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HennHenHbIA AMHAMWYECKNIA KOHEYHO3/IEMEHTHbI aHanu3 rmokoii B
nonepe4yHoOM HanpaB/ieHUN TONACTOA MHOFOC/AOMHON MNaHenn Ha
yNpyromMm OCHOBaHWM C YYeTOM pasBUTUS MOBPEXAEHUI BO BPEMEHMW.
Coob6TeHMe 2. TpexMepHbIi pacyeT U MHTErpupoBaHue Mo BPeMeHU

B. lO. Nepens

TexHonornyecknin nHcTMTYT BBC CLUA, OTdeneHve aspoHaBTMKM W aCTPOHaBTUKM,
Xo6coH baii, Oraiio, CLLUA

Ons cnyyas TONCTOW MHOrOCNoiiHol nNaHenM ¢ MNOBEPXHOCTHBLIMU CAOAMM U3 KOMMO3NTHOTO
namuHaTa npejfoXKeHa pacyeTHas CxemMa B paMKax Teopuu NNacTUH C UCMONb30BAHWEM YNpo-
LWEHHbIX NPeACTaBNeHuid, OnucaHHbIX B cO06WEeHMN 1. ANTOpMTM pacueTa AUHAMUYECKON 3ajauu,
YUuTbIBAIOW Wit pa3BNTWe NOBPEXKAeHWU B MaTepuane, UCNONb3yeTCs B pacyeTHOI cxeme, OCHO-
BAHHO/ Ha reoMeTpUUYecKM HeNuHeliHol PopMynMpOBKe 3adauun, ANs aHann3a ycnoBuil paspyLieHus
MHOTOC/N0iHOM NaHenu, KoTopas nojsepraeTcs YAapHOMY HArpy><eHuio Npu nafjeHun Ha rpyHT.

KnwuyeBble C/NIOBA: cxumaeMble B NONEPeYHOM HamnpaBANeHWW MHOTFOCNOMWHLIe
naHenwn, ynpyroe ocHoBaHWe, HenNuHellHaa fUHaAaMWKa, pa3BUTNE MOBPEeX AeHWNI BO

BpeMeHU, TpexMepHOe HaMpsAX eHHOe COCTOSAHMUE.

Introduction. In the present paper, a computational scheme for analysis of
the sandwich plate is constructed in which the simplifying assumptions that lead
to a plate-type theory are made with respect to the variation of the transverse
strains in the thickness direction of the face sheets and the core of the sandwich
plate. The displacements are then obtained by integration of these assumed
transverse strains, and the constants of integration are chosen to satisfy the
conditions of continuity ofthe displacements across the borders between the face
sheets and the core. In such a method, the required continuity of displacements in
the thickness direction is satisfied regardless of the assumed type of
through-the-thickness distribution of the transverse strains, and the transverse
flexibility of the plate can be taken into account. This leads to a larger number of

choices of simplifying assumptions about the variation of strains (and, therefore,

* Formulas in Parts 1 and 2 have through numeration.
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displacements) in the thickness direction, and, therefore, allows a better
adjustment of the computational scheme to the conditions under which the
sandwich plate is analyzed by a layerwise method with only three sublaminates
(being the face sheets and the core). The transverse stresses are computed by
integration of the pointwise equilibrium equations that leads to satisfaction of
conditions of continuity of the transverse stresses across the boundaries between
the face sheets and the core and satisfaction of stress boundary conditions on the
upper and lower surfaces of the plate.

The model is considered on the basis of the simplest of such assumptions
that do notignore, in the expression for the strain energy, the transverse shear and
norm al strains in the face sheets. It is assumed here that the transverse strains do
not vary in the thickness direction within the face sheets and the core, but can be
different functions of the in-plane coordinate in the face sheets and the core. In
the post-process stage of analysis, these first approximations of the transverse
strains can be improved by substituting the transverse stresses, obtained by
integration of the pointwise equations of motion (Appendix [1]) into the
strain-stress relations. These improved values of the transverse strains vary in the
thickness direction and are sufficiently accurate as compared to those of the
known exact solutions, based on the linear three-dimensional theory [2-3]. In the
theory, discussed in this paper, the transverse displacement, obtained by
integration of the assumed transverse normal strain, varies linearly in the
thickness direction within a sublaminate (therefore, transverse compressibility of
the plate is taken into account), and the in-plane displacement, obtained by
integration ofthe assumed transverse shear strains, varies quadratically within the
thickness of a sublaminate. The developed theory does notrequire many degrees
of freedom in finite element models, despite its ability to capture the transverse
flexibility of the plate and non-linear through-the-thickness variation of the
in-plane displacements.

Three-Dimensional Formulation. The sandwich plate is divided into three
conventional layers (sublaminates): the two face sheets and the core. W ithin each
sublaminate, the simplifying assumptions of the plate theory are made separately.
In the following text, the superscript K denotes the number of a sublaminate:
K =1 denotes the lower face sheet, k=2 denotes the core, and k =3 denotes the
upper face sheet (see Fig. 1 in Part 1 [1]).

Finite Element Formulation for Cylindrical Bending. Let us call the
dimension of the plate in the x-direction the length, and dimension in the
y-direction - the width. If the width of the plate is much larger than its length,
and if the load intensity does not vary in the width direction, then the

displacements do not depend on the y-coordinate:

u=u(x,z), v = V(X,z2), w=w(X,z). (42)

Such a condition is called a generalized plane strain or cylindrical bending.
In case of cylindrical bending, the unknown functions depend only on the
x-coordinate and time. Therefore, the two-dimensional plate-bending problem
reduces to the one-dimensional problem. Then, all derivatives with respect to the

y-coordinate vanish in all formulas of the preceding sections.

96 ISSN 0556-171X. npo6n.eMH npounocmu, 2005, N 4
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Hereafter, a sandwich plate will be considered with an isotropic or
transversely isotropic core and with face sheets being composite laminates of 0
and 90° plies orientation. In this case, at each point of the plate there is a plane of
elastic symmetry

u=u(x,z), W= w(X,z), v =0, (43)
parallel to the X —Z <coordinate plane, and, therefore, the condition of the
generalized plane strain reduces to the condition of pure plane strain [1], that is,
and all strain components, associated with the y-direction, are equal to zero:

£y, —0 (44)

Therefore, the unknown functions are
Mo;%0?5@’592)’5%)’5%)’%&)’9@! (45)

To perform a finite element formulation, the unknown functions and WO(X,'[)

are represented by piecewise interpolation polynomials:

[«(0)1
uo —[M 1 Mz]lu(l)[, (46)
£ 0)1
£(z —[M1 M 27, {(ZZ)}() (47)
£xz;(|)|
where
X X
M1 =1--, M2 —-, (48)
m 0 (0)
dmo
k(o)
wg—(N1 N2 N3 N4y & (49)
mo ()
dm 0
~af (D
and | is a length of a finite element;
£s3}—[N1 N2 N3 N4 (50)
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where
3x2 2x3 2x2 x3
N1-1-—- 2 + I3 * N2—x— | + 12~
3x2 2x3 x 2 x 3 (51)
N3— — 3, N4_ — + 2
3 12 13 4 | 12

Here and further in this section, devoted to the finite element formulation, it is
implied for simplicity of notations that X is a coordinate in the element (local)
coordinate system, the origin of which coincides with a left node of a finite
element. This choice of interpolation polynomials is explained in [2].

Thus, the combined finite element has 24 degrees of freedom. At each node

there are 12 nodal parameters:

1 2) 3) d wy0 1 J.p(lz) 2) J;jr[))(zz) 3) ((jjg(i)
bo, B, B2, B Wo, O BR. g0 BY. W pw 9o

From the extended Ham ilton’s principle {equation (27) in Part 1 [3]}, written
in terms of nodal parameters dt (i—l, 2, ..., 24), the following equation of

motion of a finite element in terms of the nodal parameters can be derived:

m]  fdy+ [e1 {d} + [kl {d} + — {1} .
(24X24) (24X1) (24X24) (24X1) (24x24) (24x1) O\df  (24x1) (52)
(24X1)

In this equation, a part U nl ofthe strain energy is due to the nonlinear terms
in the strain-displacement relations (geometric non-linearity of the von Karman

type). The expression for Un is not a quadratic form of the nodal variables,

dunl
therefore the vector - is not linear with respect to the nodal variables. The
d{d} F

m atrices, which enter into equation (52), were derived with the use of exact
integration, performed with a program for symbolic computation, MAPLE. In the
finite element analysis, presented in this work, the global damping matrix is not
assembled from the element damping matrices. Instead, the proportional damping
model is used, in which the global damping matrix [C] is presented as a linear
combination ofthe global stiffness and mass matrices (therefore, the virtual work
of the damping forces, as presented by equations (35)-(37) in Part 1 [1], is not
used in this finite element formulation, but has only a theoretical importance in

formulating the two-dimensional plate-type theory):
[C]l—« 1k ]+a2[M], (53)

where «1 and @2 are constants to be determined from two given logarithmic
decrements of damping, dl and d2, which correspond to two unequal

frequencies of

«l—- ,2 (54)
Wj —m2)
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vibrations Wj and m 2 by the formulas

wiw 2(02®1 « <5iw 2)

ﬂE\W - w2)

(55)

The assembled equations of motion of the whole structure were solved by
direct integration with the use of the Newmark method ([4, 5]).
In the post-processing stage of the finite element analysis, the in-plane

stresses a X\ a XA\ and a a r e computed with the use of the constitutive

equations, which in case ofpure plane strain (cylindrical bending), take the form
axg=cCc (f exg+ c 3)E(k, (56)
1 - Bl EEY. (37
a« _C@ExG+ CWEEz\ (58)

w hereas the transverse stresses a XX\ aXy\ and a need to be computed by

integration of the pointwise equations of motion, which in case of pure plane
strain and under the assum ption that the plate is perpendicular to the direction of

gravity force, take the form
a XX+ axz)z _ P (k)« (k), (59)

ayX™+ a” z_ 0, (60)

a« + aZZz+ fox(a wW*))- p(k>q_ p k>wk) (k_ 1,2,3). (61)

Ifone integrates equations (59)—61) and satisfies stress boundary conditions
on the lower surfaces [equations (8)] and conditions of continuity of the
transverse stresses {equations (10) and (11) in Part 1 [1]}, one gets:

z
aXZ_ 1 (p@«@ - Haxxxdz (z1~ z 1~ z22), (62)

z

2
0x2) =/ (pPWii@ - "o« )dz+

+ /1 (P@yu(2) - H°Sx)dz (z2~ z™ 23X (63)
72
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2 3
Og> =f (p"<U"< - HO )dz + f (p'2>u2>- HOg>.)dz +
z Z
+ [(p < 3)ii<d3>- Ho(3Xd (z3< z < z4), (64)
23

o (XZ,t} - f Ho(yxxdz, (65)
z

2 .
O%Z,D:- f HO (xxdz- f Hoiyxxdz, (66)
z Zy

3
oyJ(x,z,t):'f Ho~xdz- f Ho~rdz - f Ho~dz, (67)
72 73
z
o@=-9qgL+ f
% b , POC @+ o) » (HOXXw 2)-0 sx dz, (68)
)
0 dz +

Payw@ +g)- ~ (HoXXw 2)-0 Sx

2003 o 2 1 oBwiE) - - o)
2
YA

g<232>= - '\QL:; Payw@ + g)- E)X(HOXXW 2)-0 « dz+

3
4+ P@w@ +g)-0x (Hog)w 2) -0 V dz+
2
3)/--(3). X 0 [H _(3) (3 Y3
+Z/ Ij(()(W()’rg)‘BX( ~ Wy}i-o zx;x dz. (70)
3

In the equations (62)-(70), the in-plane stresses with the left superscripts H

(which stands for Hook’s law) are computed with the use of the Hook’s law, i.e.,
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from equations (56)-(58). As can be seen from equations (62)-(70), the inertia
and nonlinear terms are taken into account in the expressions for the transverse
stresses.

W ith the use of equations (56)-(58) and (62)-(70), all stress components can

be expressed in terms of the unknown functions uo, W0, £22, £272, £X2n, £2zz»
£ ,and £Zp.The expressions for the stresses in terms ofthe unknown functions

are not shown explicitly because oftheir large size. Examples of such expressions

are shown in [4].

dwo (ky d£22) (k)
The values of UO, WO, ———————— , £ @2\ ,and e are most accurate at the
0 0 dx 2z dx Xz
nodes of the finite element mesh (because these variables are carried as nodal
variables), and, for computation of stresses, they can be taken directly from the
12 2
42wo a2 ®

finite element solution. The second derivatives --—-—--- n and ------- computed

from interpolation polynomials, used in the finite element formulation, are most
accurate at the Gauss points. (The locations of the minimal-error points of the

derivatives of the field variables within a finite element were calculated with the

13 13, (2)

d Wo d £
use of a method presented by Akin [6]). The third derivatives --—--- r— and ------- t—,

dX 3 dX 3

computed from the interpolation polynomials, are constant over the element’s

length and are most accurate in the middle of the finite element. The derivatives

4 4 (2 2 2

d Wo d 152)/ d Uo d £§(%)

___;__:_.;’4 ;._:_..524_*,___;___2;0' and ----;:;5—, taken as derivatives of the interpolation
dX dX dX dX

polynomials, which are used in the finite element formulation, are equal to zero
that can be wrong for a particular problem. Therefore, these derivatives are
computed numerically atthe nodal points by a finite difference scheme, using the

nodal values of w0, £ZZ\ U— and £ ),obtained from the finite element solution.

So, there are no points within the finite element where all the derivatives of the
field variables are most accurate simultaneously. Therefore, in order to compute
stresses, the average (over the element’s length) values of the field variables and
their derivatives are evaluated, as average values at the points where these
quantities are most accurate, and then substituted into the expressions for the
stresses, producing average (over the element’s length) values of stresses.

The computation of the transverse stresses from the equations of motion
allows one to satisfy the stress boundary conditions on the upper and lower
surfaces of the plate, and the conditions of continuity of the transverse stresses at
the interfaces between the faces and the core of the sandwich plate and between
the plies with different material properties within the faces [2]. The com putation
of the transverse stresses by integration ofthe pointwise equilibrium equations is
demonstrated, for example, in [4] and some other works included in the
bibliography oftherein. The factthat the computation ofthe transverse stresses by
integration ofthe pointwise equilibrium equations (or equations of motion) allows
for the satisfaction of the stress boundary conditions not only on one of the

external surfaces (upper or lower), but on both of them, was explained in [2].
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In most common cases of boundary conditions, i.e., simply supported,

clamped, and free edges of the plate, the nodal values of the transverse strains
EXZ, £27z%, £x2”, £/, £X2\ and £23) and their derivatives need notbe specified at

the edges.

Time Integration with Account of Damage Progression. When a failure
occurs in a single layer of a composite laminate, a composite structure can still
carry a load. Therefore, a subsequent failure prediction is required to determine a
dynamic response ofthe structure in the presence of some damage. This problem
is dealt with by assuming that within a finite element where the damage occurs,
the original material characteristics of the damaged ply can be replaced with
degraded material characteristics. The degraded material properties are assumed
to be small fractions ofthe properties ofthe undamaged m aterial, butnot equal to
zero, in order to avoid ill-conditioning of the finite element equations. For
example, a degraded value of the Young’s modulus Ed of the damaged ply

within a finite element is computed as
Eu = (src)Ex, (71)

where E1 is an original value of the Young’s modulus and (SIrC) is a stiffness
reduction coefficient.

The face sheets of the sandwich plate are made of laminated composite
plates, that can fail in different modes: due to matrix cracking, fiber fracture, fiber
m atrix debonds and delamination. Therefore, for accurate prediction of failure in
the face sheets, one needs to use a failure criterion that takes account of the
microstructure of the composite laminates and the variety ofmodes of failure that
can occur due to this microstructure. A set of failure criteria, designed for this
purpose, were suggested by Hashin [7]. Therefore, for the face sheets, Hashin’s
criteria are used in this study.

The core of the sandwich plate, made of polymeric foam or a honeycomb
structure, is modelled as a homogeneous isotropic or transversely isotropic
medium. Such a medium has fewer modes of failure, namely crushing under
compression and cracking under tension. Therefore, for the failure analysis of the
core, itis more appropriate to use a failure criterion that does not take account of
the microstructure of the material. One such criterion is the Tsai-W u criterion [8,
9] and it is used for the core in this study. The core, that is uniform before the
beginning ofthe damage, becomes nonuniform in the thickness direction (as well
as in longitudinal direction) when the damage starts to progress in the thickness
direction. For this reason, the core is divided into the nominal layers, and a check
ofthe failure criterion in the middle ofthickness of each such layer is carried out.

In case of crushing of the core of the sandwich plate and tension modes of
failure, the stiffness reduction coefficients (SIC) for all material constants are set
to be as small as possible, but their smallness is limited by the need to avoid
numerical difficulties that can be caused by the large difference of values of
m aterial constants of adjacent finite elements. Such values of the stiffness
reduction coefficients are found by numerical experimentation. In the numerical
examples presented hereafter, the stiffness reduction coefficient (SIC) is set equal

to 0.001 in case of crushing of the core of the sandwich plate and failure in
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tension, and 0.01 in case of fiber failure in compression in the face sheets. The
stiffness reduction coefficient, associated with the fiber failure in compression, is
set equal to a larger value, because the compressive fiber mode of failure is
interpreted as buckling of fibers in the matrix [10]. It is assumed that if the
buckling of the fibers occurs, the layer still has some residual strength.

At each time step, the average (over a finite element length) stresses in each
layer within each element are used in the failure criteria.

Now, the algorithm of taking account of damage progression will be
presented without details of how it is imbedded into the time integration scheme
(the details will be presented subsequently).

1) At each time step oftime integration, compute average (over an element
length) stresses axXX, aXy, ayy, aXz, ayz, and azz in the problem coordinate
system in all finite elements, in the middle of each ply of the face sheets (at
z = (£k+£k+i)/2) and in the middle of each nominal layer of the core
(computation of average stresses is discussed above).

2) Transform the stresses to the principle material coordinates, i.e., compute
ai”™ a22, a33, a” a~ and a 23

3) Substitute the stresses in the material coordinate system into the failure
criteria. The Hashin criteria [7] are used for the face sheets and the Tsai-Wu
criterion [8, 9] is used for the core. If the failure occurs, reduce the appropriate
engineering constants ofthe face sheets and the core using the methods described
earlier.

4) By the use of the modified values of engineering elastic constants, for
each layer of each finite element that fails, recompute elastic constants aC j),

element stiffness matrices, the global stiffness matrix, and restart the analysis at
the same time step, i.e., return to the step 1.

Such a method is used because when failure occurs, the stress field changes
instantly due to the change of material properties. This redistribution of the
stresses may cause additional failure to occur. Therefore, in case of failure, the
time incrementation mustbe stopped, and analysis musthbe run again for the same
time interval to determine the new failure. If the new failure does not occur, the
analysis can go on to the next time step.

5) If failure does not occur, proceed to the next time step. Analysis goes on
for a number of time steps, specified by a user.

Now, the details will be presented on how the damage progression algorithm

isimbedded into the time integration scheme ofthe system equations ofmotion

IM1{o}+ [CI1{0}+ [K1{0} + {g} = {P}, (72)

w ith the use ofthe Newmark method [5]. In equation (72), the matrix [K] is the
system stiffness matrix, whose components do not depend on the nodal unknowns
0 j-,and {Q} is a nonlinear part of the internal force vector, whose components

o d(U nly system . -0 1
are defined as ---------mmmmmmee e ,Where (U nl)wstem is the whole system s part of the

strain energy thatis not quadratic with respectto the nodalunknowns. The partof

the strain energy (U ni)system appears due to the nonlinear terms in the von
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Karman strain-displacement relations [11]. Thus, the problem being solved
numerically is geometrically nonlinear.
Let us introduce the following notations:

{©} _ = {©}n - vector of nodal variables, evaluated at moment of time 1In,
t_tn

{© )|t_ = {©}n+l - vector ofnodal variables, evaluated atmomentoftime tn+1,
1+

r=tn+l1_ tn.
W ith the use ofthe Taylor series expansion, vectors {©}n+l and {© }n+l can

be written in the form
{©}n+l- {©¥n + r{©O}n + r2(2- p){©3}In + r2P{© }n+1, (73)

{0Inti « {O}n+ ra—yr){O}n+ r2y{o3yn+n (74)

where P and y are free parameters that control the accuracy and stability of the
method. In the example problems considered below, the values of these
parameters were chosen to be P = 1/4 and y = 1/2, which correspond to the
method of constant mean acceleration. Such a method is unconditionally stable
and provides a satisfactory accuracy.

Equations of motion (72), evaluated at a moment of time tn+i, are

[Mi1gon+i+ [C1{0 n+i+ [KI{0}n+i+ {QIn+1= {P}. (75)

In equations (72) and (75), the load vector {P} is due to the gravity force, so
it does not depend on time and, therefore, does not have the subscript n.
Substitution of equations (73) and (74) into equation (75) and simple

transform ations yield:

[Kigoyn+i + {Q}n+i= {F}n, (76)
where
1 Y
[Ky=[K 1+ ~[M1+¢[C] 77)
r2p P

{FIn_ {P}-[CIT{®3In + r(1-Y r){©}n)+

+ M1+ 4 [C] MO +r{©3In+Tr2(i-p){© }In). (78)

Now, assuming that the values of {0}n, {0 }n, and {0 }n are known, one
needs to find the values of {0}n+1, {0 }n+1, and {0 }n+1l. Components of vector
{Q}n+1 ,that enters into equation (76), depend nonlinearly on components of the

vector of nodal parameters {0}n+1l. Therefore, equation (76) is a nonlinear
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system of algebraic equations with respect to components of the vector {0} n+1.
These nonlinear equations are solved by a direct iteration (Picard) method [4].

The direct iteration method is based on computing a sequence of vectors

{0>n«. {0>n«. {0 >n3)l.-.. (79)

by solving a system of linear algebraic equations
[K}{on++1) —{F3n —{Qe 1, (80)

(r) (r)
where the vector {Q}n+1 is the vector {Q}n+l evaluated at {0}n+1 —{0 In+1
i.e., evaluated with the use of values ofnodal parameters 0 i obtained at the rth

iteration. The components of the matrix [K] and the vector {F}n do not depend
on the unknowns, i.e., on the components ofthe vector {0}n+1. 1fthe sequence of
vectors {0 }ili1, w0 ~ {0}n3A ,... converges to some vector {0}n+1, then this
vector {0}n+1 is a solution of the system of algebraic equations (76). In this

numerical implementation

{0}n+1 — {0}, (81)
the firstterm ofthe iteration sequence {0 Ae (0>® . {0}n3 ,... is setequal to
a zero-vector at all time intervals for N —1,2, 3, ... . Iteration is stopped if a norm

(r+f) (r) . . . .
of vector {0 Intl® —{0}n+1 (a difference of solution vectors in two successive
(r+1)
+i

approximations), divided by the norm of vector {0}n is less than some

number (tolerance):

< tolerance. (82)

{Sin«1l

As a norm of a vector, a square root of the sum of the squares of its
S (r - )
components was used. Let (O |)n'|21 be an ith component of the approximate

solution vector obtained in an iteration with anumber ' atamomentoftime with
anumber N+ 1L Then the criterion (82) for stopping the iterations will be written

as follows:
[(s )« - (s )ri]2

=< tolerance. (83)

[(Siin?2/']2

In the example problems considered below, it is set: tolerance = 1-10-4 .
Thus, in the problems with the damage progression taken into account, the

algorithm ofthe Newmark [5] time integration scheme, combined with the direct
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iteration method of solving the nonlinear algebraic equations (76), can be
summarized as follows:

1) At the first time interval [’\,12], set the vectors of initial generalized
displacements {0}1 and velocities {0 }1 equal to the values specified in initial
conditions. The vector {0 }1 ofinitial generalized accelerations is found from the

equation (75), where N is set equal to zero:

[M1{0 3} + [CI{o} + [K1{0}1 + {Q}L = {P}. (84)

This is a system of linear algebraic equations with respect to components of
the vector {<t0}1.

I) At the nth time interval [tn,tn+1], the vectors {0}n, {03}n, {03}n, and
{Q3}n are known, and itis necessary to find the vectors {0}n+1, {0}n+1, {0} n+l>
and {Q}n+1l. For this purpose, the following algorithm is used.

1) Set the iteration counter I' equal to 1, and set the initial approxim ation for

the vector {0}n+l to be a zero-vector:
{0}n+1 ={0}. (85)

(r), . (r)
2) Evaluate {Q}n+l i.e., evaluate {Q}n+l1 at {O0}n+l = {0}n+1 and solve a

r+
linear system of algebraic equations for the components of the vector {0 }|(1+f)

[K3{0 3ne+d) ={F3n - {Q3}2+1 (86)

Evaluate the acceleration vector of the current iteration (iteration with

number I+ 1) by the formula
{0}?2+7~ = ~[{0}n L) - {O}n - r{O}n - r2f2-ys){<EO0} N (87)

[equation (87) is obtained by expressing {03}n+1 from equation (73)]. Evaluate
the velocity vector of the current iteration (iteration with number I+ 1) by the

formula

{0 ) = {03 + r(1-yr){o03n + r2y{0 nrh) (88)

[equation (88) is obtained from equation (74)].
: (r+1) (N _
3) Check if the vectors {03}?+i and {0}n+1 satisfy the convergence

criterion of equation (83).

Ifthe convergence criterion is not satisfied, then begin a new iteration within
this time interval, i.e., set '= I+ 1 and go back to the step 2. Ifthe convergence
criterion is satisfied, go to the next step.

4) Set the vector of nodal parameters and the vectors ofthe first and second

time derivatives of the nodal parameters equal to the corresponding vectors

106 ISSN 0556-171X. npo6xeMbi npounocmu, 2005, N 4



Nonlinear Dynamic Finite Element Analysis

obtained in the iteration at which the convergence criterion of the step 3 was

satisfied, i.e., set

{0}n+1 _ {©}!,+11), (89)
{By.+1_ {3} ™ 1, (90)
{@3},+1 _ {0 }i++11) (91)

for use in the next time step and for computation of stresses at t_ tn+l.

5) Compute average stresses in all plies of each finite element at 1 _
using the vectors {©}n+l {03}n+1, and {0}n+1, obtained in the 4th step.
Substitute these stresses into the failure criteria. In a ply of a finite element,

modify material elastic constants of this ply, modify the element stiffness matrix

[k] and the nonlinear internal force vector {q}n+1_. of the finite
n+1 "d{O}!n+l

element to which the damaged ply belongs and assemble the global stiffness
matrix [K] and global nonlinear internal force vector {Q}n+1 with account of
modifications to the element stiffness matrices and element nonlinear internal
force vectors due to the damage. Then go to the step 2, i.e., recompute vectors
{0}n+1, {O}n+l and {03}n+1 and stresses at the same moment of time.

W hen failure occurs, the stress field changes instantly due to the change of
m aterial properties. This redistribution ofthe stresses may cause additional failure
to occur. Therefore, in case of failure, the time incrementation must be stopped
and analysis must be run again for the same time interval to determine the new
failure. If the new failure does not occur, the analysis can go on to the next time
step.

If failure does not occur, set N_ N+1, i.e., go to the next time interval.

Analysis goes on for a number of time steps, specified by a user.

Example Problems. In some problems, when the plates are loaded on both
the upper and lower surfaces, or when the plates are on elastic foundations,
transverse compressibility of the sandwich plates can not be neglected. In the
proposed finite element formulation, the transverse compressibility is taken into
account by assuming thatthe direct transverse strain £zz is not equal to zero, and
by including this strain into the expression for the strain energy. In the following
example, a sandwich plate is considered, with a rigid body on its upper surface,
under its impact against an elastic W inkler foundation, and demonstrate that the
change of the plate’s height during this impact can be captured by the finite
element model. In the finite element formulation, the presence of the rigid body
on the upper surface is taken account by including a kinetic energy of the rigid
body into the Hamilton’s principle. Example problems, considered below, are
solved with the use of the geometrically nonlinear formulation. Forty finite
elements are used in all example problems.

So far, the numerical implementation ofthe theory is performed for the
of cylindrical bending only, which occurs if the width of the plate is larger than

the length, and the load on the surface is uniformly distributed along the width. In
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this case, the stress distribution and stiffness degradation are uniform in the width
direction.

Let us consider an example of a sandwich plate with laminated composite
face sheets, made of AS4/3501-6 material, and a honeycomb core, made of
Nomex HRH10-1/8-4.0. The material properties of the face sheets and the core,
used in the example problems, are listed below. Elastic constants of the face

sheets: E1= 144.8+109N/m2, E2=9.7-109N/m2, E3= 9.7 -109N/m2, GXB =

3.6-109N/m2, 6 13=6.0-109N/m2, 612=6.0-109N/m2, v 2B =0.34, v13=

0.3, and v 12 = 0.3. M aterial strengths of the face sheets: X T = 2.17 «109 N/m 2,
X C=1.72-109 N/m2, YT=53.8-106 N/m2, YC=2055-106 N/m2, ZT =

53.80 106 N/m2, ZC =205.5-106 N/m2, 523=89.3-106 N/m2, 513=

=120.7-106 N/m2, and 5 12=120.7-106 N/m 2, where XT, Xc, YT, Yc, ZT,

and ZC are the material strengths in tension and compression along 1, 2, 3
directions, and 523, 513 and 512 are the shear strengths in the 23, 13 and 12
planes. Elastic constants of the core: E 1= 80.4-106 N /m 2, E2=80.4-106 N/m 2,

E3=1005-106 N/m2, 623 =75.8-109 N/m2, ¢13=120.6-106 N/m2, ¢ 12 =
= 32.2-106 N/m2, v23=10.02, v13=10.02, and v 12= 0.25. M aterial strengths of
the core: ZC = 3.83-106 N/m2, 523=142.3-106 N/m2, and 5 13=177.9-106

N/m . Both face sheets have the same thickness 0.0025 m, and each of them
consists of 25 plies with 0°/90° lay-up. The thickness of the core is 0.04 m. On
the upper surface of the plate there is a rigid body of mass 500 kg, located
symmetrically with respect to the middle of the plate’s span, and has the length
0.2 m.

The modulus of the elastic W inkler foundation in the example problem,

represented by Fig. 1, is 6.7864-10 Pa/m (clay). A time increment, used in

numerical integration of equations of motion (72), is chosen to be 1-10_4 s. A
plate, falling on the elastic foundation with velocity 30 m/s, is considered. The
analysis ofthe response [time integration of the equations of motion (72)] in this
and all subsequent example problems begins at the moment of time when the
falling plate touches the elastic foundation. Figure 1 shows the transverse
displacement of the lower surface of the plate as a function of time, computed
w ith account of damage (solid line) and without account of damage (dashed line).
In the analysis with the account of damage, the amplitude of vibration is higher.
This is expected because the stiffness of the damaged structure is lower.

Figure 2 shows the transverse displacement of the plate falling on the

foundation with the smaller modulus, 6.7864-10 Pa/m. All other conditions are

the same as in the previous example. It can be seen that in case of the lower
modulus ofthe foundation, the amplitude ofthe transverse displacement is higher.
So, the effect of the foundation stiffness is taken into account properly.

Figure 3a and 3b show results of stress analysis with and without account of
damage progression of the same sandwich plate under the impact against the
elastic foundation. AIll conditions of the problem are the same as in the previous

example. As seen in Fig. 3a, when the fiber breakage occurs, the in-plane direct
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stress aXX reduces drastically, due to the degradation of the material
characteristics, associated with the in-plane direction. At the moment of time
1=0.016 s, when stress @zz atthe lower surface ofthe damaged plate (i.e., force
of interaction between the plate and the elastic foundation perunit area) reaches a
zero value (Fig. 3b), the plate loses contact with the elastic foundation and
bounces up into the air. Therefore, this and all other graphs are to be considered
only for the time interval during which the stress azz atthe lower surface of the
plate is not positive (time interval 0< t< 0.016 s for the Fig. 3b), unless the plate
is glued to the elastic foundation at the moment of initial contact (i.e. forced to
stay in contact with the foundation). If the plate is forced to stay in contact with

the foundation, all the graphs are correct for any time duration.

Fig. 1. Transverse displacement w (at x =L/2, z= —h/2) as a function of time in a sandwich
plate dropped on elastic foundation with initial velocity 30 m/s. The foundation modulus is

6.7864 <10 Pa/m (clay). Here and in Figs. 2, 3: dashed line represents results of analysis without
account of damage, solid line - with damage included.

Fig. 2. Transverse displacement w (at x =L/2, z = —h/2) as a function of time in a sandwich plate
dropped on elastic foundation with velocity 30 m/s. The foundation modulus is 6.7864 -107 Pa/m

(sand).
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Fig. 3. Stresses axx (a) and az (b) at x =L/2, z= —h/2 as a function of time in a sandwich
plate dropped on elastic foundation with initial velocity 30 m/s. The foundation modulus is

6.7864 <107 Pa/m (sand).

Fig. 4. Transverse displacement (at x = —L/2) as a function oftime in a sandwich plate with a mass
on its upper surface, dropped on elastic foundation with initial velocity 1 m/s. The foundation

modulus is 6.7864 «10 Pa/m (sand). The solid line represents displacement of the lower surface, the
dashed line - displacement of the upper surface. Under this initial velocity damage does not occur.

Figure 4 shows the transverse displacement of the plate falling on the
foundation with the smaller initial velocity 1 m/s. AIll other conditions are the
same as in the previous example. Comparison of Figs. 2 and 4 shows that the
effect of the initial velocity on the response is captured properly: the lower initial
velocity causes the lower amplitude of vibration. Figure 4 shows also that the
amplitude of the transverse displacement of the upper surface is higher, and this
shows the capability ofthe model to capture the compressibility ofthe plate in the

transverse direction.
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Conclusions. The theory ofthe sandwich plate, presented in this paper, has a
wide range of applicability. It can be used for analysis of sandwich plates with
large and small thickness-to-length ratios, with thick and thin face sheets, with
transversely rigid and transversely flexible face sheets and cores. The proposed
finite element formulation allows one to compute accurately all stress
components, both in-plane and transverse, without using finite element models
with three-dimensional elements. The geometrical non-linearity of the finite
element formulation allows for a nonlinear transient analysis of a sandwich
composite plate undergoing moderate rotations. The algorithm of taking account
of damage progression in a dynamic problem is incorporated into the

computational scheme, based on the geometrically nonlinear formulation.

Pesw me

Ansa Bunagky ToBCcTOl 6araTtolw apoBOi NaHeni 3 NOBEPXHEBUMMU W apaMu 3 KOMMO-
3UTHOTO nNaMiHaTa 3aNpPoONOHOBAaHO PO3pPaxyHKOBY CxeMy B pamkax Teopiil nnac-
TUH i3 BUKOPUCTAHHAM CNPOWEHUX YyABNEeHb, WO OoONWcaHi y noBigomneHHi 1.
AnNroputm po3paxXxYHKY AWHaMiyHOT 3ajgadvi, B AKOMY npuiimaeTbca [O yBarmn
PO3BUTOK MOW KOAXEHb Yy MaTepiani, BAKOPUCTOBYETbCA y pPO3pPaxyHKOBIili cxemi,
Wwo 6a3yeTbCcs Ha FreOMETPUYHO HeNiHINHOMY (opMynw BaHHI 3afayvi, ons aHanisy
yMOB pyWHyBaHHA 6Garatow apoBOi nmaHeni, Wo 3a3Hae YyAapHOro HaBaHTaXeHHS

npuW NajgiHHI Ha TPYHT.
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