 17       | 18     | 22    |
| 5  | 400    | 430     | 410    | 380     | 410    | 390    | 440     | 360   | 500      | 500    |       | 510     | 200   | 570     | 580    | 530       | 540    | 320      | 350    | 300   |
| 4  | 510    | 530     | 520    | 480     | 530    | 510    | 530     | 490   | 540      | 540    |       | 999     | 550   | 640     | 620    | 570       | 290    | 480      | 440    | 440   |
| 3  | 5.0    | 4,0     | 4,0    | 4,0     | 4,0    | 3,0    | 5,0     | 5,0   | 3,0-4.0  | 3,5    | 4,0   | 3,0-4,0 | 5,0   | 3,0-5,0 | 0,9    | 0,9       | 0,9    | 8.1      | 1,4    | 00    |
| 2  | Д16Т** | Д16чТ** | Д16Т** | Д16чТ** |        | Д16Т** | Д16Т*** |       | B95AT1B* | 1      |       | 1       |       | B95T1** |        | В95пчТ1** |        | 2024-T3* |        |       |
| -  | 19     | 20      | 21     | 22      | 23     | 24     | 25      | 26    | 27       | 28     | 29    | 30      | 31    | 32      | 33     | 34        | 35     | 36       | 37     | 3.0   |

|    |              |          |     |     |     |      |      |        |    |     | r     | <i>іродолжені</i> | ие таблице |
|----|--------------|----------|-----|-----|-----|------|------|--------|----|-----|-------|-------------------|------------|
| 1  | 2            | 3        | 4   | 5   | 6   | 7    | 8    | 9      | 10 | 11  | 12    | 13                | 14         |
| 39 | 2024-T3*     | 1,6      | 480 | 340 | 17  | _    | _    | 73000  | 10 | _   | A310  | Φ                 | 11         |
| 40 | 2024-T3*     | 6,0-7,0  | 500 | 370 | 16  | 0,33 | 0,14 | 155000 | _  | _   | _     | _                 | 0          |
| 41 |              | 4,0      | 490 | 380 | 19  | 0,25 | 0,10 | 125000 | 4  | 108 | B-707 | К                 | 24         |
| 42 | 2024-T351**  | 8,0-10,0 | _   | _   | _   | _    | _    | 162000 | _  | _   | _     | _                 | 0          |
| 43 | 2024-T351**  | 5,0      | 490 | 390 | 13  | 0,23 | 0,14 | 137000 | 4  | _   | A310  | К                 | 11         |
| 44 |              | 5,0      | 520 | 400 | 13  | 0,09 | 0,05 | 125000 | 4  | _   | B-747 | К                 | 13         |
| 45 |              | 5,0      | 520 | 400 | 13  | 0,09 | 0,05 | 650000 | 4  | _   | B-747 | К                 | 13         |
| 46 | 2024-T351*** | 5,0      | 580 | 460 | 12  | 0,24 | 0,11 | 166000 | _  | _   | B-747 | К                 | 13         |
| 47 | 7075-T6*     | 6,0-7,0  | 560 | 490 | 12  | 0,28 | 0,16 | 94000  | _  | _   | _     | _                 | 0          |
| 48 | 7075-T6*     | 1,5      | 590 | 540 | 13  | 0,20 | 0,15 | 41000  | _  | _   | F-5E  | Φ                 | 20         |
| 49 |              | 1,6      | 590 | _   | 12  | _    | _    | 76000  | _  | _   | DC-8  | Φ                 | 15         |
| 50 |              | 3,5      | 560 | _   | 10  | _    | _    | 64000  | _  | _   | DC-8  | К                 | 15         |
| 51 | 7075-T651**  | 4,0      | 580 | 530 | 9,7 | 0,23 | 0,10 | 58000  | _  | _   | F-5E  | К                 | 20         |
| 52 | 7075-T651*** | 3,5-4,0  | 650 | 610 | 8,6 | 0,19 | 0,07 | 100000 | _  | _   | B-707 | К                 | 24         |
| 53 |              | 1,7–2,7  | 590 | 560 | 7,9 | 0,18 | 0,10 | 53000  | _  | _   | F-5E  | Киль              | 20         |
| 54 | 7178-T6*     | 3,5      | 610 | 590 | 9,0 | 0,20 | 0,06 | 43000  | _  | _   | B-707 | К                 | 24         |
| 55 |              | 5,0      | 620 | 580 | 6,7 | _    | _    | 90000  | _  | _   | B-707 | К                 | 24         |
| 56 | 7178-T651*** | 4,0      | 690 | 670 | 8,0 | 0,22 | 0,14 | 106000 | _  | _   | B-707 | К                 | 24         |

**Примечание**. \* – листовой материал; \*\* – прессованная панель; \*\*\* – прессованный профиль; \* – листовой материал, неплакированный; \*\* – плита.

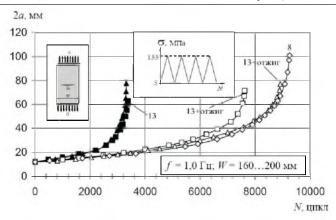



Рис. 3. Влияние отжига на длительность роста трещин в образцах общивки крыла самолета Ту-134A из материала Д16ATB в состоянии: поставки (8), после длительной эксплуатации (13), после длительной эксплуатации и отжига (13 + отжиг).

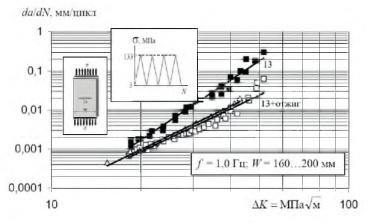



Рис. 4. Влияние отжига на скорость роста трещин в образцах общивки крыла самолета Ty-134A из материала Д16ATB в состоянии: поставки (8), после длительной эксплуатации (13), после длительной эксплуатации и отжига (13 + отжиг).

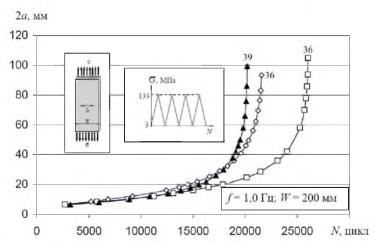



Рис. 5. Длительность роста трещин в образцах общивки фюзеляжа A310 после длительной эксплуатации (39) и в состоянии поставки (36). Материал 2024-T3.

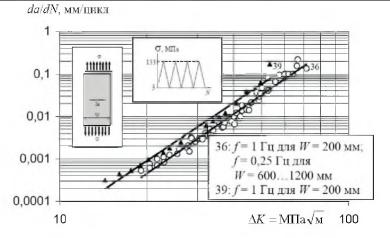



Рис. 6. Скорости роста трещин в образцах обшивки фюзеляжа А310 после длительной эксплуатации (39) и в состоянии поставки (36). Материал 2024-Т3.

Результаты исследований показали значительную деградацию (ухудшение) характеристик живучести алюминиевых сплавов.

Остаточная прочность различных полуфабрикатов уменьшилась в 1,15–1,4 раза.

Скорость роста усталостных трещин увеличилась в 1,5-4 раза.

Эффект ухудшения трещиностойкости алюминиевых сплавов подтвержден также и методом применения термообработки (отжига) при сравнении скоростей роста усталостных трещин в новых и старых (длительно эксплуатируемых) сплавах.

После длительной эксплуатации самолетов значения временного сопротивления, условного предела текучести и относительного удлинения находятся в пределах значений, задаваемых техническими условиями на соответствующий полуфабрикат алюминиевого сплава.

Наблюдается некоторое снижение средней усталостной долговечности в ряде полуфабрикатов сплавов длительно эксплуатируемых самолетов.

## Резюме

Представлено результати експериментальних досліджень механічних характеристик, характеристик втомлености, циклічної тріщиностійкості та залишкової міцності матеріалів алюмінієвих сплавів обшивки крила і фюзеляжа літаків, що мають напрацювання в експлуатації від 8 до 38 років.

- 1. Gruff J. J. and Hutcheson J. G. Effects of corrosive environments of fatigue life of aluminum alloys under maneuver spectrum loading // Proc. of Air Force Conference on Fatique and Fracture of Aircraft Structures and Materials. Miami Beach (Florida, Dec. 15–18, 1969).
- 2. Everett R. A. Effect of Service Usage on Tensile. Fatique and Fracture Properties of 7075-T6 and 7178-T6 Aluminum Alloys // NASA Technical Memorandum x-3165 (Feb. 1975).

- 3. *Шапкин В. С.* Влияние основных факторов эксплуатации на характеристики долговечности и ресурса длительно эксплуатируемых воздушных судов и разработка методов их оценки применительно к элементам конструкции планера: Автореф. дис. ... д-ра техн. наук. М., 1995. 32 с.
- 4. Шмидт  $\Gamma$ .-Ю. Принципы живучести, методы и эксперименты, применяемые в конструкции современных больших транспортных самолетов для соответствия принятым нормам FAA/JAA: Автореф. дис. ... канд. техн. наук. М., 2002. 32 с.
- 5. Scheuring J. N. and Grandt (Jr) A. F. Mechanical properties of aircraft materials subjected to long periods of service usage // Trans. ASME. 119. 1997. P. 380 386.
- 6. Нестеренко  $\Gamma$ . U. Расчет характеристик эксплуатационной живучести самолетных конструкций на основе механики разрушения // Физ.-хим. механика материалов. 1983. № 1. С. 12 20.

Поступила 04. 11. 2005