УДК 539.4

Моделирование вязкого роста трещин в корпусных реакторных сталях и построение J_R -кривых

Б. З. Марголин, В. И. Костылев, А. И. Минкин, А. В. Ильин

ЦНИИ КМ "Прометей", Санкт-Петербург, Россия

Представлен метод прогнозирования J_R -кривых для корпусных реакторных сталей. Предложена процедура определения параметров модели вязкого разрушения на основе данных испытаний гладких и надрезанных цилиндрических образцов. С помощью метода конечных элементов исследованы поля напряжений и деформаций у вершины стационарной и движущейся трещины. Проведено сравнение прогнозируемых J_R -кривых и экспериментальных данных, полученных на образцах типа 2T-CT из корпусной реакторной стали 15Х2НМФА-А в исходном и охрупченном состоянии.

Ключевые слова: модель вязкого разрушения, *J_R*-кривые, стационарная и движущаяся трещины, метод конечных элементов, охрупченное состояние.

Введение. Для оценки целостности элементов корпусов реакторов в области вязкого разрушения используются так называемые J_R-кривые. В настоящее время построение J_R-кривых обычно осуществляется по стандартным процедурам [1, 2] на основе испытаний крупноразмерных образцов, которые, как правило, проводятся только для стали в исходном состоянии. Для оценки характеристик трещиностойкости металла корпуса реактора в процессе эксплуатации, т.е. стали в радиационно-охрупченном состоянии, используются малоразмерные образцы-свидетели. Получение J_R-кривых по данным испытаний на трещиностойкость малоразмерных образцов практически невозможно, поскольку для определения корректных значений *J*-интеграла необходимо использовать крупноразмерные образцы [1, 2]. Поэтому в последнее время появилось большое количество работ, в которых построение J_R-кривых выполняется численно с помощью моделей и локальных критериев вязкого разрушения [3-6]. Следует отметить, что практическое применение моделей [3-6] является весьма сложным, так как они включают большое количество эмпирических параметров [7, 8].

Цель работы заключалось в разработке метода прогнозирования J_R кривых для корпусных реакторных сталей, в который входит небольшое количество эмпирических параметров, требующих экспериментального определения. Метод базируется на модели вязкого разрушения [9, 10] и результатах испытаний цилиндрических гладких и надрезаннных малоразмерных образцов.

1. Исследуемый материал. Объектом исследования служила сталь 15Х2НМФА-А (металл обечайки корпуса реактора ВВЭР-1000) в двух состояниях – исходном (состояние поставки) и охрупченном, полученном специальной термической обработкой. Режим термообработки разработан на основе исследований влияния температуры отпуска на структуру и свойства корпусной стали [11]. Химический состав (%) исследуемой стали следующий: 0,17S; 0,24Si; 0,50Mn; 1,93Cr; 1,28Ni; 0,52Mo; 0,08V; 0,009P; 0,012S; 0,05Cu; 0,002Co; 0,0019Sb; 0,0019Sn; 0,002As.

© Б. З. МАРГОЛИН, В. И. КОСТЫЛЕВ, А. И. МИНКИН, А. В. ИЛЬИН, 2002 20 ISSN 0556-171X. Проблемы прочности, 2002, № 2 Стандартные механические свойства стали ($\sigma_{\rm T}$ – предел текучести, $\sigma_{\rm B}$ – предел прочности, σ_f – среднее истинное разрушающее напряжение, $\delta_{\rm p}$ – равномерное относительное удлинение, Z – относительное сужение) при $T = 20^{\circ}$ С в исходном и охрупченном состоянии представлены в табл. 1.

Таблица 1

Результаты испытаний гладких цилиндрических образцов из стали 15Х2НМФА-А в исходном и охрупченном состоянии при *T* = 20°С (осредненные данные по четырем образцам на каждое состояние)

Состояние материала	$\sigma_{\rm \scriptscriptstyle T},$ МПа	$\sigma_{\rm \scriptscriptstyle B}$, МПа	σ_f , МПа	$\delta_{\rm p},\%$	Ζ, %
Исходное	580	693	1582	8,4	75,8
Охрупченное	900	1041	1861	6,7	62,6

Степень охрупчивания стали оценивалась по величине сдвига переходной температуры ΔT_{41J} при уровне KCV = 41 Дж. Согласно выполненным экспериментам, для исходного состояния материала $T_{41J} = -64$ °C, для охрупченного состояния $T_{41J} = 116$ °C и, следовательно, $\Delta T_{41J} = 180$ °C.

2. Модель вязкого разрушения. В соответствии с работами [9, 10] критерий вязкого разрушения формулируется как критерий пластического коллапса элементарной ячейки:

$$\frac{dF_{eq}}{d\kappa} = 0, \tag{1}$$

где $F_{eq} = \sigma_{eq}(1 - S_{\Sigma}); S_{\Sigma}$ – относительная площадь пор, т.е. площадь пор на единицу площади поперечного сечения элементарной ячейки; σ_{eq} – интенсивность напряжений; κ – параметр Одквиста, $\kappa = \int d\varepsilon_{eq}^{p}; d\varepsilon_{eq}^{p}$ – интенсивность приращений пластической деформации. Другими словами, F_{eq} есть напряжение в конгломерате из матрицы материала и пор, величина σ_{eq} – напряжение в матрице материала. Зависимость σ_{eq} от деформации κ описывается уравнением вида

$$\sigma_{eq} = \sigma_{\rm T} + A_0 \kappa^n, \qquad (2)$$

где $\sigma_{\rm T}$ – предел текучести; A_0 и n – константы материала.

Величина относительной площади пор S_{Σ} вычисляется по уравнениям их зарождения и роста [9, 10]. В конструкционных материалах зарождение пор в основном происходит на включениях и крупных карбидах [12, 13] и во многих случаях может быть описано уравнением [9]

$$\rho_s = \rho_f [1 - \exp(-A_\rho (\kappa - \kappa_0))], \qquad (3)$$

где ρ_s – концентрация пор, т.е. количество пор на единицу площади недеформированного материала; ρ_f – максимальное число мест зарождения пор на единицу площади недеформированного материала; κ_0 – значение κ , при котором начинается зарождение пор; A_{ρ} – константа материала, не зависящая от температуры.

Рост одиночной сферической поры при пластическом деформировании в условиях трехосного напряженного состояния может быть описан уравнением Хуанга [14]

$$\frac{dR}{R} = \alpha d\kappa, \tag{4}$$

где $\alpha = 0,427 \left(\frac{\sigma_m}{\sigma_{eq}}\right)^k \exp\left(\frac{3}{2} \frac{\sigma_m}{\sigma_{eq}}\right); \quad k = 0,25$ при $\sigma_m / \sigma_{eq} \le 1$ и k = 0 при

 $\sigma_m / \sigma_{eq} > 1$; R – радиус поры; $\sigma_m = \sigma_{ii} / 3$ – гидростатическая компонента напряжений.

Критерий вязкого разрушения удобно представлять в виде

$$\kappa = \varepsilon_f, \tag{5}$$

где ε_f – критическая деформация вязкого разрушения. С использованием критерия пластического коллапса (1) значение ε_f вычисляется как

$$\varepsilon_f = \kappa |_{\frac{dF_{eq}}{d\kappa} = 0}.$$
(6)

Отметим, что для корпусных реакторных сталей параметр $\kappa_0 << \varepsilon_f$ [10], поэтому для упрощения процедуры определения параметров модели принимается $\kappa_0 = 0$. Согласно [9, 10], начальный радиус пор R_0 полагают равным 0,001 мм.

Таким образом, для определения ε_f необходимо вычислить параметры модели вязкого разрушения A_ρ , ρ_f , параметры кривой деформирования $\sigma_{\rm T}$, A_0 , *n* и зависимость $\frac{\sigma_m}{\sigma_{eq}}(\kappa)$.

3. Определение параметров модели вязкого разрушения. Рассматривается процедура определения параметров, входящих в модель вязкого разрушения. В предлагаемом подходе используется величина критической деформации ε_f при вязком разрушении, получаемая при испытаниях цилиндрических образцов на разрыв. Используются два типа цилиндрических образцов: гладкие и с круговым надрезом. Известно [15, 16], что в минимальном сечении шейки гладкого образца деформации распределяются практически однородно, а максимум трехосности напряжений локализован в центре минимального сечения шейки образца. Геометрия цилиндрических образцов с круговым надрезом выбирается так, чтобы деформация по неттосечению образца была практически однородной, а трехосность напряжений максимальной в центре нетто-сечения (расчет напряженно-деформированного состояния (НДС) цилиндрического образца с круговым надрезом будет приведен ниже). Таким образом, для определения параметров модели вязкого разрушения выбираются типы образцов, в которых зарождение вязкого разрушения однозначно происходит в их центре. Относительное сужение Z в момент разрушения образца незначительно превышает относительное сужение Z_{nuc} в момент инициирования вязкого разрушения [15]. (Инициирование вязкого разрушения цилиндрического образца определяется как разрушение элементарной ячейки в центре минимального сечения образца.) Тогда с достаточной точностью можно принять, что $Z_{nuc} = Z$. При этом критическая деформация ε_f (для элементарной ячейки в центре минимального сечения образца), рассчитываемая по формуле (6), связана с экспериментально измеряемой величиной Z следующей зависимостью [15]:

$$\varepsilon_f = -\ln(1-Z). \tag{7}$$

Определение параметров A_{ρ} , ρ_{f} , σ_{T} , A_{0} , *n* и зависимости $\frac{\sigma_{m}}{\sigma_{eq}}(\kappa)$,

входящих в модель вязкого разрушения, проводится следующим образом:

1) проводятся испытания на разрыв гладких цилиндрических образцов (рис. 1,*a*) при температуре, отвечающей вязкому разрушению материала. На основе данных испытаний определяются стандартные характеристики: $\sigma_{\rm T}$, $\sigma_{\rm B}$, Z^{Γ} , $\delta_{\rm p}$, σ_{f} . Кривая деформирования аппроксимируется уравнением (2). Константы A_0 и *n* рассчитываются по полученным значениям эквивалентных напряжений и деформаций для двух точек на кривой деформирования, соответствующих началу образования шейки и моменту разрушения образца. Для расчета эквивалентных напряжений в шейке образца используется решение Бриджмена [16];

Рис. 1. Схема гладкого (a) и надрезанного (б) цилиндрических образцов.

2) проводятся испытания на разрыв цилиндрических образцов с круговым надрезом (рис. 1, δ) и определяется в нетто-сечении параметр Z^{H} . Далее рассчитывается $\varepsilon_{f_{\text{H}}}^{3} = -\ln(1-Z^{\text{H}});$ 3) с помощью метода конечных элементов (МКЭ) осуществляются численные упругопластические расчеты в геометрически нелинейной постановке для определения зависимости $\frac{\sigma_m}{\sigma_{eq}}(\kappa)$ в цилиндрическом образце с круговым надрезом в процессе нагружения. Для определения трехосности $\sigma_{eq}(\kappa)$

круговым надрезом в процессе нагружения. Для определения трехосности σ_m/σ_{eq} в шейке гладкого цилиндрического образца используется решение Бриджмена [16];

4) проводятся численные расчеты с помощью описанной в разделе 2 модели вязкого разрушения применительно к указанным двум типам образцов. При этом используются полученные в п. 1 и 3 параметры $\sigma_{\rm T}, A_0, n, \sigma_m/\sigma_{eq}$, а параметры A_ρ и ρ_f варьируются. В результате численного решения определяются матрицы значений критических деформаций $\varepsilon_{f_{\rm r}}^{\rm p}(A_\rho, \rho_f)$ и $\varepsilon_{f_{\rm r}}^{\rm p}(A_\rho, \rho_f)$ для варьируемых значений A_ρ и ρ_f ;

5) на основании сравнения критических деформаций, полученных экспериментальным $\varepsilon_{f}^{\mathfrak{g}}$ и расчетным $\varepsilon_{f}^{\mathfrak{p}}(A_{\rho},\rho_{f})$ путем, определяем такую пару значений A_{ρ} и ρ_{f} , которые приводят к минимуму следующее выражение:

$$\Phi(A_{\rho}, \rho_{f}) = \sqrt{\frac{1}{2} \left[\left(\frac{\varepsilon_{f_{r}}^{3} - \varepsilon_{f_{r}}^{p}}{\varepsilon_{f_{r}}^{3}} \right)^{2} + \left(\frac{\varepsilon_{f_{R}}^{3} - \varepsilon_{f_{R}}^{p}}{\varepsilon_{f_{R}}^{3}} \right)^{2} \right]} = \min.$$
(8)

Таким образом, использование предложенной процедуры позволяет определять параметры кривой деформирования $\sigma_{\rm T}$, A_0 , n и параметры модели вязкого разрушения A_ρ , ρ_f .

4. Анализ НДС у вершины стационарной и движущейся трещины. В качестве объекта для численных исследований МКЭ был выбран образец на четырехточечный изгиб (высота образца W = 200 мм, длина трещины a = 100 мм). Деформирование материала описывалось схемой изотропного упрочнения и условием текучести Мизеса. Расчет проводился для двух диаграмм деформирования материала, отвечающих исходному состоянию корпусной реакторной стали 15Х2НМФА-А при $T = 20^{\circ}$ С ($\sigma_{\rm T} = 580$ МПа, $A_0 = 590$ МПа, n = 0.49, модуль Юнга E = 200000 МПа, коэффициент Пуассона $\mu = 0.3$) и охрупченному при $T = 20^{\circ}$ С ($\sigma_{\rm T} = 865$ МПа, $A_0 = 764$ МПа, n = 0.47, E = 196000 МПа, $\mu = 0.3$). При расчете использовалось решение методом конечных элементов упругопластической задачи в геометрически нелинейной постановке в условиях плоской деформации. Размер конечных элементов у вершины трещины составлял 0,005 мм.

В результате выполненных численнных расчетов МКЭ обнаружены следующие закономерности НДС у вершины трещины.

До момента старта трещины точки, лежащие на линии продолжения трещины у ее вершины, имеют одну и ту же историю деформирования $\frac{\sigma_m}{\sigma_{en}}(\kappa)$. Данный вывод свидетельствует об автомодельности полей напря-

жений и деформаций у вершины стационарной трещины и согласуется с результатами работ [17, 18].

При продвижении трещины на величину $\Delta a \leq \text{CTOD}_c$ (Δa – приращение длины трещины, CTOD_c – раскрытие в вершине трещины при ее старте) распределение напряжений и деформаций на линии продолжения движущейся трещины изменяется с ростом Δa , в то время как при продвижении трещины на величину $\Delta a > \text{CTOD}_c$ оно практически стационарно (по крайней мере вблизи вершины трещины в области больших пластических деформаций). На рис. 2 представлено распределение деформаций у вершины трещины для различных значений Δa , иллюстрирующее данный вывод. Обнаруженная закономерность формирования полей напряжений и деформаций у вершины трещины показывает, что точки на линии продолжения движущейся трещины имеют одинаковую историю нагружения $\frac{\sigma_m}{\sigma}(\kappa)$ при $\Delta a \ge \text{CTOD}_c$ (рис. 3). Из рис. 3 также видно, что зависимости

 σ_{eq}

 $\frac{\sigma_m}{\sigma_{eq}}(\kappa)$ для точек, лежащих на линии продолжения стационарной и движу-

щейся трещин, различны. Отметим, что максимальная величина трехосности напряженного состояния σ_m/σ_{eq} для стационарной и движущейся трещин практически одна и та же.

Рис. 2. Распределение деформаций κ на линии продолжения трещины ($\sigma_{\rm T} = 580$ МПа, $A_0 = 590$ МПа, n = 0.49).

Таким образом, выполненные исследования показали, что при $\Delta a \ge \text{CTOD}_{c}$ устанавливается некоторое стационарное локальное НДС у вершины движущейся трещины. Данный вывод следует также из работы [19].

Введем функцию ω , характеризующую разность между трехосностью напряженного состояния для стационарной и движущейся трещин:

$$\omega(\kappa) \equiv \frac{\sigma_m}{\sigma_{eq}\Big|_{\Delta a \ge \text{CTOD}_c}}(\kappa) - \frac{\sigma_m}{\sigma_{eq}\Big|_{\Delta a = 0}}(\kappa).$$
(9)

Рис. 3. Зависимость σ_m/σ_{eq} от κ для единичных ячеек на линии продолжения трещины ($\sigma_{\rm T} = 580$ МПа, $A_0 = 590$ МПа, n = 0,49).

Рис. 4. Зависимость ω от κ для единичных ячеек на линии продолжения трещины (\bullet – исходное состояние стали; \blacktriangle – охрупченное; сплошная линия – аппроксимация уравнением (10)).

Результаты численных расчетов функции $\omega(\kappa)$ для материала в исходном и охрупченном состоянии представлены на рис. 4. Как видно, зависимости $\omega(\kappa)$ практически идентичны для различных состояний стали, т.е. для разных пределов текучести и деформационного упрочнения.

Для удобства дальнейшего использования расчетные зависимости $\omega(\kappa)$ аппроксимируем уравнением вида

$$\omega(\kappa) = a\kappa^{b} [\exp(-c\kappa)], \qquad (10)$$

где *a* = 1,93; *b* = 0,86; *c* = 2,47.

5. Моделирование роста трещины и построение J_R -кривых. Моделирование роста трещины осуществляется как последовательное разрушение единичных ячеек размером ρ_{uc} , находящихся на линии продолжения трещины у ее вершины. При этом считается, что вязкое разрушение ближайшей к вершине движущейся трещины единичной ячейки происходит при выполнении условия $\kappa = \varepsilon_f$. Как было показано в разделе 4, истории нагружения единичных ячеек на линии продолжения движущейся трещины и находящихся в зоне притупления вершины стационарной трещины ($\Delta a \leq \text{CTOD}_c$) и вне зоны ($\Delta a > \text{CTOD}_c$) различаются. Поэтому согласно модели вязкого разрушения будут различаться и критические деформации при старте $\varepsilon_f^{\text{ст}}$ и движения $\varepsilon_f^{\text{лв}}$ трещины. В то же время история деформирования единичных ячеек на линии продолжения движущейся трещины и находящихся вне зоне притупления вершины стационарной трещины по мере ее роста практически одна и та же. Поэтому критическая деформация движущейся трещины $\varepsilon_f^{\text{дв}}$ может быть принята одинаковой для всех единичных ячеек, лежащих на линии продолжения движущейся трещины и находящихся вне зоны притупления стационарной трещины. На рис. 5 схематично показано изменение критической деформации у вершины трещины в процессе ее роста.

Рис. 5. Изменение критической деформации для единичной ячейки в процессе роста трещины.

Таким образом, вязкий рост трещины может быть смоделирован как последовательное разрушение единичных ячеек, находящихся у ее вершины (рис. 6). При этом условие старта трещины записывается в виде

$$\kappa(r)\Big|_{r=r_f} = \varepsilon_f^{\rm ct}.$$
(11)

Здесь r – расстояние от вершины трещины; r_f определяется из условия

$$r_f = 1 / \sqrt{\rho_s(\varepsilon_f^{\rm CT})}, \qquad (12)$$

где $1/\sqrt{\rho_s}$ – среднее расстояние между порами при $\kappa = \varepsilon_f^{\text{ст}}$ может быть вычислено с помощью (3). Размер элементарной ячейки ρ_{uc} определяется из уравнения

$$\frac{1}{\rho_{uc}} \int_{0}^{\rho_{uc}} \kappa(r) dr = \kappa(r) \Big|_{r=r_f}.$$
(13)

Рис. 6. Схема моделирования старта (а) и роста (б) трещины.

Условие продвижения трещины записывается в виде

$$\kappa(r)\Big|_{r=r_f} = \varepsilon_f^{\mathrm{AB}}.$$
(14)

Для определения значений критических деформаций при старте трещины ε_{f}^{ct} и ее движении ε_{f}^{db} воспользуемся следующей процедурой.

1. С помощью аналитического решения о НДС у вершины стационарной трещины с учетом ее притупления в процессе нагружения [20] определяются зависимости $\left[\frac{\sigma_m}{\sigma_{eq}}(\kappa)\right]^{cr}$ для элементарных ячеек у вершины стационарной трещины.

2. Согласно известной функции $\omega(\kappa)$ (10), определяются зависимости $\left[\frac{\sigma_m}{\sigma_{eq}}(\kappa)\right]^{\text{ст}} = \left[\frac{\sigma_m}{\sigma_{eq}}(\kappa)\right]^{\text{ст}} + \omega(\kappa)$ для элементарных ячеек у вершины дви-

жущейся трещины.

3. По модели вязкого разрушения при известных параметрах A_{ρ} , ρ_{f} , $\sigma_{_{\rm T}}$, A_{0} , n (см. раздел 3) и зависимостях $\left[\frac{\sigma_{m}}{\sigma_{eq}}(\kappa)\right]^{\rm cr}$ и $\left[\frac{\sigma_{m}}{\sigma_{eq}}(\kappa)\right]^{\rm дв}$ рассчитываются значения $\varepsilon_{f}^{\rm cr}$ и $\varepsilon_{f}^{\rm дB}$.

Численное моделирование МКЭ продвижения трещины осуществляется так. Проводится расчет МКЭ упругопластической задачи в геометрически нелинейной постановке. На первом этапе образец со стационарной трещиной нагружается до нагрузки, при которой выполняется условие старта трещины (11) – рис. 6,*a*. На втором этапе осуществляется продвижение трещины на величину ρ_{uc} посредством раскрепления узлов на линии ее продолжения. При этом внешняя нагрузка *P*, действующая на образец, подбирается таким образом, чтобы на расстоянии $r = r_f$ от вершины растущей трещины выполнялось условие (14) – рис. 6,*б*. После этого происходит очередное продвижение трещины на величину ρ_{uc} .

Выполняя описанную выше процедуру моделирования продвижения трещины, получаем зависимости P(u) и $P(\Delta a)$, где P – сила; u – перемещение по линии действия силы. Далее с использованием формул из стандарта ASTM E 1152 [1] строится J_R -кривая $J(\Delta a)$.

6. Экспериментально-расчетные исследования по определению параметров локального критерия вязкого разрушения. В соответствии с п. 1) раздела 3 для определения параметров локального критерия вязкого разрушения были проведены испытания на разрыв гладких цилиндрических образцов (рис. 1,*a*) (*D* = 5 мм, *L* = 25 мм) и цилиндрических образцов с круговым надрезом (рис. 1,6) (D = 9 мм, d = 5 мм, R = 2 мм, L = 35 мм) при $T = 100^{\circ}$ С (исходное состояние) и $T = 200^{\circ}$ С (охрупченное состояние). Образцы ориентированы так, что нормаль к плоскости поперечного сечения образцов располагалась в окружном направлении обечайки, т.е. соответствовала L-S-ориентации согласно стандарту ASTM Е 399 [21]. В результате обработки экспериментальных данных получены следующие значения осредненных параметров. Для стали 15Х2НМФА-А в исходном состоянии при T = 100°С: величины критических деформаций $\varepsilon_{f_r}^3 = 1,465$ и $\varepsilon_{f_u}^3 = 0,776$, предел текучести $\sigma_{\rm T} = 552$ МПа, параметры, описывающие упрочнение материала, $A_0 = 557$ МПа, n = 0,49; для стали в охрупченном состоянии при T = 200°С: $\varepsilon_{f_r}^3 = 1,024$ и $\varepsilon_{f_u}^3 = 0,476, \sigma_T = 865$ МПа, $A_0 = 764$ МПа, n = 0,475.

Согласно п. 3) раздела 3 с помощью МКЭ были выполнены численные упругопластические расчеты в геометрически нелинейной постановке для определения σ_m/σ_{eq} в цилиндрическом образце с круговой выточкой в процессе нагружения. На рис. 7,*a* представлено распределение трехосности σ_m/σ_{eq} по нетто-сечению образца в момент его разрушения. Как видно, максимальное значение трехосности для цилиндрического образца с круговой выточкой достигается в его центре. Распределение деформации κ по минимальному нетто-сечению образца при разных уровнях нагрузки иллюстрирует рис. 7,*б*. Видно, что распределение деформации κ по нетто-сечению достаточно однородно. На рис. 8 показана история изменения трехосности в центре нетто-сечения образца в процессе его нагружения.

Для определения σ_m/σ_{eq} в центре нетто-сечения гладкого цилиндрического образца использовалось решение Бриджмена [16]. Вычисленная согласно [16] зависимость трехосности напряженного состояния σ_m/σ_{eq} от деформации κ в центре минимального сечения образца, где реализуется максимальная трехосность по сечению образца, представлена на рис. 9.

В соответствии с п. 4) раздела 3 были выполнены численные расчеты с помощью вышеописанной модели вязкого разрушения. При этом использовались экспериментально полученные выше параметры $\sigma_{\rm T}$, A_0 , n и численно определенные зависимости σ_m/σ_{eq} , а параметры A_ρ и ρ_f варыеровались. Начальный радиус пор R_0 принимался равным 0,001 мм. В результате численного решения получены матрицы значений критических деформаций $\varepsilon_{f_{\rm T}}^{\rm p}(A_\rho,\rho_f)$ и $\varepsilon_{f_{\rm H}}^{\rm p}(A_\rho,\rho_f)$ для варьируемых значений A_ρ и

Б. З. Марголин, В. И. Костылев, А. И. Минкин, А. В. Ильин

Рис. 7. Распределение σ_m/σ_{eq} (*a*) и κ (б) по нетто-сечению надрезанного цилиндрического образца (охрупченное состояние): r_A – координата наружной поверхности образца в нетто-сечении.

Рис. 8. Зависимость σ_m/σ_{eq} от κ в центре надрезанного цилиндрического образца (\bullet – исходное состояние, \blacktriangle – охрупченное).

Согласно п. 5) раздела 3 на основе сравнения критических деформаций, полученных экспериментально ε_{f}° и путем расчета $\varepsilon_{f}^{p}(A_{\rho}, \rho_{f})$, определена пара значений A_{ρ} и ρ_{f} , которые приводят к минимуму выражение (8) – табл. 2.

Таблица 2

Сравнение экспериментальных и прогнозируемых значений критических деформаций для гладких и надрезанных цилиндрических образцов из стали 15Х2НМФА-А в исходном и охрупченном состоянии

Состояние материала	$\mathcal{E}_{f_{\Gamma}}^{3}$	$arepsilon_{f_{\mathrm{T}}}^{\mathrm{p}}$	$\mathcal{E}_{f_{\eta}}^{\mathfrak{I}}$	$arepsilon_{f_{ m H}}^{ m p}$	$\Phi(A_\rho,\rho_f)$	${ ho}_f, \ { m mm}^{-2}$	A_{ρ}
Исходное	1,465	1,471	0,776	0,769	0,007	2200	3
Охрупченное	1,024	1,011	0,476	0,476	0,009	9000	3

Рис. 9. Зависимость σ_m/σ_{eq} от κ в центре гладкого цилиндрического образца.

7. Расчетное построение J_R -кривых и сопоставление с экспериментальными данными. Выполнено расчетное построение J_R -кривых применительно к корпусной реакторной стали 15Х2НМФА-А в исходном ($T = 20^{\circ}$ С) и охрупченном ($T = 200^{\circ}$ С) состоянии, а также проведено их сопоставление с экспериментальными данными.

7.1. Экспериментальное построение J_R -кривых. Построение J_R -кривых осуществлялось с помощью комбинации одно- и многообразцового методов. При этом были испытаны на растяжение компактные образцы 2T-CT толщиной 50 мм с 20%-ными боковыми надрезами при T = 30, 40 и 50°C (исходное состояние) и T = 150 и 200°C (охрупченное состояние). Образцы вырезали из обечайки в соответствии с L–S-ориентацией. Текущая длина трещины a_i определялась с помощью метода частичных разгрузок. Расчеты a_i и соответствующего значения J_i -интеграла проводились по формулам, представленным в стандарте ASTM E 1152 [1]. Результаты испытаний иллюстрирует рис. 10.

7.2. Расчетное построение J_R -кривых. Для расчетного построения J_R -кривых в соответствии с разделом 5 определялись критические деформации старта $\varepsilon_f^{\rm CT}$ и роста $\varepsilon_f^{\rm AB}$ трещины, а также величины r_f и ρ_{uc} .

В результате расчетов получены следующие значения критических деформаций. Для стали в исходном состоянии при температуре испытаний $T = 20^{\circ}$ С: $\varepsilon_{f}^{cr} = 0,704$, $\varepsilon_{f}^{fB} = 0,341$; для стали в охрупченном состоянии при температуре испытаний $T = 200^{\circ}$ С: $\varepsilon_{f}^{cr} = 0,314$, $\varepsilon_{f}^{fB} = 0,171$.

Рис. 10. Сравнение экспериментальных (точки) и прогнозируемых (линии) *J*_{*R*}-кривых для стали 15Х2НМФА-А в исходном (*a*) и охрупченном (*б*) состоянии.

Величину r_f рассчитывали по формуле (12) для полученных значений критических деформаций $\varepsilon_f^{\text{ст}}$. Размер единичной ячейки ρ_{uc} определяли по формуле (13) с использованием зависимости $\kappa(r)$, полученной с помощью аналитического решения о НДС у вершины стационарной трещины с учетом ее притупления [20]. В результате выполненных расчетов для стали в исходном состоянии получено $\rho_{uc} = 0,19$ мм, $r_f = 0,023$ мм, для стали в охрупченном состоянии – $\rho_{uc} = 0,12$ мм, $r_f = 0,014$ мм.

В соответствии с изложенной в разделе 5 процедурой выполнено численное моделирование методом конечных элементов вязкого роста трещины и построение J_R -кривых применительно к компактному образцу 2T-CT (W = 100 мм, a = 50 мм). Размер конечных элементов у вершины трещины составлял 0,005 мм. На рис. 10 представлены расчетные и экспериментальные J_R -кривые для стали в исходном и охрупченном состоянии. Видно, что имеется достаточно хорошее согласование расчетных и экспериментальных результатов.

Выводы

1. Разработана процедура определения параметров модели вязкого разрушения на основе испытаний малоразмерных гладких образцов и цилиндрических образцов с круговой выточкой.

2. Разработана процедура моделирования вязкого роста трещины и прогнозирования J_R -кривых. Показано, что значения критической деформации при старте трещины ε_f^{ct} и ее движении ε_f^{db} различаются.

3. Выполнено сравнение прогнозируемых и экспериментальных J_R кривых для материала в исходном и охрупченном состоянии. Установлено хорошее соответствие между прогнозируемыми и экспериментальными J_R кривыми.

4. Разработана процедура определения параметров "зоны процесса" ρ_{uc} и $r_f.$

5. Численные и экспериментальные исследования показали, что предложенная в [9, 10] модель вязкого разрушения позволяет прогнозировать J_R -кривые для корпусных реакторных сталей как в исходном, так и в охрупченном состоянии.

Резюме

Представлено метод прогнозування J_R -кривих для корпусної реакторної сталі. Запропоновано процедуру визначення параметрів моделі в'язкого руйнування на основі даних випробувань гладких і надрізаних циліндричних зразків. За допомогою методу скінченних елементів досліджено поля напружень і деформацій у вістрі стаціонарної тріщини і тріщини, що рухається. Проведено порівняння прогнозованих J_R -кривих і експериментальних даних, отриманих на зразках типу 2T-CT із корпусної реакторної сталі 15Х2HMФA-A у початковому й окрихченому стані.

- ASTM E 1152. Standard Test Method for Determining J_R Curves // Annual Book of ASTM Standards. – 1987, Vol. 03. 01. – P. 853 – 863.
- ASTM E 1737. Standard Test Method for J-Integral Characterization of Fracture Toughness // Annual Book of ASTM Standards. – 1996, Vol. 03. 01. – P. 994 – 1017.
- 3. *Tai W. H. and Yang B. X.* A new damage mechanics criterion for ductile fracture // Eng. Fract. Mech. 1987. 27, No. 4. P. 371 378.
- Gurson A. L. Continuum theory of ductile rupture by void nucleation and growth. Pt. 1. Yield criteria and flow rules for porous ductile media // J. Eng. Mat. Tech. – 1977. – 99. – P. 2 – 13.
- 5. *Tvergaard V. and Needleman A.* Analysis of the cup-cone fracture in around tensile bar // Acta Met. 1984. **32**. P. 157 169.
- 6. *Rousselier G.* Ductile fracture models and their potential in local approach of fracture // Nucl. Eng. Des. 1987. 105. P. 97 111.

Б. З. Марголин, В. И. Костылев, А. И. Минкин, А. В. Ильин

- Eisele U., Seidenfuss M., and Pitard-Bouet J.-M. Comparison between fracture mechanics and local approach models for the analysis of shallow cracks // EUROMECH-MECAMAT'96, 1st Europ. Mech. of Mater. Conf. on Local Approach to Fract. – Fontainebleau (France), 1996. – P. 75 – 89.
- Schmitt W., Keim E., Nagel G., and Sun D. Z. Application of local approach methods for nuclear installations // Trans. 14th Int. Conf. Struct. Mech. Reactor Tech. (SMiRT 14). – Lyon (France), 1997. – 4. – P. 643 – 653.
- Margolin B. Z., Karzov G. P., Shvetsova V. A., and Kostylev V. I. Modeling for transcrystalline and intercrystalline fracture by void nucleation and growth // Fatigue Fract. Eng. Mater. Struct. – 1998. – 21. – P. 123 – 137.
- Margolin B. Z. and Kostylev V. I. Radiation embittlement modeling for reactor pressure vessel steels. II. Ductile fracture toughness prediction // Int. J. Pres. Ves. & Piping. – 1999. – 76. – P. 731 – 740.
- Аниковский В. В., Биданин В. И., Грекова И. И., Шкатов Ю. И. Хромомолибденовая сталь для массивных сосудов давления // Судостроительная пром-сть. Сер. Металловедение, Металлургия. – 1986. – Вып. 3. – С. 3 – 13.
- 12. Beremin F. M. Cavity formation from inclusions in ductile fracture of A508 steel // Met. Trans. 1981. 12A, No. 5. P. 723 731.
- Knott J. F. Micromechanisms of fibrous crack extension in engineering alloys // Metal Science. – 1980. – 14. – P. 327 – 336.
- 14. *Huang Y.* Accurate dilatation rates for spherical voids in triaxial stress fields // Trans. ASME, Ser. E. Application Mech. – 1991. – **58**. – P. 1084 – 1086.
- 15. *Nadai A*. Theory of Flow and Fracture of Solids. New York: McGraw-Hill, 1950.
- 16. Bridgman P. W. Studies in Large Plastic Flow and Fracture. New York: McGraw-Hill, 1952.
- 17. *Rice J. R. and Rosengren G. F.* Plane strain deformation near a crack tip in a hardening materials // J. Mech. Phys. Solids. 1968. 16. P. 1 12.
- McMeeking R. M. Finite deformation analysis of crack tip opening in elastic-plastic materials and implications for fracture initiation // Ibid. – 1977. – 25. – P. 357 – 381.
- Margolin B. Z. and Kostylev V. I. Modeling for ductile-to-brittle transition under ductile crack growth for reactor pressure vessel steels // Int. J. Pres. Ves. & Piping. – 1999. – 76. – P. 309 – 317.
- Margolin B. Z., Gulenko A. G., and Shvetsova V. A. Improved probabilistic model for fracture toughness prediction based for nuclear pressure vessel steels // Ibid. – 1998. – 75. – P. 843 – 855.
- ASTM E 399. Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials // Annual Book of ASTM Standards. – 1974, Vol. 03. 01. – P. 509 – 539.

Поступила 08. 06. 2001