Эллиптическая трещина нормального отрыва в бесконечном упругом теле. Сообщение 2. Контакт берегов трещины

И. В. Орыняк, А. Ю. Гиенко, А. В. Каменчук

Институт проблем прочности НАН Украины, Киев, Украина

Рассматривается взаимодействие берегов эллиптической трещины, которая находится в частично отрицательном поле внешних напряжений. Проблема заключается как в нахождении области, где происходит контакт берегов, так и возникающих при этом напряжений контакта. Последние представляются в виде конечного полиномиального ряда с неизвестными коэффициентами, определяемыми из условия минимума квадратов отклонений перемещений в области контакта от нуля и отклонений суммарных напряжений от заданных в остальной области. Сама же область контакта находится в результате поиска абсолютного минимума этих отклонений. Приведены конкретные результаты для трешины, находящейся в линейном поле напряжений.

Ключевые слова: эллиптическая трещина, контакт, линейное нагружение, минимизация ошибки.

Введение. Полученное ранее [1] решение для перемещений берегов трещины можно рассматривать как фундаментальное. Представленное в виде полиномиального ряда оно позволяет решать практические задачи с любой требуемой степенью точности. Одной из таких задач является учет контактирования берегов трещины. Суть ее состоит в том, что для трещины, находящейся в частично отрицательном поле напряжений, возможны ситуации, когда перемещения ее берегов, определяемые методами теории упругости, становятся отрицательными на некотором участке. Так, например, при линейном нагружении берегов трещины:

$$q(\rho,\varphi) = \rho \sin \varphi \tag{1a}$$

перемещения $W(\rho, \varphi)$ в соответствии с упругим решением (см. в [1] формулу (33б)) равны

$$W(\rho,\varphi) = \frac{a\sqrt{1-\rho^2}}{H} d_{1,1}^{1,1} \rho \sin \varphi,$$
 (16)

где a — ширина трещины; (ρ, φ) — параметрические координаты; H — обобщенный модуль Юнга; $d_{1,1}^{1,1}$ — коэффициент поля перемещений. В результате получается, что при $\pi < \varphi < 2\pi$ перемещения меньше нуля. С физической точки зрения это абсурд, поскольку поверхности не могут заходить одна за другую. Очевидно, что на величину перемещений нужно наложить условие неотрицательности, т.е. $W(\rho, \varphi) \ge 0$.

Сложность задачи состоит в том, что в зонах контакта берегов трещины возникают дополнительные неотрицательные напряжения взаимодействия, которые обусловливают перестройку всего напряженно-деформированного

состояния. Поэтому неизвестные границы области контакта необходимо уточнять в процессе решения задачи.

Насколько известно авторам, для трехмерных тел с трещинами не существует ни общих подходов к решению таких задач, ни конкретных результатов расчета. Ранее [2] были предложены качественные подходы к оценке коэффициента интенсивности напряжений (КИН) на контуре трещины. В [3] отмечается, что упомянутые задачи достаточно сложны и требуют разработки специфических математических методов и численных процедур.

В настоящей работе на основе полученных в сообщении [1] результатов рассматривается контактная задача, для решения которой ставятся следующие цели:

формализовать постановку задачи о контакте берегов трещины;

создать эффективную однозначную процедуру нахождения площади и напряжений взаимодействия поверхностей трещины;

получить конкретные результаты для трещины под действием внешних напряжений (1a).

Обоснование постановки задачи. Пусть эллиптическая трещина площади S_0 находится во внешнем нормальном частично отрицательном поле напряжений $\sigma^A(S_0)$. Поскольку отвечающие им в соответствии с теорией упругости перемещения $W^A(S_0)$ отрицательны на некоторой части площади трещины, то происходит контакт ее берегов. Допустим, что область контакта берегов трещины S_1 известна. Тогда достаточной формулировкой задачи, т.е. граничными условиями, будет следующая:

$$W(\rho,\varphi) = 0, \qquad (\rho,\varphi) \in S_1;$$

$$\sigma(\rho,\varphi) = \sigma^A(\rho,\varphi), \quad (\rho,\varphi) \in S_2 = S_0 - S_1.$$
(2)

Полученные в [1] результаты могут быть использованы для нахождения приближенного решения (2). Полагаем, что во всей области S_0 действуют дополнительные контактные напряжения $\sigma^C(S_0)$. Если эти дополнительные напряжения симметричны относительно оси y, то их можно представить в виде конечного полиномиального ряда:

$$\sigma_N^C(\rho,\varphi) = \sum_{k=0}^1 \sum_{j=0}^{\left[\frac{N-k}{2}\right] \left[\frac{N-k}{2}\right]} \sum_{i=j}^{N-k} A_{2i+k,2j+k} \overline{\sigma}_{2i+k,2j+k}(\rho,\varphi), \tag{3a}$$

где

$$\overline{\sigma}_{2i+k,2j+k}(\rho,\varphi) = \rho^{2i+k} \cos\left(\frac{k\pi}{2} - (2j+k)\varphi\right); \tag{36}$$

N — максимальная степень искомого полинома; $A_{2i+k,2j+k}$ — искомые коэффициенты разложения; здесь и далее квадратные скобки обозначают целую часть от выражения, заключённого внутри них. Упругие перемещения берегов трещины $W^{\mathbb{C}}(S_0)$, соответствующие напряжениям (3a), примут вид [1]

$$W^{C}(\rho,\varphi) = \frac{a}{H} \sqrt{1 - \rho^{2}} \sum_{k=0}^{1} \sum_{j=0}^{\left[\frac{N-k}{2}\right]} \left[\frac{N-k}{2} \right] A_{2i+k,2j+k} \overline{W}_{2i+k,2j+k}(\rho,\varphi), \quad (4a)$$

где H — обобщённый модуль упругости; a — меньшая полуось трещины; $\overline{W}_{2i+k,2j+k}(\rho,\varphi)$ — безразмерное поле перемещений берегов трещины под действием напряжений (3б), которое можно представить следующим образом:

$$\overline{W}_{2i+k,2j+k}(\rho,\varphi) = \sum_{m=0}^{i} \sum_{l=m}^{i} d_{2l+k,2m+k}^{2i+k,2j+k} \overline{\sigma}_{2l+k,2m+k}(\rho,\varphi). \tag{46}$$

Тогда вместо условий (2) можно записать приближенную постановку задачи:

$$W^{R}(\rho,\varphi) \to 0, \qquad (\rho,\varphi) \in S_{1};$$

$$\sigma^{R}(\rho,\varphi) \to \sigma^{A}(\rho,\varphi), \quad (\rho,\varphi) \in S_{2},$$
(5)

где $\sigma^R(\rho, \varphi)$ – полное напряжение, действующее на берега трещины,

$$\sigma^{R}(\rho,\varphi) = \sigma^{A}(\rho,\varphi) + \sigma^{C}(\rho,\varphi); \tag{6a}$$

 $W^R(
ho, \varphi)$ – полное перемещение берегов трещины,

$$W^{R}(\rho,\varphi) = W^{C}(\rho,\varphi) + W^{A}(\rho,\varphi). \tag{66}$$

Такая постановка дает возможность определить неизвестные коэффициенты $A_{j,i}$ методом наименьших квадратов, минимизируя следующий функционал ошибки:

$$I_1(A_{l,j}) = \iint_{S_1} [k(\rho, \varphi)W^R(\rho, \varphi)]^2 dS + \iint_{S_2} [\sigma^C(\rho, \varphi)]^2 dS = \min.$$
 (7)

Поскольку величины W и σ имеют разные размерности и числовой порядок, то, чтобы уравнять их значимость, в функционал (7) введен дополнительный весовой коэффициент $k(\rho,\varphi)$. Заметим, что при максимально точном решении задачи (порядок полинома N в представлении (3) стремится к бесконечности) выбор значения k не влияет на определяемые значения $A_{i,i}$.

Однако проблема состоит в том, что область S_1 заранее неизвестна, а функционал (7) не содержит никаких механизмов ее уточнения. Действительно, полагая, что $S_1=0$ (трещина полностью открыта), $\sigma^{\mathcal{C}}(S_0)=0$, получаем $I_1(A_{i,j})=0$, т.е. функционал (7) достигает минимума. С другой стороны, считая, что трещина полностью закрыта ($S_2=0$) и при этом

контактные напряжения противоположны приложенным, т.е. $\sigma^C(S_0) \equiv \equiv -\sigma^A(S_0)$, также получаем $I_1(A_{i,j}) = 0$. Таким образом, два заведомо неправильных решения обеспечивают минимизацию функционала (7). Это связано с тем, что постановка (5) не является полной с точки зрения обеспечения поиска области S_1 и из физических соображений должна быть дополнена следующим образом [3]:

$$W^{R}(\rho,\varphi) \to 0, \qquad \sigma^{C}(\rho,\varphi) \ge 0, \quad (\rho,\varphi) \in S_{1};$$

$$\sigma^{R}(\rho,\varphi) \to \sigma^{A}(\rho,\varphi), \quad W^{R}(\rho,\varphi) \ge 0, \quad (\rho,\varphi) \in S_{2}.$$
 (8)

В соответствии с постановкой (8) минимизации подлежит функционал ошибки I_0 :

$$I_0(A_{i,j}) = I_1(A_{i,j}) + I_2(A_{i,j}), \tag{9}$$

где величина I_1 определена выражением (7), а функционал I_2 равен

$$I_{2}(A_{i,j}) = \iint_{S'_{2}} [k(\rho,\varphi)W^{R}(\rho,\varphi)]^{2} dS + \iint_{S'_{1}} [\sigma^{C}(\rho,\varphi)]^{2} dS.$$
 (10)

Здесь S_1' – часть области S_1 , где $\sigma^{\mathcal{C}}(\rho,\varphi) < 0$, а S_2' – часть области S_2 , где $W^R(\rho,\varphi) \leq 0$. Теперь I_0 достигает минимума для истинной площади контакта.

Для рассмотренных выше двух предельных случаев полностью открытой и полностью закрытой эллиптической трещины значения функционалов ошибки, а именно: $I_2(1)$ и $I_2(2)$, соответственно равны

$$I_{2}(1) = \iint_{S'_{2}} [k(\rho, \varphi)W^{R}(\rho, \varphi)]^{2} dS;$$

$$I_{2}(2) = \iint_{S'_{1}} [\sigma^{C}(\rho, \varphi)]^{2} dS.$$
(11)

Сравнивая эти величины между собой, можно сформулировать общее требование к коэффициенту $k(\rho, \varphi)$, чтобы два предельных неправильных решения приводили к одинаковой ошибке. Примем

$$k(\rho,\varphi) = \frac{\chi H}{a\sqrt{1-\rho^2}},\tag{12}$$

где χ – некоторый числовой коэффициент веса. Тогда произведение $k\cdot W$ является функцией той же структуры, размерности и величины, что и напряжения σ .

Алгоритм решения. В постановке (8) с учетом (6) и (9) уже заложен механизм определения как самих коэффициентов $A_{i,j}$, так и искомой площади контакта S_1 . Однако задача нахождения минимума (8) есть существенно нелинейной и требует разработки специальных приемов.

Основная идея предлагаемого алгоритма и, по-видимому, всей работы такова:

минимизация функционала (7) происходит на каждом шаге определения S_1 , т.е. находятся коэффициенты $A_{i,j}$ для фиксированной области S_1 ;

минимизация I_2 служит для определения области S_1 , а именно: для уточнения области при найденных коэффициентах $A_{i,j}$.

Более подробно алгоритм состоит в следующем.

- 1. Область S_0 разбивается на достаточно большое количество элементарных площадок ΔS_m , сопоставимых по площади. Внутри каждой площадки выбирается одна точка $M_m(\rho_m, \varphi_m)$, которой приписывается свойство принадлежности к области S_1 либо S_2 . На начальном этапе задаются произвольная область S_1 , например $S_1=0$ либо $S_1=S_0$, а также начальное значение ошибки I_0 , вычисленной для этой начальной области в соответствии с (10).
- 2. Для заданной области S_1 минимизируется функционал I_1 (7) из обычного для метода наименьших квадратов условия:

$$\frac{dI_1}{dA_{i,j}} = 0. (13)$$

Из этого условия с учетом (3), (4), (7) и (12) получим следующую систему линейных уравнений:

$$\chi^2 \iint_{S_1} [\overline{W}^A(\rho,\varphi) + \overline{W}^C(\rho,\varphi)] \overline{W}_{2n+k,2\rho+k}(\rho,\varphi) dS +$$

$$+ \iint_{S_2} \sigma^C(\rho, \varphi) \overline{\sigma}_{2n+k, 2\rho+k}(\rho, \varphi) dS = 0, \tag{14}$$

где
$$k = 0,1; \ \rho = 0,1,..., \left\lceil \frac{N-k}{2} \right\rceil; \ n = \rho,..., \left\lceil \frac{N-k}{2} \right\rceil.$$

Решив данную систему, определим неизвестные коэффициенты $A_{2n+k,2\rho+k}$, входящие в выражения (3), (4) для $\sigma_N^C(\rho,\varphi)$ и $W^C(\rho,\varphi)$ соответственно. При этом интегралы из (14) вычисляются путем численного интегрирования по соответствующим областям. Для найденных коэффициентов $A_{2n+k,2\rho+k}$ и области S_1 определяется полный функционал ошибки I_0 (9) на данном шаге вычислений. Его значение сравнивается с аналогичными величинами, определенными на предыдущих итерациях, из которых запоминается наименьшее значение I_0 и соответствующий ему номер итерации.

3. Уточняется область S_1 . Поскольку найденные коэффициенты $A_{2n+k,2\rho+k}$ минимизируют I_1 , то уточнение области происходит с целью уменьшения I_2 . Для этого в области S_1 определяется несколько точек k, например k=5, в которых значения $\sigma_N^C(\rho,\varphi)$ минимальны и отрицательны, если таковые имеются.

Очевидно, что эти точки не должны принадлежать S_1 , поэтому их принадлежность меняется и они считаются находящимися в области S_2 . В свою очередь, в области S_2 определяются (если таковые имеются) несколько точек ρ , в которых значения $W^R(\rho,\varphi)$ минимальны и при этом отрицательны. Эти точки перенаправляются в область S_1 . Для того чтобы избежать попадания в "мёртвые" зоны, когда одни и те же точки бесконечно будут переноситься из закрытой зоны в открытую и обратно, необходимо задать $k \neq \rho$.

4. После уточнения областей S_1 и S_2 возвращаемся к п. 2 для определения коэффициентов полинома и полной ошибки I_0 . Для всех проведенных вычислений (достаточно пройти примерно K_0/k шагов для любой выбранной начальной области S_1) устанавливается номер шага, для которого значение I_0 минимально. Для этого шага приводятся значения $A_{2n+k,2\rho+k}$ и точки, принадлежащие S_1 , что и будет решением поставленной задачи.

Практическая реализация и результаты. Рассматривается только внешнее напряжение, заданное по закону (1a). В силу симметрии расчеты проводятся по половине трещины, и при выборе контактных напряжений (3a) учитываются лишь 1- и 3-я ветви нагружения [1]. Разбивка половины площади трещины осуществлялась в параметрических координатах на $2\cdot2590$ элементарных областей. При этом применялась равномерная разбивка цилиндрами с параметрическим радиусом ρ_i на P=35 участков и неравномерная разбивка лучами с угловой координатой φ_i :

$$\rho_i = i\Delta \rho;$$

$$\varphi_j = \varphi_{j-1} + \Delta \varphi,$$
(15)

где
$$\Delta \rho = \frac{1}{P}$$
; $i = 0, 1, ..., P - 1$; $\Delta \phi = \frac{\pi}{2(40 + 2i)}$; $j = 0, ..., 40 + 2i - 1$.

Такая разбивка обеспечивает сопоставимые площади элементарных областей и даёт хорошую точность при численном определении интегралов. Интегралы в (14) представляются в виде сумм вида:

$$\iint_{S} f(\rho, \varphi) dS \cong \sum_{i} \sum_{j} f(\rho_{i}, \varphi_{j}) \Delta S_{ij}.$$
(16)

Площади элементарных областей находятся как площади трапеций:

$$\Delta S_{ij} \cong ab \left(\rho_i + \frac{\Delta \rho}{2} \right) \Delta \rho \Delta \varphi_{j}. \tag{17}$$

Проведение многократных расчетов коэффициентов в уравнении (14) на каждом шаге уточнения области интегрирования требует разработки эффективной процедуры их нахождения, иначе время расчета может быть недопустимо большим. С этой целью предложена соответствующая численная реализация. До начала расчета неизвестных коэффициентов проводится предварительный расчет повторяющихся множителей вида $\rho^n \cos m\varphi \Delta S_{i,j}$ и $\rho^n \sin m\varphi \Delta S_{i,j}$, которые сохраняются в промежуточном многомерном массиве. Полученные результаты "кэшируются" в многомерном массиве, который передается впоследствии в главную процедуру расчета. Это позволило значительно уменьшить время уточнения области контакта в сравнении с обычным определением упомянутых множителей на каждом шаге. В целом время решения для 500–600 итераций на компьютере для N=7, т.е. для 18 неизвестных, составляет 5–7 минут. Для задач такой сложности это достаточно быстрое решение.

Приведем более подробно полученные результаты для круговой трещины, для которой отрабатывались все методические проблемы. Если в уравнении (12) принимается значение $\chi = 1/d_{1,1}^{1,1}$, где последнее определено формулой (43) работы [1], то начальная ошибка в соответствии с (11) равна $I_2(1) = I_2(2) = 0,1962703$.

Сначала исследовалось влияние пути определения искомой площади S_1 , т.е. влияние принятого начального состояния трещины на получаемые результаты. При этом рассматривались три начальных состояния: трещина полностью открыта; трещина полностью закрыта; половина трещины открыта. Оказалось, что полученные результаты для $A_{2n+k,2\rho+k}$ отличаются лишь в (5-6)-й значащей цифре, а область налегания берегов трещины – максимально на 10-20 точек. Это есть безусловным подтверждением правильности алгоритма. Поэтому в дальнейшем, без ущерба для точности результатов, полагаем, что изначально трещина является полностью открытой.

Затем рассматривалось влияние принятого коэффициента веса χ на полученные результаты. На рис. 1 приведены значения КИН вдоль фронта круговой трещины при $0.5 \le \chi \le 5$. Очевидно, что χ незначительно влияет на величину КИН, особенно в точках фронта трещины, примыкающих к открытым поверхностям трещины. Далее в вычислениях принималось $\chi=1$. При этом начальное значение ошибки равно $I_0^0=0.14141332$.

Для нескольких значений N получены следующие результаты:

- а) N=1 (всего два неизвестных коэффициента: $A_{0,0}$ и $A_{1,1}$). Количество точек M_1 , попавших в область S_1 , равно 2295 (из 2590 возможных). Минимальное значение ошибки I_0^{\min} , найденное на 515-м шаге, составляет $I_0^0 \big/ I_0^{\min} \cong 6,28$. Значения искомых коэффициентов равны: $A_{0,0}=0,17172$; $A_{1,1}=-0,40483$;
- б) N=3 (шесть неизвестных коэффициентов). Количество точек M_1 , попавших в S_1 , составляет 2104, при этом наибольшее отношение $I_0^0/I_0^{\min}\cong 116,6$. Значения искомых коэффициентов $A_{i,j}$ равны: $A_{0,0}=0.025538$; $A_{2,0}=0.314920$; $A_{2,2}=-0.290542$; $A_{1,1}=-0.295930$; $A_{3,1}=0.258106$; $A_{3,3}=0.061143$;

- в) N=5 (12 неизвестных коэффициентов). $M_1=1989;~I_0^0/I_0^{\min}\cong 485.$ Значения коэффициентов $A_{i,j}$ равны: $A_{0,0}=-0.011636;~A_{2,0}=0.61150;~A_{4,0}=-0.263340;~A_{2,2}=-0.517700;~A_{4,2}=0.321110;~A_{4,4}=-0.075121;~A_{1,1}=-0.160267;~A_{3,1}=-0.984086;~A_{5,1}=0.708153;~A_{3,3}=0.250443;~A_{5,3}=-0.27470;~A_{5,5}=0.042540;$
- г) N=7 (18 неизвестных коэффициентов). $M_1=1953;\ I_0^0/I_0^{\min}\cong 698.$ Значения коэффициентов $A_{i,j}$ равны: $A_{0,0}=-0,000129;\ A_{2,0}=0,344011;$ $A_{4,0}=0,375568;\ A_{6,0}=-0,466221;\ A_{2,2}=-0,438367;\ A_{4,2}=0,050876;$ $A_{6,2}=0,208148;\ A_{4,4}=-0,193891;\ A_{6,4}=0,148090;\ A_{6,6}=-0,029821;$ $A_{1,1}=-0,116839;\ A_{3,1}=-1,061177;\ A_{5,1}=0,522759;\ A_{7,1}=0,254373;$ $A_{3,3}=0,446540;\ A_{5,3}=-0,937616;\ A_{7,3}=0,499673;\ A_{5,5}=0,221674;$ $A_{7,5}=-0,226750;\ A_{7,7}=0,028184.$

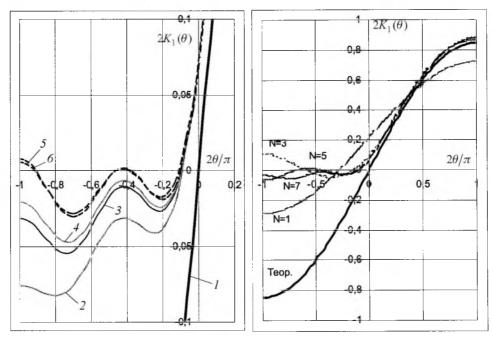


Рис. 1. Сравнение значений КИН для разного веса χ : I – без учета взаимодействия берегов трещины; $2-\chi=0,5;\ 3-\chi=1;\ 4-\chi=1,1781;\ 5-\chi=2;\ 6-\chi=5.$ Рис. 2. Значения КИН для круговой трещины.

Благодаря наличию значений $A_{i,j}$ можно определить поле перемещений по формуле (3б), что, в свою очередь, легко позволяет найти коэффициенты интенсивности напряжений по формуле

$$K_1(\theta) = \frac{\sqrt{2\pi}H}{2} \lim_{\Delta \to 0} \frac{W^R(\rho, \varphi)}{\sqrt{\Delta}},\tag{18}$$

где Δ – кратчайшее расстояние между точкой контура трещины и внутренней точкой поверхности трещины. Согласно (18) с учетом (3), (4) получим

$$K_1(\varphi) = \sqrt{\pi a} \, \Pi^{1/4}(\varphi) \times$$

$$\times \sum_{k=0}^{1} \sum_{j=0}^{\left\lfloor \frac{N-k}{2} \right\rfloor} \left[\frac{N-k}{2} \right] \times \sum_{i=j}^{N-k} \sum_{i=j}^{N-k} A_{2i+k,2j+k} \sum_{m=0}^{i} \sum_{l=m}^{i} d_{2l+k,2m+k}^{2i+k,2j+k} \cos[k\pi - (2m+k)\varphi].$$
 (19)

Зависимости $2K_1(\theta)$ для разных значений N приведены на рис. 2. Очевидно, что контакт берегов трещины приводит к незначительному увеличению максимальных значений КИН (на 3-4%). На рис. 3 показана эволюция зон контакта в процессе увеличения числа итераций, где неконтактирующие элементарные области наносились в виде дискретных точек.

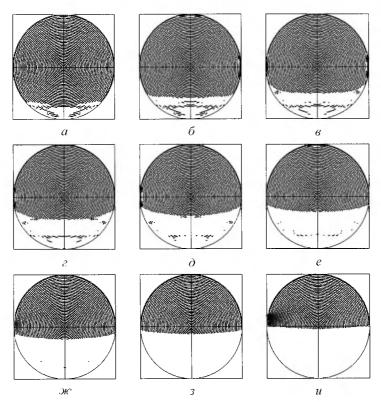


Рис. 3. Эволюция зон контакта трещины при увеличении числа итераций (начальная опибка $I_0^0=0,141413317$, всего точек в четвертьобласти M=2590): a-50 шагов, в S_1 точек 250, $I_0^0/I_0^{\min}=1,82$; $\delta-100$ шагов, точек 500, $I_0^0/I_0^{\min}=2,86$; $\delta-150$ шагов, точек 750, $I_0^0/I_0^{\min}=4,45$; $\delta-200$ шагов, точек 995, $I_0^0/I_0^{\min}=7,93$; $\delta-250$ шагов, точек 1217, $I_0^0/I_0^{\min}=14,90$; $\delta-295$ шагов, точек 1423, $I_0^0/I_0^{\min}=30,59$; $\delta-350$ шагов, точек 1645, $I_0^0/I_0^{\min}=99,35$; $\delta-427$ шагов, точек 1953, $I_0^0/I_0^{\min}=698,23$; $\delta-600$ шагов, точек 2315, $I_0^0/I_0^{\min}=316,76$.

Видно, что вначале поиска правильного решения (при малом числе итераций) внутри контактирующей области оставались неконтактирующие "островки".

Правильное "наилучшее" решение характеризуется четкой границей раздела между областями S_1 и S_2 . Подобные результаты и тенденции наблюдались для N=5 и 3.

Для эллиптической трещины результаты приведены только для N=7.

- 1. Для случая a/b=0.5 получены следующие результаты: $M_1=1807$; $I_0^0\cong 0.176848$; $I_0^0/I_0^{\min}\cong 793$. Значения коэффициентов $A_{i,j}$ равны: $A_{0,0}==-0.003990$; $A_{2,0}=0.253894$; $A_{4,0}=0.558879$; $A_{6,0}=-0.554093$; $A_{2,2}==-0.339360$; $A_{4,2}=-0.256403$; $A_{6,2}=0.432176$; $A_{4,4}=-0.116535$; $A_{6,4}==0.057401$; $A_{6,6}=-0.027637$; $A_{1,1}=-0.045144$; $A_{3,1}=-1.132847$; $A_{5,1}==0.441500$; $A_{7,1}=0.337741$; $A_{3,3}=0.465642$; $A_{5,3}=-0.860436$; $A_{7,3}==0.384260$; $A_{5,5}=0.211920$; $A_{7,5}=-0.213420$; $A_{7,7}=0.026615$. 2. Для a/b=0.2: $M_1=1742$; $I_0^0\cong 0.19257302$; $I_0^0/I_0^{\min}\cong 830$. Значения
- 2. Для a/b=0,2: $M_1=1742$; $I_0^0\cong 0,19257302$; $I_0^0/I_0^{\min}\cong 830$. Значения коэффициентов $A_{i,j}$ равны: $A_{0,0}=-0,003930$; $A_{2,0}=0,170272$; $A_{4,0}=0,730953$; $A_{6,0}=-0,641694$; $A_{2,2}=-0,256281$; $A_{4,2}=-0,492151$; $A_{6,2}=0,599508$; $A_{4,4}=-0,079727$; $A_{6,4}=0,016402$; $A_{6,6}=-0,026650$; $A_{1,1}=-0,08447$; $A_{3,1}=-1,085793$; $A_{5,1}=0,199885$; $A_{7,1}=0,500346$; $A_{3,3}=0,441619$; $A_{5,3}=-0,737454$; $A_{7,3}=0,270558$; $A_{5,5}=0,207685$; $A_{7,5}=-0,211795$; $A_{7,7}=0,022407$.

Значения КИН вдоль фронта трещины и зоны контакта для данных случаев представлены соответственно на рис. 4 и 5.

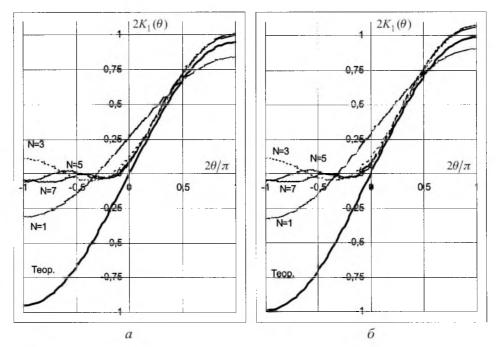
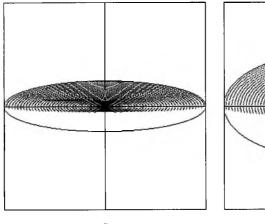


Рис. 4. Значения КИН для эллинтической трещины: a - a/b = 0.5; $\delta - a/b = 0.2$.

Полученные результаты интересно сопоставить с данными [4] для внутренней одномерной трещины длины 2a, расположенной симметрично в достаточно широкой пластине, которая подвергается изгибу на бесконеч-

ности, т.е. линейному нагружению. Было получено [4], что учет контакта берегов трещины приводит к увеличению КИН примерно на 7-8%, а точка окончания области контакта расположена на расстоянии a/3 от центра трещины. Полученные нами данные для эллиптической трещины с отношением a/b=0.2 как для величины области контакта, так и для максимальных КИН достаточно близки к этим результатам.



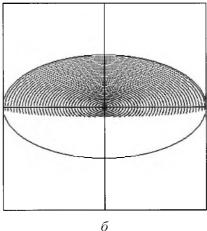


Рис. 5. Уточнённые зоны контакта берегов эллиптических трещин для напряжений контакта в виде полиномиального ряда до 7-й степени: $a-a/b=0.2,\ I_0^0=0.1768482,\$ на 371-м шаге найдено лучшее отношение $I_0^0/I_0^{\rm min}=829.65,\$ при этом в S_1 точек 1742 из 2590; $\delta-a/b=0.5,\ I_0^0=0.1768482,\$ на 388-м шаге найдено лучшее отношение $I_0^0/I_0^{\rm min}=793.8,\$ при этом в S_1 точек 1807 из 2590.

Выводы

- 1. Сформулирована задача о трещине в неограниченном теле с учётом взаимодействия её берегов. Впервые предложен эффективный алгоритм решения поставленной задачи, который сводится к введению фиктивного поля напряжений на всей поверхности трещины и последующей минимизации функционала ошибки на поверхности трещины. Данный функционал состоит из двух компонент: первая служит для определения коэффициентов добавочного поля напряжений, вторая уточняет саму область контакта.
- 2. Минимизация первой компоненты сводится к решению системы линейных уравнений. Вторая компонента минимизируется постепенно, шаг за шагом, путем выноса из областей S_1 и S_2 точек, которые являются наихудшими с точки зрения минимизации ошибки.
- 3. Получены конкретные результаты для эллиптической трещины при линейном законе нагружения берегов трещины. Показано, что положительные напряжения, возникающие в результате взаимодействия берегов трещины, незначительно влияют на максимальные значения КИН, которые превышают его исходное значение (без учета контакта) на 3% для круговой трещины и на 7-8% для очень вытянутой трещины. Причем увеличение числа неизвестных с 6 до 18 не очень заметно влияет на точность результатов расчета КИН.

Резюме

Розглядається взаємодія берегів еліптичної тріщини, яка знаходиться в частково від'ємному полі зовнішніх напружень. Проблема полягає як у визначенні області, де відбувається контакт берегів, так і напружень контакту, що виникають при цьому. Останні записуються у вигляді скінченного поліноміального ряду з невідомими коефіцієнтами, які визначаються з умови мінімуму квадратів відхилень переміщень в області контакту від нуля та відхилень сумарних напружень в іншій частині області від заданих. Область контакту визначається в результаті пошуку абсолютного мінімуму згаданих вище відхилень. Приведено конкретні результати розрахунку для тріщини, що знаходиться в лінійному полі напружень.

- 1. *Орыняк И. В., Гиенко А. Ю.* Эллиптическая трещина нормального отрыва в бесконечном упругом теле. Сообщ. 1. Перемещение берегов трещины при полиномиальном законе нагружения. // Пробл. прочности. − 2002. − № 1. − С. 22 − 40.
- 2. Гольдитейн Р. В., Ентов В. М. Качественные методы в механике сплошных сред. М.: Наука, 1989. 224 с.
- 3. Гольдштейн Р. В. Задачи теории упругости с неизвестной границей трещины // Физ.-хим. механика материалов. − 1986. № 2. С. 7 14.
- 4. *Панасюк В. В.* Предельное равновесие хрупких тел с трещинами. Киев: Наук. думка, 1968. 246 с.

Поступила 27. 11. 2000