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UuncneHHoe MOAeNMpPOBaHME XPYMNKOro paspylleHUs 6GeTOHHbIX
o6pasLos

FO. Nabagva H. 3. XaHHaLLn6

a TexHonornyecknini yHneepeuTeT . Tpya, PpaHupms

6 YHuBepcuTeT r. Tusu-Y3y, Amkup

Mpeano>keH KpUTepuii NOBPe>KAeHWUs KOHCTPYKUWA M3 GeTOHA, MONY4YMBLUMIA Ha3BaHWe HOPMbI
9KBUBANEHTHbIX AepopMaLMii, KOTOpPbIA N03BONSET YYMThIBATbL acCUMMETPUUHOE MEXaHUYecKoe
nosefeHne 6eTOHA NPU pacTs>KeHUn U cKaTuu. PaspaboTaHa M30TponHas Mogenb, 6asupy-
l0LLAsACs Ha MCMONb30BAHUM MOBEPXHOCTM MOBPEXKAEHUS, aHANOrnUHoi DYHKLMM TEeYeHNs Teopum
nnacTMYHOCTU. C MOMOLLBI0 MPEANOXKEHHOW MOAENt BbINOAHEH KOHEYHO3NEMEHTHbI pacueT
HeNMHeliHO-ynpyroii Aedopmalmn 06pasLioB n3 6eToHa. MpoBeeHO CPaBHEHWe NONYYeHHbIX Pesyb-
TaTOoB C KCNepUMEHTanbHbIMU. [MoKa3aHa XopoLas Koppensums MexKay pacueTHbIMU U aKcnepu-
MeHTaNbHbIMW pe3yibTaTaMi. YCTaHOBNEHO, YTO TOYHOCTb pacyeToB Go/fee BbicOKas Mo
CPaBHEHWIO C MPOrHO3aMi, BbINONHEHHbIMU 683 MPUMEHEHUS NOAXO0B MEXaHUKU MOBPEedKAeHUs
TBEpAoro Tena.

KnioueBble CnoBa: YNpyrocTb, MOBPeXAeHWe, HeNuHeliHoe NoBeAeHWe, GETOH,
KOHEYHbIE 3/1IEMEHTbI, YNCMEHHbIE METOLbI.

Notations

D - scalar value representing the local damage parameter (ranging from O for
the virgin material to 1, which represents the failure or zero stress)

po - material specific mass

£j, - strain tensor

ol - effective stress tensor

0 - denotes the initial (undamaged) elastic stored energy

A°jkl - fourth order tensor of the elastic stiffness of the undamaged material

Aijkl - fourth order tensor of the elastic stiffness of the damaged material

a - parameter taking into consideration the shear resistance
ft - material yield stress in tension
fc - material yield stress in compression
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k

coefficient accounting for the large difference in tensile strength and

comressive strengths, k=1 j f t

fracture energy by unit surface (J/m2)

Gf

specific fracture energy (J/m3)

Young modulus of the material

shear modulus

gf

E

G

characteristic length of the element of volume representing the material’s

average behavior
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fracture energy to be completely defined. To verify the FEM program including
the present model, the deformations predicted by this model are compared with
both the experimental ones in the concrete structural model and the calculated
ones without using the CDM,; they employed the concept of internal state
variables and a phenomenological method to describe the state of a material
element. For simplicity, we only consider the rate-independent behavior of the
element in an isothermal process. Consequently, time and temperature will not
appear in the formulation. The final objective is being able to simulate the
behavior of concrete structures until fracture with the relatively simple models of
use and implementation. This paper is organized as follows. In Section 1, using
the phenomenological approach of continuum damage mechanics; the damage
model is formulated into a general framework of the thermodynamics of
irreversible processes. The numerical aspects related to the use of this model in
finite element analysis are discussed in Section 2. A modified Newton-Raphson
algorithm, that uses the initial stiffness matrix as iteration matrix, has been used
for the solution of the non-linear system. Finally, numerical results obtained with
the presented model are compared with experimental and numerical results
concerning the damage development in tension test and on in singleuedge notched
concrete beam under bending load.

1 The Damage Model.

1.1 Energetic Considerations. The model is formulated in the strain-space,
and it is based on the equivalent strain concept. Since the observable variable is
the strain and in order to simplify the numerical implementation of this model in
finite element code, we choose the Helmholtz free energy as the state potential

0

where a is a material parameter varying from 0 (without shear retention) to 1
(damage ineffective for shear stress). It is introduced in order to take into
consideration the friction between the two surfaces of crack and it accounts the
shear resistance.

As the damage increases towards the unit, the free energy is not equal zero
because the shear resistance of cracks. For the energetic consistence of the model,
the inequality of Clausius-Duhem that states the no-negative character of the rate
of mechanical energy dissipation for any arbitrary infinitesimal variation £]j
from an equilibrium condition has to be ensured

Equation (2) can be written as
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Since the variation £j is completely arbitrary, this inequality can be fulfilled
only if the term in parentheses is identically zero

f?es' EEE)ZO' @

From the Eq. (4) we obtain
oij=Po0 =[1- D+ (- 6a6kl)aD “ijkI£kl = *ijkI£KI. (5)

For the normal stresses (i.e., i=j and k =1) the term (1-636kl)aD
vanishes in Eq. (5), while for the shear stresses it introduces a reduction of the
damage action in order to assure a minimum strength even for the completely
damaged material.

Equation (3) can be simplified like follows:

dp . 0
d =-dDDD =p oD ~ 0. (6)

This last equation implies the irreversibility of the damage. It is satisfied if
D is increasing (that is to say, being always defined positive).

1.2. Damage Criterion. Within the brittle damage approach, the concept of
yield surface as the familiar plasticity law is used. There exists a reversible
(elastic) domain such that damage does not develop from any interior state but
may evolve from a state on the boundary of the domain , the damage growth
will be governed by a loading surface of equation f (£ )= 0 (convex in D).
This threshold function depends on the equivalent strain and the damage. It is
defined in the strain space [6, 9, 12, 14-16]. In this study, a new form for the
equivalent strain is proposed. The domain or loading surface is defined as

f (£j .D)=£- K(£,D)<0, @

where £ is an equivalent strain or a norm of the strain tensor £/, K(~,D) is the
softening parameter and takes the largest value of £ ever reached at the
considered point in the material. Initially K(~,D)= £do, in which £do is the
threshold of damage. Value of £d0o may be regarded as the tensile strain at which
damage is initiated. We consider that the threshold is reached when the stress is
maximal in uniaxial tension £do = ftjE

K(£,D)=max £D0; max £ ()
<t

In concrete, there is a large difference in tensile strength and compressive
strength. Thus, the following expression is proposed to define the damage
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threshold of concrete, taking into consideration the asymmetric behavior in
tension and compression:

oo [ (k=1 @
k

where J is a fourth-order symmetrical tensor. For initially isotropic material, J
may be written as

1_V_Vooo
E E E
1 —v
0 0 0
E E
1
Eooo ()
J=— 0
_ 1
E 0 0
G
1
S 0
G
1
GJ

with E =max (E,G), and

_‘
Il

(3
8 o 0

where £i denotes the tensor of principal strains.
1.3. Damage Evolution. While considering a non-standard material,
evolution of damage is defined as

. dF(-) ()
D=—, &) 2

The evolution of damage is governed by an equivalent strain. So that the
evolution law writes:

0 if f(£ij,D)< (unloading),
b= dF(E)/ﬁ if f(£ij,D)=0 and f (£j .D)=0 (loading) (13)
dE M Yyl I )
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where dF(?)/d? is a positive definite function ?. The shape of the function
F (e) is determined from experimental observations available in the literature [9].
According to [17], the strain-softening curve of concrete must be concave. Then
we write dF(?)/d? under exponential form as

dF(e) 'DO

de oo /(1+ be)exp[-b(e -e Do)], (14)

while proceeding to the integration of Eq. (14) we obtain

D = lﬂ%@o] (15)

D is defined in the strain interval [eDO,»], so that for ? =eD0 it gives D =0
and for ? it gives D = 1 The total energy dissipated during the deformation
process has an upper bound value that is equal to the specific fracture energy of
the material gf , can be obtained by the following integration along the whole
strain path:

gf = f o(e)de= f 0dD. (16)
Ifwe consider a uniaxial test, then e =en and 0 (é)2 E, and Eq. (16)
2P0
obtains the following form:
e
= 0 de11 17
ot o, 2p0 depn 40

A”er some rearrangements, with introducing (15) into (17), the following
results are obtained: /\

+1 (18)
9t po b
Finally b is given like following:
lgtpoE 1
0
b= 9 (19)
fl 2

Here b is a dimensionless constant. The relation (19) shows that the parameter b
in Eg. (15) depends on the specific fracture energy dissipated during the whole
damaging process. The fracture energy per unit surface Gf is defined by
Gf =gflch.Hence we obtain
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Let’s recall some theoretical aspects below. The local equilibrium condition
of the continuum can be written as:
on Q (i=1,3 and j =1, 3)

d°ij',+fvi=O (22)

(23)

on Tc
Mijnj =1 si y

where Q and rs are the body volume and surface, f vi is the vector of the mass
loads, f si is the vector of surface loads, and nj is the unit vector normal to the
surface.

We rewrite the Eqg. (22) under a global weak form throligh the principle of

virtual work. We choose an arbitrary virtual displacement {u } as atest function:
J w0
Q
We proceed then by integrating by parts to get the weak form:

\J °ijdQ ~Jr lIidr - gglfidq =0 (25)

JQaXj

We proceed then with the approximation of the variational form. The domain
Q is divided in subdomains Qe (finite elements). The displacements in an
element may be approximated as

n -
1=1
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where Nt are the global shape functions at node i of coordinates (xt,yt) in the
global reference mark (x,y) and of coordinates (£i, i) in the local reference
(E,~) and n is the number of nodes in the element.

According to the Galerkin method, we use the same approximations for the
virtual displacement, so real strains and virtual strains can be written as

Mu(x,y)}= [N
He(x,y)}= B , (29)

E:dw

where

for the plane problems
Then we obtain

f[B]T[As][B]dQe{ue}-f[N]Tf YTe- £ [NTT{fe}dQe=0

That conducted to the following elementary shape:
[k(e)l{un }= { f(e)}, (31)
where [k(e)]= f [B]JT[ASD)][B]dQe is the element stiffness matrix and {f(e)}=

Qe
= f[N IT{fV }dQe +f [N]JT{f £}dTe is the element nodal force,
Qe re
Assembly of matrixes and elementary vectors provides the global system:

f[B]T[A$d)][B]dQ{"n}: f[N T {fv}dQ - f[N JT{fs}dT.

Q 0 (32)

Under condensed form:

[Ks(D){U}={F} (33)

where [K (D)] is the global secant rigidity matrix and {F} are the global vector
forces.

The system of equations (33) is non-linear due to its dependence to the
damage parameter D (that is to the stiffness matrix K) on the strain tensor £
(that is on the displacement vector u). Therefore, a step-by-step procedure must

ISSN 0556-171X. npoOAeubi npounocmu, 2005, Ne 3 65
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be adopted, where the external loads on the right-hand side of Eq. (33) are applied
incrementally. Within each step, the adoption of a regular Newton-Raphson
algorithm for the solution of the non-linear system, with the proper tangent
stiffness, would provide quadratic convergence to the solution. However, with a
full Newton-Raphson scheme the tangent stiffness matrix has to be formed and
refactoried for each iteration. Moreover, the tangent stiffness matrix becomes
non-symmetric and the computational time drastically increases. In our numerical
test, we have found that the adoption of a modified Newton-Raphson scheme
requires a computational time, to reach the same tolerance, which is smaller than
that required for the full Newton-Raphson scheme. In fact, the greater number of
iterations necessary at each time step due to the crudeness of the predictor, is
more than counterbalanced by the inversion of the tangent stiffness matrix.
Moreover, the modified Newton-Raphson scheme is always convergent to the
solution, even in the presence of flex points in the load-displacement curve. With
the modified Newton-Raphson algorithm, the iteration scheme for the solution of
system (33) becomes:

[Ks]{AUr}={W(Ur)}, (34)

{Ur+1}={Ur}+ {AUr} (35)

Solution of the nonlinear problem will be achieved when the residual force
{WWU)} {W(U)}= [Ks(D)I{U}I—{F}~" 0) is sufficiently small. At convergence,
{W(U)}= " is a tolerance chosen by the operator (for example, ~= 0.001).

The accuracy of satisfying the global equilibrium equations is controlled by
the magnitude of the unbalanced nodal forces. In this study, the convergence
criterion employed is the following Euclidean norm:

N
2({wr}2
............ A (36)

12 ({f})2

where N is the total number of degrees of freedom in the case, W is the residual
force value, f is the external force acting on the member, r denotes the iteration
number, and * is the specified tolerance.

3. Numerical Applications and Results.

3.1. SENB Specimen (Single-Edge Notched Beam test). We carry out a
finite element analysis, until the rupture, on plain concrete losipescu single-edge
specimen, under four-point bending conditions. This type of experiment has been
simulated extensively in the literature using experimental [24, 25], analytical and
numerical methods [18, 26-30]. Besides, this example is also treated in the
examples manual of the commercial finite element software ABAQUS/Explicit

[31].
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Table 1
Mechanical Properties of Concrete for SENB Specimen and Tension Test
Characterictic SENB Specimen Tension Test
Young modulus (N/mmg2) 24,800 36,000
Poisson’s ratio 0.18 0.15
Uniaxial tensile strength (N/mm2) 2.8 34
Fracture energy (N/mm) 0.05 0.07
0.13F
! V
E 224
r 82
I\ u_
203 | 397 __pleisy 397 ¢ 203

Fig. 1 Single-edge noteched beam: geometry and loading conditions.

Fig. 2. Mesh used in the analysis for SENB specimen.
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Fig. 3. Damage evolution in a SENB at various instants of the analysis.

a

b

Fig. 4. Crack profile in non local damage analysis (Rodriguez-Ferran et al. 2001): (a) adaptive

mesh; (b) damage pattern.
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Fig. 5. Experimental crack pattern in SENB (Shlangen 1993).

CMSD in mm
Fig. 6. Load-CMSD curve.

Fig. 7. Final deformed mesh and damage distribution of SENB.

Fig. 8. Tension test: geometrical data (dimensions in mm).
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3.2 Tensile Test. This example concerns the simulation of the experimental
tension test performed by Hassanzadeh [32] on four edge notched concrete
specimen. Di Prisco [33] considered this test as a benchmark. Of this fact, some
authors [11, 34] also considered this test. The geometry is shown in Fig. 8. The
specimen has been discretised by constant strain triangular elements as shown in
Fig. 9. The material properties used in the simulations are chosen as shown in
Table 1

In Fig.10 we present crack pattern of the structure at different instants of the
analysis and for a qualitative comparison we consider the numerical results done
by Comi [11] as shown in Fig. 11. Finally, the computed total reactions versus the
imposed displacement of the top of the specimen are plotted in Fig. 12.

Fig. 9. Tension test: FE mesh and boundary conditions.

Damage

b
Fig. 10. Predicted damage pattern evolution during the analysis: u=0.004 (a) and 0.05 mm ().
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0.004 (a) and 0.05 mm (b).
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Fig. 11. Damage pattern evolution given by Comi: u

Displacemen in mm

Fig. 12. Load versus displacement under the load point (tension test).
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Pe3tome

3anponoHOBaHO KPUTEpIli pyiHYBaHHA KOHCTPYKLi/ 3 6ETOHY, WO OTPpUMaB HasBy
HOpPMW eKBiBaNeHTHUX fetopmauiii. KpuTepiii [03BONSE BpaxoBYyBaTU acumeT-
PUYHY MeXaHi4yHy MoBefiHKYy 6eTOHY Mpu po3TA3i Ta CTUCKY. Po3pobneHo i3oTpon-
HY MOZenb, Lo 6a3yeTbCA HA BUKOPUCTaHHI MOBEPXHI NOWKOMKEHHSA, AKa aHano-
riyHa QyHKLUIT NIMHHOCTI Teopil NnacTUYHOCTI. 3a LOMNOMOroK 3anpornoHOBaHO|
MoZeni BUKOHAHO CKIHYEHHOENEMEHTHWIA PO3paxyHOK HeiHIHO-NpYy>XHOT gedop-
MaLii 3paskiB i3 6eToHy. MpoBefeHO MOPIBHAHHSA OTPUMaHWX pe3y/bTaTiB 3 eKcre-
pUMEHTaNbHUMKU. Y CTaHOBNEHO, L0 TOYHICTb PO3paxyHKiB Bifibll BUCOKA, aHiX
NporHo3n 6e3 BUKOPWUCTaHHA MiAXO4IB MEXaHiKN MOLWKOXEHHA TBEPAOro Tina.
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