ПРОИЗВОДСТВЕННЫЙ РАЗДЕЛ

УДК 537.533.8:621.318.124

Особенности акустической эмиссии при частичной разгрузке керамического изделия

Т. С. Никольская

Санкт-Петербургский государственный технический университет, Санкт-Петербург, Россия

На базе линейной механики разрушения обоснованы неразрушающие экспресс-методы определения параметров длительной и кратковременной прочности изделия. Данные, полученные этими методами, сопоставляются с результатами разрушающих испытаний и используются при исследовании влияния размеров изделия и температуры на длительную прочность.

Ключевые слова: неразрушающие экспресс-методы определения параметров прочности, линейная механика разрушения, кратковременная прочность.

Закрытие трещины в конце разгрузки (эффект Эльбера) позволяет определять пороговую нагрузку L_0 , без превышения которой трещина не развивается и прочность изделия не снижается. С целью определения L_0 изделие целесообразно [1] нагружать и полностью разгружать, регистрируя акустическую эмиссию (АЭ) и повышая при этом максимальную нагрузку цикла на 3% до тех пор, пока по окончании разгрузки не будет зарегистрирована АЭ.

Если при $L>1,3L_0$ изделие быстро разгрузить, например на 5%, и выдерживать при постоянной нагрузке L_1 , то через интервал Δt_1 АЭ появится вновь, и ее скорость счета N будет постепенно возрастать. Две последующие частичные разгрузки дают Δt_2 и Δt_3 (рис. 1), а также интервалы времени t_2 и t_3 , после которых величины N при пониженной нагрузке достигают своего значения перед очередной частичной разгрузкой. Для объяснения рис. 1 рассмотрим напряженное состояние перед вершиной трещины длиной a.

В рамках линейной теории упругости изотропного тела для компоненты σ_{ij} тензора напряжений в окрестности вершины трещины, где радиусвектор r мал по сравнению с длиной трещины a, справедливо представление [2]

$$\sigma_{ij}(r,\theta) = K_{\alpha} f_{ij}^{\alpha}(\theta) / (2\pi r)^{1/2},$$

где r и θ – полярные координаты произвольной точки рассматриваемой окрестности; K_{α} – коэффициент интенсивности напряжений (КИН), со-

© Т. С. НИКОЛЬСКАЯ, 2002

Рис. 1. Изменение скорости счета \mathring{N} АЭ при частичных разгрузках после превышения напряжения σ_0 .

ответствующий трещине нормального отрыва $(K_{\rm I})$, поперечного сдвига $(K_{\rm II})$ или продольного сдвига $(K_{\rm III})$; $f_{ii}^{\ \alpha}(\theta)$ — безразмерная функция.

Для трещины без сосредоточенной нагрузки на своей поверхности и находящейся в поле номинальных напряжений σ КИН записывают [2] в виде

$$K = Y \sigma a^{1/2}$$
.

где Y — коэффициент, учитывающий соотношение размеров тела и трещины, а также другие ее особенности. Обозначим через ρ размер той зоны перед вершиной трещины (рис. 2), в которой реализуется механизм разрушения микропластическими деформациями, предшествующими образованию новой поверхности [3]; $\rho = \rho_0$ при $\theta = 0$. Если условие микропластичности можно записать через компоненты тензора напряжений и параметр Λ , характеризующий свойства материала, то $\rho \sim K^2 F_{ij}^{\,\alpha}(\theta) / \Lambda^2$, где Λ имеет размерность напряжения. При заданном θ

$$\rho \sim K^2/\Lambda^2$$
,

a

$$d \ln \rho = 2 \ln K = 2d\sigma/\sigma + da/a. \tag{1}$$

При быстрой разгрузке da/a=0, а $\Delta\rho/\rho=2\Delta\sigma_i/\sigma_i$, где $\Delta\rho$ — уменьшение ρ_0 при снижении σ на $\Delta\sigma_i$. При дальнейшей выдержке при $\sigma=$ const трещина будет подрастать, увеличивая K, без $A\Theta$ — в силу эффекта Кайзера. Когда трещина подрастет таким образом за время Δt на величину Δa_c (рис. 2), то граница новой зоны соприкоснется с границей старой. При этом

$$\Delta a_c = |\Delta \rho| = \rho_0 |2\Delta \sigma_i / \sigma_i|. \tag{2}$$

Дальнейшее подрастание трещины на величину Δa при $\sigma_i - \Delta \sigma_i$ будет сопровождаться АЭ и приведет к восстановлению значения ρ_0 (на рис. 2 пунктир), а следовательно, и K через интервал времени t_i . В этот момент $\Delta \rho/\rho = 0$, и в соответствии с (1) запишем

$$\Delta a/a = \left| \Delta \sigma_i / \sigma_i \right|. \tag{3}$$

Рис. 2. Гипотетические границы зоны реализации механизма разрушения у вершины трещины (сплошная линия — перед разгрузкой; штриховая — после частичной разгрузки; штрих-пунктирная — в момент касания исходной границы после подрастания трещины; пунктирная — после достижения прежнего значения КИН при пониженном напряжении σ ; $\Delta a_c \approx \Delta \rho$ — возможное перемещение вершины трещины без АЭ при частичной разгрузке или без разгрузки.)

Зависимость скорости \dot{a} развития трещины от КИН в керамическом материале, не подвергавшемся силовому воздействию, обычно аппроксимируют [3] степенной функцией

$$\dot{a} = AK^n = \dot{a}_0 (K/K_0)^n,$$
 (4)

где A, K_0 и n – константы материала при заданной температуре, причем K_0 – значение K, отвечающее L_0 и σ_0 , при которых трещина с начальным размером $a_{\rm H}$ стартует со скоростью \dot{a}_0 . В период Δt сопротивление материала распространению трещины ниже обычного, так как по крайней мере часть микропластических деформаций перед вершиной трещины произошла до частичной разгрузки, и показатель степени в (4) может отличаться от n – обозначим его через m. На основе (2) запишем

$$\Delta a_{c2}/\Delta a_{c3} = a_1 \sigma_1 \Delta \sigma_1/a_2 \sigma_2 \Delta \sigma_2 = \sigma_1 \Delta \sigma_1/\sigma_2 \Delta \sigma_2 (1 + \Delta a_1/a_1)$$

или в соответствии с (3) -

$$\Delta a_{c2}/\Delta a_{c3} = \sigma_1 \Delta \sigma_1/\sigma_2 \Delta \sigma_2 (1 + 2\Delta \sigma_1/\sigma_1), \tag{5}$$

а с учетом (4) -

$$\Delta a_{c2}/\Delta a_{c3} = \Delta t_2 \sigma_2^m / \Delta t_3 \sigma_3^m (1 + \Delta a_1/a_1)^{m/2}$$
.

Подставив этот результат в (5), после логарифмирования получим

$$m = \left[\lg \frac{\Delta t_3}{\Delta t_2} \frac{\Delta \sigma_1}{\Delta \sigma_2} \frac{\sigma_1}{\sigma_2 (1 + 2\Delta \sigma_1 / \sigma_1)} \right] / \left[\lg \frac{\sigma_2}{\sigma_3} \sqrt{\frac{\sigma_1}{\sigma_1 + |2\Delta \sigma_1|}} \right]. \tag{6}$$

Скорость счета АЭ \mathring{N} определяется скоростью роста трещины \mathring{a} и размером ρ зоны перед вершиной трещины. Величины \mathring{a} и ρ определяются значением КИН. В силу этого восстановление \mathring{N} после частичной разгрузки свидетельствует о достижении прежнего значения K при более низкой нагрузке L= const. С учетом этого по аналогии с выводом (6) находим

$$n = 2 + \left[\lg \frac{t_3}{t_2} \frac{\Delta \sigma_1}{\Delta \sigma_2} \frac{\sigma_3^2}{\sigma_2 \sigma_1} \right] / \left[\lg \frac{\sigma_2}{\sigma_3} \sqrt{\frac{\sigma_1}{\sigma_1 + |2\Delta \sigma_1|}} \right]. \tag{7}$$

В результате интегрирования (4) при $\sigma = \text{const}$ получим [3]

$$\tau = 2/(n-2)AY^n\sigma^n a_{\rm H}^{(n-2)/2}$$

au – долговечность. Поскольку $K_0 = Y \sigma_0 a_{\rm H}^{-1/2}$, то

$$\sigma^{2}\tau = 2/AY^{2}(n-2)K_{0}^{n-2}(\sigma/\sigma_{0})^{n-2}, \qquad \sigma^{2}\tau = \sigma_{0}^{2}\tau_{0}/X_{H}^{n-2}, \qquad \tau = \tau_{0}X_{H}^{n},$$

ИЛИ

$$n = d \lg \tau / d \lg X_{\mathrm{H}}, \tag{8}$$

где $X_{\rm H}=\sigma/\sigma_0=L/L_0$; $\tau_0=2/AY^2(n-2)K_0^{n-2}\sigma_0^2$ — долговечность τ при $X_{\rm H}=1$ или $\sigma=\sigma_0$.

Путем сопоставления значений n, рассчитанных по (7) и (8), можно проверить корректность предложенного экспресс-метода (рис. 1) определения n с помощью АЭ. Для аналогичной проверки по m необходимо выразить долговечность в циклах C через $X_{\rm H}$ и m.

В линейной механике разрушения [2] условие предельного состояния тела с трещиной определяют как $Y\sigma a^{1/2} = K_c$, где K_c – критическое значение K, зависящее от энергии j, необходимой для создания единицы новой поверхности. В условиях плоской деформации $K_c = (2jE(1-\mu^2))^{1/2}$, в условиях плоского напряженного состояния $K = (2jE)^{1/2}$. Здесь E - модульупругости материала; μ – коэффициент Пуассона; $j = j_{\text{ofp}} + j_{\text{пр}}$, где j_{ofp} – энергия, необходимая для образования единицы поверхности; $j_{\rm nn}$ – прочие энергетические затраты, в частности на предшествующие образованию поверхности микропластические деформации. При разгрузке наличие участка $\Delta \rho$ (рис. 2) с пониженным сопротивлением *j* развитию трещины приводит к возможному спонтанному разрушению при $K < K_c$ [4]. Поскольку снижение j возможно лишь до $j_{\rm oбp}$, то $K_0 = (2j_{\rm oбp}E)^{1/2}$. Если в процессе разгрузки $K < K_0$, то трещина уже не может развиваться. Из-за высокой скорости \dot{a} спонтанное приращение трещины $\Delta a_c = \Delta \rho$ при снижении Kдо K_0 можно считать скачкообразным. Если $\Delta a_c/\dot{a}$ меньше времени разгрузки, то долговечность в циклах нечувствительна к частоте нагружения. В

соответствии с (1) для цикла с полной разгрузкой при $K_{\min} < K_0$ получим $\Delta a_c = \Delta \rho \sim (K^2 - K_0^2)$, где K — максимальная за цикл величина КИН. Значение скорости развития трещины da/dC, где C — число циклов, можно рассматривать как произведение размера скачка трещины на вероятность его реализации за единицу времени. Если для скачка необходима реализация m независимых событий, вероятность каждого из которых пропорциональна $\Delta \rho$, то при $K > K_0$ имеем $da/dC = B(K^2 - K_0^2)^m$; интегрирование этого результата дает число знакопостоянных циклов до разрушения $C \approx 2 \sqrt{\sigma^2 (m-1)BY^2 K_0^{2(m-1)} (X_{\rm H}^2 - 1)^{m-1}}$, откуда

$$m = 1 - \left[d(\lg \sigma^2 C) / d(\lg(X_H^2 - 1)) \right]. \tag{9}$$

В таблице приведены значения m и n, определенные по формулам (8) и (9) с учетом тангенса угла наклона кривых длительной прочности [5] в логарифмических координатах. Ввиду разброса экспериментальных точек вокруг аппроксимирующих прямых тангенсы угла наклона, а следовательно, и значения m и n определены с погрешностью 15...20%. Там же представлены средние $m_{\rm cp}$ и $n_{\rm cp}$ значений m и n, полученных по формулам (6) и (7) при обработке результатов испытаний 16–20 стержней каждой керамики, испытанных с регистрацией АЭ (рис. 1).

Результаты кратковременных и длительных испытаний керамических материалов

	_											
Керамика	T = 295 K		$T_1 = 295 \text{ K}$		$T_2 = 333 \text{ K}$		$T_3 = 263 \text{ K}$		M_1	N_1	M_3	N_3
	m	n	$m_{ m cpl}$	$n_{\rm cpl}$	$m_{\rm cp2}$	$n_{\rm cp2}$	$m_{\rm cp3}$	$n_{\rm cp3}$				
Al_2O_3	8	30	8,0	32	7,0	28	8,5	36	1,14	1,13	1,21	1,29
SiC	7	24	6,8	25	6,1	22	7,9	27	1,11	1,12	1,30	1,23
Si ₃ N ₄	16	61	15,0	60	13,0	53	15,0	66	1,12	1,13	1,15	1,25
MgF_2	9	29	7,9	34	7,2	30	9,7	38	1,10	1,14	1,35	1,27
BaTiO ₃	10	37	11,0	36	9,5	37	12,0	47	1,16	1,15	1,24	1,27
Фарфор	10	40	9,9	42	9,4	37	13,0	50	1,06	1,13	1,38	1,35
Феррит	10	37	9,5	36	8,1	33	10,0	46	1,17	1,11	1,23	1,39
Строительная	10	38	10,0	37	8,9	31	10,0	38	1,13	1,20	1,12	1,23
Среднее									1,13	1,13	1,25	1,29

Примечание. $M_1 = m_{\rm cp1}/m_{\rm cp2}$, $N_1 = n_{\rm cp1}/n_{\rm cp2}$, $M_3 = m_{\rm cp3}/m_{\rm cp2}$, $N_3 = m_{\rm cp3}/m_{\rm cp2}$.

Исследуемые стержни сечением 8 × 8 мм предварительно изгибали по четырехточечной схеме (в условиях чистого изгиба) для устранения АЭ микрорастрескивания поверхностных слоев. Затем в плоскости нейтрального слоя вдоль оси образца алмазным кругом выполняли две симметричные прорези, которые уменьшали ширину нейтрального слоя на 2/3. При монотонном нагружении такого стержня силой посередине пролета трещина

начинает развиваться сдвигом* в нейтральном слое и перпендикулярно ему в зоне растяжения. Выдержку при σ_1 (рис. 1) проводили не менее 100 с. Акустическую эмиссию регистрировали с помощью прибора АФ-15 с уровнем собственных шумов 7 мкВ. Использовали резонансный пьезокерамический преобразователь в диапазоне частот 20...200 кГц. Предварительные сравнительные испытания показали, что этот преобразователь фиксирует наибольшее количество импульсов АЭ по сравнению с другими при прочих равных условиях. На образец устанавливали два датчика, каждый с усилием поджатия 2 Н. Для улучшения акустического контакта датчика с поверхностью образца использовали смазку.

Значения $m_{\rm cp}$ и $n_{\rm cp}$ при комнатной температуре случайно отличались от значений m и n, полученных по результатам длительных испытаний. Отношения $m_{\rm cp1}/m_{\rm cp2}$ и $n_{\rm cp1}/n_{\rm cp2}$ близки к отношению $T_2/T_1=1,13$ (таблица), что позволяет считать $m_{\rm cp}$ и $n_{\rm cp}$ обратно пропорциональными абсолютной температуре T. Коэффициенты вариации значений m и n, рассчитанных по (6) и (7), в среднем составляют 6%, что соответствует погрешности 12% при P=0,95. При этом доверительный интервал среднего по 20 результатам не превышает 3%. Следовательно, использование АЭ при определении $m_{\rm cp}$ и $n_{\rm cp}$ позволяет значительно уменьшить погрешность и трудоемкость по сравнению с оценкой m и n по результатам длительных испытаний.

Для выяснения возможного влияния размеров изделий на значения m,n и σ_0 их определяли при комнатной температуре с использованием АЭ в условиях изгиба силой посередине пролета трехметровых панелей из строительной керамики**, фарфоровых** метровых стержней диаметром 200 мм, а также их фрагментов, вырезанных вдоль оси изделия. На каждом изделии или образце определяли от 9 до 16 значений m,n и σ_0 . С этой целью между контрольными нагружениями изделие поворачивали вокруг оси или сдвигали на опорах вдоль оси так, чтобы область приложения силы не перекрывалась с предыдущей по длине образца. Уменьшение объема объекта испытаний приводит к повышению σ_0 , но практически не влияет на значения m,n и их разброс.

Как следует из (3), (2) и (5), при заданном $\Delta\sigma/\sigma$ (рис. 2) значение $\Delta t = \Delta a_{\rm c}/\dot{a}$ обратно пропорционально K^{m-2} и при наличии трещин с различными K определяется наиболее опасной трещиной (с наибольшим K). С учетом этого предложен неразрушающий способ оценки разрушающей нагрузки $L_{\rm p}$ при нагружении с $\dot{L}={\rm const.}$ Суть его состоит в увеличении нагрузки с промежуточными частичными разгрузками (рис. 3) и выдержками при $L={\rm const.}$ до тех пор, пока Δt при $L={\rm const.}$ не окажется меньше

^{*} При длительном нагружении керамики ее долговечность определяется развитием трещины сдвига, которое завершается отрывом [6], что подтверждается близкими значениями m и $m_{\rm cp}$, а также n и $n_{\rm cp}$, приведенными в таблице. Ослабление нейтрального слоя прорезями обеспечивает в условиях изгиба непрерывный характер АЭ при ее возобновлении после разгрузки даже у таких однородных керамических материалов, как оптические.

^{**} Наличие в керамике равномерно распределенных перенапряженных зерен кварца обеспечивает непрерывность АЭ при ее возобновлении после частичной разгрузки даже при отсутствии прорезей, уменьшающих ширину нейтрального слоя.

заданного значения, например 3 с. Нагрузка $L_{\rm max}$, достигнутая при таком режиме, тесно связана с $L_{\rm p}$ при последующем нагружении: $L_{\rm p}=1,12...$...1,20 $L_{\rm max}$. Случайная погрешность прогнозирования $L_{\rm p}$ по $L_{\rm max}$ не превышает 5%. Экспериментально установлено, что деградация прочности в результате контрольного нагружения (рис. 3) не превышает 3%. Эти показатели в 1,5 раза меньше (лучше), чем полученные способами, созданными ранее [7].

Рис. 3. Режим нагружения для прогнозирования разрушающей нагрузки.

Автор выражает признательность С. Г. Никольскому за научные консультации и помощь в проведении эксперимента.

Резюме

На базі лінійної механіки руйнування обгрунтовано неруйнівні експресметоди визначення параметрів тривалої і короткочасної міцності виробу. Дані, що одержано цими методами, зіставляються з результатами руйнівних випробувань і використовуються при дослідженні впливу розмірів виробу і температури на тривалу міцність.

- 1. Бормоткин В. О., Никольская Т. С., Никольский С. Г. Способ определения максимальной нагрузки, еще не снижающей прочность изделия // Сб. докл. II Междунар. конф. "Научно-технические проблемы прогнозирования надежности и долговечности ...". СПб.: СПбГТУ, 1997. С. 88 89.
- 2. *Механика* разрушения и прочность материалов: Справочное пособие: В 4 т. / Под общ. ред. В. В. Панасюка. Т. 1. Основы механики разрушения. Киев: Наук. думка, 1988. 488 с.
- 3. Evance A. G. and Langton T. G. Structure Ceramics. New York: Pergamon Press, 1976. 326 p.
- 4. *Никольский С. Г., Бормоткин В. О.* О роли разгрузки в развитии трещин // Сб. докл. II Междунар. конф. "Научно-технические проблемы прогнозирования надежности и долговечности ...". СПб.: Санкт-Петербург. гос. техн. ун-т, 1997. С. 86 88.
- 5. *Никольский С. Г.* Акустическая эмиссия и прочность керамического изделия // Петербург. журн. электроники. 1997. № 1. С. 47 53.

- 6. *Никольская Т. С.* Акустическая эмиссия электроизоляционной и токопроводящей керамики: Автореф. дис. ... канд. техн. наук. СПб., 1993. 16 с.
- 7. Никольский С. Г., Степанянц Т. С. Акустико-эмиссионный контроль прочности керамических изделий // Пробл. прочности. 1994. № 2. С. 83 88.

Поступила 30. 05. 2000