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Предложен модифицированный численный метод Монте-Карло для оценки надежности 
нелинейных конструкций, подвергнутых динамическому нагружению. Использование метода 
позволяет обобщить важные низковероятностные выборки для нелинейных динамических 
задач. Эффективность данного метода по сравнению с прямом методом Монте-Карло 
состоит в возможности определения нелинейного стохастического отклика в области 
очень низких вероятностей.
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In tro d u c tio n . In a recent review o f methods currently available to analyze 
multidegree-of-freedom systems under stochastic loading, their merits, limitations 
and potential to be used in engineering practice have been discussed [1]. From 
this study it becomes clear that only num erical procedures such as Monte Carlo 
simulation (MCS) techniques (both in their direct and variance reduction form) 
and the Response Surface M ethod (RSM) are capable o f treating nonlinearities 
without restriction as well as systems o f higher dimension including reliable 
information on the response distribution tails.

As direct MCS procedures are quite lim ited with respect to providing 
accurate information on the response distribution tails, the variance reduction 
techniques such as importance, directional, adaptive sampling, etc. are used for 
static structural problems in order to guide the simulation procedures to the region 
o f interest and, hence, to reduce the numerical effort. For dynamic problems, the 
selection o f this region is more involved than for static problems, since the 
importance measure is generally time variant. Based on a suitable criterion for 
indicating which realization will m ost likely lead to failure, the samples in the 
region o f interest m ay be split, whereas in the region o f less interest they m ay be 
discarded or m ay survive. This procedure has been expanded and applied 
successfully to M DOF systems.
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1. F irst-P assage D istribu tions. A  general performance measure for 
structures under stochastic dynamic loading is characterized by first-passage 
probabilities, where the distribution o f the exit times T  into a state o f failure is 
considered. The boundary separating the safe state from the unsafe one m ight be 
specified by a so-called limit state function g (x ) =  0. The lifetime o f the structure 
is then defined as the first exit time T :

T =  in f [t: g ( X ( t )) <  0, t >  0], (1)

and the probability o f the first excursion P f  ( t ) within the time interval t is 
defined as

Pf  ( t ) =  P[T <  t ], (2)

specifying the evolution o f the failure probability w ith respect to time.
Presently, the available solutions to the above first probability are quite rare. 

There is a complete absence o f analytical exact solutions in closed form, and 
numerical procedures based on the Fokker-Planck equation are confined to 
problems o f low dimension (< 4 in the state space). The only solution technique 
at hand seems to be the MCS, which is well suited to simulate nonlinear 
stochastic structural responses as required in the reliability assessment o f 
structures.

2. M eth o d  of A nalysis. For the purpose o f assessing the reliability o f a 
structure, the domain o f the response is divided into the safe and unsafe parts, 
respectively. The so-called limit state function (LSF) serves as a criterion of 
separation. The domain is in general m ultidim ensional containing parameters 
such as displacements, velocities, plastic deformations, etc. I f  x is defined as the 
state vector o f  all the response components and g (x ) as the LSF, it is necessary 
to determine the probability P ( t ) that the response vector x( t ) exceeds the LSF 
at least once within a given time period [0, t], where x(0) lies initially in the safe 
domain, i.e., P (0) =  0. In other words, the first-passage probability defines the 
evolution o f the failure probability w ith respect to time.

It is well known, that the direct MCS is well suited to obtain, w ith a 
relatively small num ber o f realizations, reasonably close estimates for the m ean 
vector and the covariance matrix. It is not suited, however, to assess the low 
probability domain o f the stochastic response and for reliability analysis where_o _4
failure probabilities P f  are o f the order 10 _  10 . I n  order to access such

ranges, it is obvious that a sample size (number o f realizations) o f  the order 
105 _ 1 0 9 will be required. Such sample sizes are possible for small systems 
using a m assively-parallel supercomputer [2]. However, the MCS with a sample 
size o f the order >  105 are expensive and certainly not efficient in view o f the 
fact that only a small fraction o f the num ber o f realizations falls into the domain 
o f interest for the reliability analysis.

This drawback o f the direct MCS has been commonly recognized, and the 
so-called variance reduction techniques have been developed and utilized 
successfully. All these procedures increase the density o f realizations in the 
region o f interest, i.e., in the region that contributes m ost to the failure
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probability. These variance reduction methods are used m ainly for nonlinear static 
reliability systems, but can be also used for nonlinear dynamic problems. The 
main difficulty with these approaches is the fast growing num erical effort w ith the 
num ber o f random variables involved. In case loading is represented by a 
stochastic process, it m ight be possible in some cases to represent the stochastic 
process by a small num ber o f  random variables using the Karhunen Loeve 
expansion.

M onte Carlo simulation, however, is applicable to stochastic loading 
involving more than ju st a small set o f random variables. In such cases, the 
traditional variance reduction procedures are no longer applicable.

Advanced M CS methods have been developed for the class o f systems with 
M arkovian properties. Before describing the details and im plementation o f such 
procedures, we shall briefly discuss the m ain features o f the advanced MCS. 
Consider first the M CS and the resulting approximation for the cumulative 
distribution function CDF (x ):

N
CDF  (x , t ) =  2 1  [ x n ( t ),x ] w n ( t ), (3)

n=1

where x  is the state vector, t is time, x n is the state vector o f the nth 
realization, w n ( t ) is the w eight and discrete probability o f the nth realization at 
time t, and N  is the sample size. The indicator function I [X n ( t ),x ] takes the 
value 1 i f  the components X n k >  x k , k  =  1,..., M , for all components M  o f the 
state vector. Otherwise, the indicator function assumes the value 0. In case the 
direct MCS is applied, all weights are constant and assume the value w n ( t ) = 
=  1/N . For example, for importance sampling, the original probability density 
function f  (x ), which reflects the direct MCS, is m odified by using the sampling 
distribution h(x ). This can be done without violating the original density function 
f  (x ) by m odify ing  the w eight w n o f  all realizations X n ( t ) by  w n = 
= f  (x ) / ( Nh(x )). Since the advanced MCS is designed to assess low probability

_8 _4
ranges o f the order 10 P f  <  10 as well, it is obvious that m anipulation of

the weights is indispensable.
A  selective M onte Carlo simulation technique, namely, “Russian Roulette & 

Splitting” simulation technique (RR&S) has been applied successfully in nuclear 
physics [3] to solve neutron transport problems. The basic features o f the 
algorithm are described and discussed.

The RR&S procedure involves subdivision o f the safe region by several 
borders o f splitting (or sub-barriers). Then the process o f splitting can be 
introduced as follows. W hen the response sample function x ( t ) upcrosses the ith 
sub-barrier, the state vector is split into mt same vectors, where m is the integer 
num ber and i is the num ber o f the sub-barrier. The weight o f  each new  vector is 
equal to w new =  w ĉid /m i . Due to the m i stochastically independent sample 
functions produced by splitting, one simply increases the chances to upcross the 
next (more highly placed) sub-barrier. Thus the splitting technique makes it 
possible to increase significantly the num ber o f samples which are capable o f 
crossing the limit state function.
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The Russian Roulette is a well-known game o f chance where the 
‘probability o f death’ is high (i.e., 1/6, originally). This game can be played to 
reduce the sample size to a required amount. The “Russian Roulette” technique is 
applied in an inverse situation, i.e., when the response sample function 
downcrosses the ith sub-barrier. In this case with a probability o f  1 — 1 / ,  the 
simulation process is discarded (killed) and w ith a probability o f 1/mt the 
simulation is continued. The weight o f such surviving sample is m ultiplied by mi . 
Hence, the main aim o f the “Russian Roulette” technique is to diminish 
drastically the num ber o f sample functions which are o f “low interest” in the first 
passage problem.

From the algorithm described above it becomes obvious that between the ith 
and ( i +  1)th sub-barriers the weights o f the samples are equal to each other and 
are expressed as

- 1  n  -Wi - - n  — , (4)n .m ,  w
] - 1  ]

where n is the num ber o f initially simulated samples and —]  is the num ber of 
the splitting on the j th  sub-barrier.

It is clear that the weights o f the samples Wb after outcrossing the barrier 
will be equal to

k

w b -  1 n (5) 
j -1 ]

where k  is the total num ber o f  sub-barriers.
It is noteworthy that the direct Monte Carlo algorithm is a subset o f  the 

RR&S technique. In particular, the direct MCS can be obtained from the RR&S 
for mt -  1 [4].

3. D e te rm ination  of the  Effectiveness o f the  S im ulation Technique.
According to Rubinstein [5], the effectiveness E  o f  each simulation technique 
can be expressed in the following form:

1
E -

v ar[P  ]T
(6)

where var [P ] is the variance o f the estimate and T  is the computation time of 

the estimate P  * .

The Bernoulli scheme o f independent trials in the case o f straightforward 
MCS allows one to obtain the following well-known formula for the variance of 
the estimate:

* P(1 — P ) 
var [p  ] -  \  ' , (7)

where N  is the sample size.
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Unfortunately, due to the correlation between samples in the RR&S 
technique, there is a difficulty in obtaining an expression for the estimate variance 
similar to (7).

Based on the sample statistics, the variance o f estimate for the RR&S 
technique can be calculated by the following formula:

* 1 ^  ( li *
v a r [P  ] = —-------t > |  —  -  P

n( n — 1) “ V M

\2

/
(8)

where

* 1
P  =  -  >n M

1=1
(9)

k

M = П  mj , 
j =1

n is the sample size, lt is the num ber o f barrier outcrossings in the ith 
independent trial, and mj is the number o f the splitting on the j th  sub-barrier.

As long as variance (7) has already been minimized for a given sample size 
N  by the straightforward Monte Carlo simulation, a more effective solution can 
be obtained using another simulation scheme (8) with a higher variance o f the 
estimate and m uch shorter computation time.

4. N um erical Exam ples. Nonlinear vibrations o f a cylindrical panel under 
the action o f a uniformly distributed load are analyzed; the time history is 
described by a truncated white noise. It is considered that at the initial instant of 
time the cylindrical panel is in a quiescent mode. The action o f the applied load 
triggers the excitation o f a nonstationary stochastic process.

The following parameters o f the panel are adopted: the dimensions in plan 
a =  0.2 m, b =  0.3 m, the height h =  0.002 m, the modulus o f elasticity

3 3E =  70.63 GPa, the density o f the material p  =  2.7-10 kg/m  , Poisson’s ratio

v =  1/3, and radius o f curvature R =  0.8363 m.
In the problem under study, the frequency band o f the spectral density o f the 

loading covers the first, fifth, seventh, and eleventh symmetrical vibration modes. 
The equation o f motion is governed by the following differential equation:

x i +  C tx i +  K ix i +  K  f x j x k + K  f lx j x kxi  =  ц  i Q i ( t)
( 10)

( i, j , k , l =  1 ,..., 4),

where C j are factors o f the damping matrix, p  t are the oscillation modes, Q ( t ) 
is the Gaussian white noise with intensity I  =  1000 m 2/s3, and K ijk and K ijkl

( i, j , k , l =  1 ,..., 4) are, respectively, the coefficients o f matrices o f square and 
cubic nonlinearity.
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2 2The following input data are considered: K 1 = m 1 =  1.00, K 2 =  m 2 =  7.64,

K 3 = m 2 =  11.2, K 4 = m 2 =  22.00, C 1 =  0.0159, C 2 =  0.044, C 3 =  0.0532,

C 4 =  0.0747, / i 1 =  -  0.0297, ^  2 =  0.0095, ^  3 =  0.00979, ^  4 =  0.00342.
The flexures in the center o f  the cylindrical panel are determined by the 

formula
4

x c ( 0  =  h 2  x i ( t ) . (11)
Z=1

The first passage probabilities o f the system response x c ( t ) were 
determined during time [0, t] for double-sided symmetrical barriers located at the 
levels ±  3h , ±  4h, and ±  5h and shown in Fig. 1.

xc (t), mm

-1500

t, s t, s

Fig. 1. Sample white noise function Q (t) -  a and the system response variation xc (t) -  b.

A t the beginning, the first passage probability for symmetrical barriers of 
level ±  3h was determined.

Figure 1a shows one realization o f the stochastic process Q ( t ). The 
corresponding variation o f the system response x c( t) is presented in Fig. 1b. 
This trajectory reaches the limiting barrier at t =  4 s. In the same figure, the 
arrangement o f borders o f splitting and the numbers o f the splitting are shown. In 
this case, 6 borders o f  splitting were located at ±0.15 cm, ±0.3 cm, and ±0.45 cm; 
the num ber o f the splitting at each o f the borders are mi =  m2 =  m3 =  7; the 
sample size n =  1000.

Figure 2  (curve a ) presents in a logarithmic scale the cumulative distribution 
function o f the first passage probabilities o f the system response x c ( t ) for 
barriers located at the level ±  3h. From this figure one can see that at t <  4 s the 
probability o f reaching the barrier sharply decreases. The appropriate events are 
rather rare.

We also analyzed the problems on the first passage probability o f the system 
response x c ( t ) for barriers located at the levels ±  4h and ±  5h. The appropriate 
cumulative distribution functions are shown in Fig. 2 (curves b and c, 
respectively).
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T a b l e  1
The Effectiveness and Calculation Time Ratios -  MCS to RR&S

Time (s) err &s /EMCS TMCS TRR &S
2.22 169.00 169.0
2.50 4.20 149.0
3.00 1.10 83.0
4.00 0.40 38.0
5.00 0.17 22.4

t, s t, s

Fig. 2 Fig. 3
Fig. 2. Estimates of the first passage probabilities versus time for the double-sided barriers located 
at a = ±3h, b =±h, c = ±5h.
Fig. 3. Estimates of the first-passage probabilities and variances of estimates for barriers located at 
± 5 h.

In the second problem  (barriers at the level ±  4h) 6 borders o f splitting were 
located at distances ±0.2 cm, ±0.4 cm, and ±0.6 cm, the numbers o f the splitting 
at each o f the borders are mi =  m2 =  m3 =  7; the cumulative distribution function 
for this problem  is shown in Fig. 2 (curve b).

In the third problem  (barriers at the level ±  5h) 6 borders o f splitting were 
located at distances ±0.25 cm, ±0.5 cm, and ±0.75 cm, the num ber o f the splitting 
at each o f the borders are mi =  m2 =  m3 =  7, the appropriate cumulative 
distribution function is shown in Fig. 2 (curve c). The sample size n in the 
second and third problem  equals to 1 0 0 0 .

*
For the barriers located at ±  5h, the variance o f estimates P  was calculated

for different techniques. Figure 3 (curve a) represents cumulative distribution 
functions obtained successively by the straightforward MCS (dotted lines), and 
the RR&S procedure (solid lines) (see Fig. 2, curve c).

Figure 3 (curve b) represents the variance o f estimates P  * , obtained w ith the 

help o f formula (8); and curve (c) obtained using formula (7). The ratio o f  the 
effectiveness Err&s / E MCs calculated for different times t in accordance with
(6 ) is presented in Table 1 together w ith the ratio o f  the calculation times

tmcs / trr &s ■
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From Table 1 it is seen that the RR&S simulation technique offers a 
considerable gain in computation time and a higher effectiveness (in the first 3 s) 
as compared to the direct MCS technique.

Conclusion. A n advanced M onte Carlo simulation procedure has been 
applied to M DOF systems showing its basic applicability to higher dimensional 
problems and the ability to assess the low probability range in terms o f the 
first-passage probabilities.

Р е з ю м е

Запропоновано модифікований числовий метод М онте-Карло для оцінки 
надійності нелінійних конструкцій під дією динамічного навантаження. 
М етод дозволяє узагальнити важливі низькоімовірнісні вибірки для неліній
них динамічних задач. Ефективність даного методу в порівнянні з прямим 
методом М онте-Карло полягає в можливості визначення нелінійного сто- 
хастичного відгуку в області дуже низьких імовірностей.
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