Определение параметров дискретной структуры покрытий с учетом остаточных напряжений

Б. А. Ляшенко, Е. Б. Сорока, А. В. Рутковский, Н. В. Липинская

Институт проблем прочности НАН Украины, Киев, Украина

Предложено размеры дискретного участка покрытия выбирать на основе расчета величины критического шага трещины при когезионном растрескивании. Такой подход позволяет учесть остаточные напряжения в покрытии. Достоверность метода расчета подтверждена экспериментально прямым измерением шага трещин.

Ключевые слова: покрытие дискретной структуры, когезионное растрескивание, адгезионное отслоение, остаточные напряжения, критический шаг трещины.

Обозначения

$\sigma_{\pi}^{2\phi}$	-	эффективные напряжения в покрытии
$\sigma_{\Pi}^{\text{oct}}$	-	остаточные напряжения в покрытии
$\sigma_{\Pi}^{_{ m 3KCII}}$	-	эксплуатационные напряжения в покрытии, возникающие под действием
		приложенной к образцу нагрузки
ε к	-	критическая деформация основы под действием внешней нагрузки
H,h	-	толщина основы и покрытия соответственно
$E_{\rm o}, E_{\rm \pi}$	-	модули упругости основы и покрытия соответственно
l	-	базовый размер
C_{Π}	-	величина шага трещин в покрытии
$G_{\rm o}, G_{\rm m}$	-	модули сдвига основы и покрытия соответственно
σ_{f}	-	когезионная прочность покрытия

Поскольку используемые на практике покрытия, как правило, являются сплошными, их разрушение вследствие когезионного растрескивания и адгезионного отслоения может наступать до исчерпания ресурса детали с покрытием. Учитывая недостатки сплошных покрытий, представляется целесообразным наносить покрытия дискретной структуры [1]. Это позволит достичь высокой адгезионной и когезионной стойкости каждого отдельного участка путем снижения нормальных напряжений в покрытии за счет ограничения длины участка и касательных напряжений в плоскости адгезионного контакта.

Дискретные покрытия по сравнению со сплошными имеют ряд преимуществ. Образование регулярных "островковых" участков на поверхности скольжения при трении приводит к снижению коэффициента трения и износа [1], а также обеспечивает повышение износостойкости углеродистой стали за счет возникновения твердых участков, содержащих дискретные

© Б. А. ЛЯШЕНКО, Е. Б. СОРОКА, А. В. РУТКОВСКИЙ, Н. В. ЛИПИНСКАЯ, 2002 ISSN 0556-171X. Проблемы прочности, 2002, № 4

Б. А. Ляшенко, Е. Б. Сорока, А. В. Рутковский, Н. В. Липинская

окислы на шлифованной поверхности стали. Нанесенные по эпюре износа методом электроискрового легирования дискретные покрытия позволили увеличить ресурс бронзовых опор скольжения [2]. Благодаря применению износостойких дискретных покрытий на основе нитридов титана, алюминия, хрома и циркония на режущей нитридной керамике удалось повысить износ резцов по сравнению с керамическим режущим инструментом со сплошными покрытиями при обработке закаленных инструментальных сталей ШХ15 и ХВГ [3]. При этом дискретные покрытия, в отличие от сплошных, обеспечивают полное отсутствие износа резца в первые 10–13 минут точения.

При использовании метода катодно-ионной бомбардировки дискретные покрытия можно получать с помощью формообразующих масок с различными геометрическими параметрами. В этом случае основным является выбор размера дискретного участка покрытия. Очевидно, что он может быть выбран исходя из расчета расстояния между трещинами (шага трещин) при когезионном растрескивании [1]. Известно, что образование трещин в покрытии (фрагментация) будет происходить до тех пор, пока расстояние между ними не достигнет критической величины. Как отмечалось ранее [1], после фрагментации защитного слоя до размеров, близких к критическим, при дальнейшем деформировании не наблюдается ни когезионное растрескивание покрытия, ни его адгезионное отслоение.

Изучению фрагментации покрытий, измерению шага и плотности трещин посвящены многочисленные исследования [4-9]. В работе рассматривалась фрагментация керамического жаростойкого слоя теплозащитного покрытия при испытаниях на ползучесть в условиях стационарного и нестационарного теплового воздействия. Были построены зависимости шага трещин от пластической деформации основы. Полученные зависимости позволили сравнить различные типы покрытий с точки зрения долговечности и указать пути ее повышения. В [5] построена вероятностная зависимость прочности стальной детали с покрытием от плотности начальных трещин с учетом остаточных напряжений. Авторами работы [6] получены аналитические зависимости модулей упругости и сдвига, а также коэффициента Пуассона от плотности трещин для слоистых композитов. Количество трещин в покрытии и их распределение при изгибе стальных образцов с карбидными покрытиями, находящимися в состоянии остаточного сжатия, определяли в [7]. Поведение трещин оценивали параметром Вейбулла. На основе статистического подхода и классических подходов механики в [8, 9] изучалась фрагментация покрытий при одноосном напряженном состоянии. Показано, что формирование трещин приводит к релаксации напряжений в покрытии, что препятствует образованию новой трещины внутри фрагмента последнего.

Цель настоящей работы – рациональное конструирование дискретного покрытия. Авторами предложен метод, базирующийся на расчете величины критического шага трещины, которая является исходной для определения параметров дискретного покрытия. Этот же метод использовался ранее [1], но без учета остаточных напряжений в покрытии. Вместе с тем уровень остаточных напряжений в покрытии на основе нитрида титана может изменяться от +700 до – 3000 МПа в зависимости от способа нанесения покрытия и материала основы. Высокий уровень напряжений оказывает значительное воздействие на прочностные характеристики системы основа–покрытие [10]. Метод учитывает остаточные напряжения, определенные экспериментально-расчетным путем. Достоверность метода подтверждена экспериментально прямым измерением шага трещины.

Испытания на растяжение стандартных образцов толщиной 1,5 мм проводили на установке FM-1000. Анализ деформирования покрытия на основе нитрида титана (ε-Ti₂N) толщиной 20 мкм, осажденного методом катодно-ионной бомбардировки в вакууме на подложку из титанового сплава ВТ5, показал, что по достижении некоторой величины деформации основы $\varepsilon_{0} = \varepsilon_{\kappa} = 0.6\%$ рабочий участок образца покрывается равномерной сеткой трещин, перпендикулярных направлению действия напряжений, возникающих при приложении статической нагрузки вдоль оси образца (рис. 1). Шаг трещин С_п измеряли вдоль пяти линий, параллельных оси образца, с помощью оптического микроскопа МИР-12. Результаты измерений приведены на рис. 2. Экспериментальные точки, нанесенные в координатах $P_i - C_{\pi}$ на вероятностной бумаге Вейбулла, ложатся на прямую линию. Характер накопления частоты P_i дает представление о том, что распределение значений шага трещины С_п подчиняется нормальному закону. Там же показано изменение напряжений в покрытии $\sigma_{\pi}^{3\phi}$ по его длине, рассчитанное по зависимости

$$\sigma_{\pi}^{\,\mathrm{s}\varphi} = \sigma_{\pi}^{\,\mathrm{ocr}} + \sigma_{\pi}^{\,\mathrm{s}\mathrm{s}\mathrm{c}\mathrm{n}} \,. \tag{1}$$

Здесь $\sigma_{\pi}^{\text{ост}}$ – остаточные напряжения в покрытии, измеренные методом гибкого образца [11], $\sigma_{\pi}^{\text{ост}}$ = 700 МПа; $\sigma_{\pi}^{\text{эксп}}$ – эксплуатационные напряжения в покрытии, возникающие под действием приложенной к образцу нагрузки и рассчитанные по зависимости [12]

$$\sigma_{\Pi}^{3\text{KCII}} = \frac{\varepsilon_{\kappa}}{h\left(\frac{1}{E_{\Pi}h} + \frac{1}{E_{0}H}\right)} \left[1 - \frac{\text{ch}(kz)}{\text{ch}(kl)}\right],\tag{2}$$

где $\varepsilon_{\rm K}$ – критическая деформация основы под действием внешней нагрузки P; H, h – толщина основы и покрытия; $E_{\rm o}, E_{\rm n}$ – модули упругости основы и покрытия; l – базовый размер,

$$k^{2} = 2 \frac{\frac{G_{o}}{H} \frac{G_{\pi}}{h}}{\frac{G_{o}}{H} + \frac{G_{\pi}}{h}} \left(\frac{1}{E_{\pi}h} + \frac{1}{E_{o}H} \right)$$
(3)

(G₀, G_п – модули сдвига основы и покрытия).

ISSN 0556-171Х. Проблемы прочности, 2002, № 4

121

Рис. 1. Рабочий участок образца из титанового сплава BT5, покрытый равномерной сеткой трещин при деформации основы $\varepsilon_0 = \varepsilon_\kappa = 0,6\%$.

Для наглядности масштабы выбраны таким образом, что величина когезионной прочности покрытия $\sigma_f = \varepsilon_{\kappa} E_{\pi}$ совпадает с 50%-ным накоплением частоты шага трещин C_{π} . Как следует из рис. 2, шаг трещины C_{π} совпадает с характерным участком выхода зависимости $\sigma_{\pi}^{3\phi}$ на асимптотический уровень. Затем значение $\sigma_{\pi}^{3\phi}$ асимптотически приближается к $\varepsilon_{\kappa} E_{\pi}$.

Рис. 2. Расчет шага дискретного участка покрытия.

Определим расчетные значения шага трещин $C_{\rm n}$. Предположим, что когезионная прочность покрытия σ_f нормально распределена со стандартным отклонением $0, 1\sigma_f$. Тогда трещины возникнут в сечении (l-c) при $\sigma_{\rm n}^{\rm 3\phi} = 0.9\sigma_f$.

С учетом того, что $\sigma_f = \sigma_{\pi}^{3\kappa c\pi} + \sigma_{\pi}^{ocr}$ при z = 0, из соотношения

$$\frac{\sigma_{\Pi}^{3KC\Pi} + \sigma_{\Pi}^{OCT}}{\sigma_{f}} = 0.9$$

ISSN 0556-171Х. Проблемы прочности, 2002, № 4

и зависимости (2) получим

$$1 - \frac{\operatorname{ch}[k(l - C_{\Pi})]}{\operatorname{ch} kl} + \frac{\sigma_{\Pi}^{\operatorname{ocr}}}{\varepsilon_{\kappa} E_{\Pi}} = 0,9.$$

Отсюда

$$\operatorname{ch}[k(l-C_{\Pi})] = \left(0,1+\frac{\sigma_{\Pi}^{\operatorname{oct}}}{\varepsilon_{\kappa}E_{\Pi}}\right)\operatorname{ch}(kl)$$

После преобразований запишем выражение для шага трещины

$$C_{\pi} = -\frac{1}{k} \ln \left(0.1 + \frac{\sigma_{\pi}^{\text{oct}}}{\varepsilon_{\kappa} E_{\pi}} \right). \tag{4}$$

Подставив значения $\sigma_{\pi}^{\text{ост}} = 700$ МПа, $\varepsilon_{\kappa} = 0,6\%$, $E_{\pi} = 4,4\cdot10^5$ МПа, k = 2,55 в (4), получим $C_{\pi} = 0,39$ мм. Расчетное значение шага трещины совпадает с измеренной величиной C_{π} , соответствующей 50%-ному накоплению частоты этого параметра, что свидетельствует о достоверности расчетной модели.

Рис. 3. Расчетная зависимость шага трещины $C_{\rm n}$ от соотношения остаточных напряжений $\sigma_{\rm n}^{\rm oct}$ и когезионной прочности $\varepsilon_{\rm k}E_{\rm n}$ покрытия при различной толщине последнего: l - h = 40 мкм; 2 - h = 20 мкм; 3 - h = 10 мкм.

Таким образом, формула (4) позволяет заложить размеры дискретного участка на стадии конструирования покрытия. Кроме того, с ее помощью можно построить зависимости шага трещины от соотношения остаточных напряжений и когезионной прочности покрытия при различной толщине последнего (рис. 3). Точки пересечения кривых с осью ординат соответст-

ISSN 0556-171Х. Проблемы прочности, 2002, № 4

Б. А. Ляшенко, Е. Б. Сорока, А. В. Рутковский, Н. В. Липинская

вуют значениям шага трещин, возникающих при нулевых остаточных напряжениях в покрытии (растрескивание наступает под действием напряжений в результате приложения только внешней нагрузки). Точки пересечения кривых с осью абсцисс соответствуют когезионному растрескиванию под действием остаточных напряжений в покрытии еще до момента приложения внешней нагрузки. Участки кривых, расположенные в правом верхнем квадранте, соответствуют остаточным напряжениям растяжения. Левый верхний квадрант содержит участки кривых, соответствующих отрицательным остаточным напряжениям, которые уменьшают действие приложенного напряжения и таким образом препятствуют растрескиванию.

При наличии в покрытии значительных остаточных напряжений сжатия в процессе нагружения системы основа–покрытие (до начала роста пластических деформаций) растрескивания покрытия не наблюдается. Такая ситуация имеет место при растяжении образца из стали X18H10T с покрытием на основе нитрида титана (α -TiN), которое нанесено методом катодно-ионной бомбардировки [11]. Величины остаточных напряжений в таком покрытии толщиной 6, 10 и 16 мкм соответственно составили –2000, –3000 и –2700 МПа, что свидетельствует о высокой когезионной прочности.

Таким образом, предлагаемый метод позволяет на стадии проектирования рассчитать размер дискретного участка покрытия с учетом остаточных напряжений и проанализировать влияние величины и знака остаточных напряжений на процесс когезионного растрескивания.

Резюме

Запропоновано розміри дискретної ділянки покриття вибирати на основі розрахунку величини критичного кроку тріщини в умовах когезійного розтріскування. Такий підхід дозволяє врахувати залишкові напруження в покритті. Достовірність методу розрахунку підтверджена експериментально прямим вимірюванням кроку тріщини.

- 1. Ляшенко Б. А., Кузема Ю. А., Дигам М. С. Упрочнение поверхности металлов покрытиями дискретной структуры с повышенной адгезионной и когезионной стойкостью. Киев: Ин-т пробл. прочности АН УССР, 1984. 57 с.
- Ляшенко Б. А., Єрмолаєв В. В., Мірненко В. І. Відновлення бронзових деталей диференційними дискретними покриттями по епюрі нерівномірного зносу: Збірник наук. праць Ін-ту надтвердих матеріалів НАН України "Современные процессы механической обработки и качество поверхностей деталей машин". – Київ: Ін-т надтвердих матеріалів НАН України, 1998. – С. 53 – 56.
- 3. *Фоменко С. Н.* Повышение эксплуатационных характеристик инструментальных материалов на основе нитрида кремния нанесением износостойких покрытий: Автореф. дисс. ... канд. техн. наук. – Киев, 1997. – 19 с.

- 4. *Браиловский* Г. Э., *Ляшенко Б. А.*, *Цыгулев О. В. и др.* Разрушение защитных покрытий различной конструкции и толщины // Пробл. прочности. 1990. № 3. С. 97 101.
- 5. *Gille G.* Investigations of mechanical behavior of brittle wear-resistant coatings // Thin Solid Films. 1984. **111**, No. 3. P. 201 218.
- Tan S. R. and Nuismer R. J. A theory for progressive matrix cracking in composite laminates // J. Compos. Mater. – 1989. – 23, No. 3. – P. 1029 – 1047.
- Wetzing K., Edelmann J., Gille G., et al. Structure, mechanical and stability behavior of hard material layers on steel substrates // High-Purity Materials Sciences and Technologies (Int. Symp., Dresden, May 6–10). – Oberiungwitz, 1985. – P. 444 – 445.
- Mezin A., Ramboarina R., and Lepage J. A statistical approach for cracking of deposits: determination of mechanical properties // Mech. Coating. – 1990. – 17. – P. 209 – 213.
- 9. Mezin A. Aspects statitiques de la multifissuration unidirectionnelle des revetements // Acta Met. Mater. 1995. 43, No. 8. P. 3151 3157.
- Рутковский А. В., Ляшенко Б. А., Гопкало А. П., Сорока Е. Б. Об упрочняющей роли вакуум-плазменных покрытий // Пробл. прочности. – 1999. – № 6. – С. 123 – 127.
- 11. Матвеев Н. В., Краснов А. Н., Милосердов И. В. и др. Остаточные напряжения в покрытии из нитрида титана, осажденного в вакууме // Там же. 1985. № 5. С. 90 93.
- 12. Уманский Э. С., Ляшенко Б. А. Условия адгезионной и когезионной равнопрочности жаростойких покрытий // Косм. исслед. на Украине. 1975. Вып. 6. С. 58 64.

Поступила 30. 01. 2001