УДК 539.4

Некоторые особенности и возможности обобщенного анализа характеристик длительной прочности металлических материалов

В. В. Кривенюк, Л. А. Заслоцкая, Д. С. Авраменко

Институт проблем прочности НАН Украины, Киев, Украина

С помощью метода базовых диаграмм проанализированы более двухсот диаграмм длительной прочности, полученных при длительности эксперимента 100000 ч и более. Показано, что работа лишь с отклонениями отдельных участков экспериментальных диаграмм от соответствующих участков базовых как в режиме анализа известных экспериментальных данных, так и в режиме прогнозирования длительной прочности открывает новые значительные возможности повышения точности и надежности прогнозирования.

Ключевые слова: длительная прочность, диаграмма, анализ, метод прогнозирования, погрешность прогнозирования

Длительность работы оборудования тепловых электростанций как у нас в стране, так и за рубежом достигает 300000 ч и более. При такой длительности значительно возрастают трудности оценки его состояния и работоспособности, характеристик длительной прочности из-за весьма ограниченного объема соответствующих экспериментальных данных. Надежды на улучшение положения обычно связывают с разработкой или выбором методов, обеспечивающих достаточно точную расчетную оценку пределов длительной прочности. В этой работе обосновывается также важность систематического анализа и обобщения известных экспериментальных данных о длительной прочности металлических материалов.

Вопросу выбора методов прогнозирования посвящена работа специальной комиссии [1] еще в то время, когда сроки работы оборудования были значительно меньше. Было признано, что проблема выбора существует, более того, предложен некоторый обобщенный метод выбора – метод минимума связей. Согласно этому методу, предполагается, что следует планировать использование нескольких методов, а конкретный должен выбираться в соответствии со спецификой рассматриваемых данных о длительной прочности в каждом конкретном случае.

К настоящему времени положение стало значительно сложнее. С одной стороны, судя по работам [1–6], в мире разработано более пятидесяти методов прогнозирования, с другой стороны, выбор одного из них или соответствующая аттестация этих методов не могут быть проведены из-за отсутствия необходимых данных испытаний большой длительности, так как за все время в мире выполнено всего шесть экспериментов длительностью 300000 ч, чего явно недостаточно для решения рассматриваемой задачи.

К этому следует добавить, что задача прогнозирования длительной прочности на 300000 ч становится уже настолько сложной, что ее решение следует связывать не только с выбором метода, но и с рассмотрением вопроса о возможности прогнозирования на такой срок. При всей сложности

```
© В. В. КРИВЕНЮК, Л. А. ЗАСЛОЦКАЯ, Д. С. АВРАМЕНКО, 2000
24 ISSN 0556-171X. Проблемы прочности, 2000, № 3
```

оценку возможностей существующей системы прогнозирования можно несколько упростить ввиду явных преимуществ и наиболее широкого использования методов Ларсона–Миллера [7], Мэнсона–Хэферда [8], Орра– Шерби–Дорна [9].

Методы [7–9], в частности, применяются в многочисленной серии изданий Национального института исследований свойств металлов в Токио (NRIM) [10–13]. В каждом таком издании представлены как результаты испытаний длительностью 100000 ч и более, так и их обработка преимущественно по одному из методов [7–9]. Обратим внимание на одну из существенных особенностей такой обработки, заключающуюся в использовании большого количества постоянных, на примере работы [12].

В [12] наряду с результатами испытаний на длительную прочность девяти плавок стали X18H10T при четырех уровнях температур и длительности нагружения 100000 ч и более приведена также их обработка по методу Мэнсона–Хэферда, который обычно аналитически формулируется с акцентированием внимания лишь на двух постоянных:

$$P = \frac{\lg t_p - \lg t_a}{(T + 273) - T_a}.$$
 (1)

В действительности непосредственно при расчетах параметр *P* представляется в виде полиномиальной зависимости от напряжений, в результате чего число постоянных значительно возрастает. В работе [12] было использовано выражение

$$lg t_{p} = lg t_{a} + [(t + 273) - T_{a}] \times$$
$$\times (b_{0} + b_{1} lg \sigma + b_{2} lg^{2} \sigma + b_{3} lg^{3} \sigma + b_{4} lg^{4} \sigma + b_{5} lg^{5} \sigma).$$
(2)

Значения $b_0, b_1, ..., b_5, t_a, T_a$ определялись для каждой из девяти плавок. В целом было использовано 50 численных значений таких постоянных: 190; 19,82434; -6,81391; 1,341723 и т.д.

В то же время при использовании рассматриваемого ниже метода базовых диаграмм (МБД) удалось получить практически идентичные по точности результаты прогнозирования с помощью одной постоянной $\beta = 1,2$.

Таким образом, из рассмотрения популярных параметрических методов в виде (1), (2) следует, что основные тенденции в современном развитии прогнозирования длительной прочности металлов сводятся преимущественно к получению возможно более общих уравнений, которые при обработке экспериментальных данных должны обеспечить получение достаточно точных усредненных зависимостей.

В противоположность этому в настоящей работе, как и в [14–16], иллюстрируется значительное повышение эффективности и надежности прогнозирования с помощью МБД за счет более детального учета особенностей отдельных частей диаграмм длительной прочности и последующего обобщения такой информации.

Рассмотрим некоторые возможности развития прогнозирования на основе применения принципа базовых соотношений [14–16], т.е. на основе метода базовых диаграмм. В качестве исходной основы используется семейство неизменных базовых диаграмм, описываемых общим уравнением

$$\lg \sigma'_{t} = \lg \sigma_{1} - \frac{3.6 - \lg \sigma_{1}}{12} (\lg t + 0.11g^{2}t),$$
(3)

где σ_1 – напряжение, МПа, вызывающее разрушение за 1 ч; σ'_t – текущее напряжение по базовой диаграмме, МПа; t – долговечность, ч.

Метод отличается двумя особенностями: 1) при анализе известных данных и прогнозировании рассматриваются лишь независимо отдельные участки диаграмм длительной прочности; 2) сначала устанавливаются для конкретного материала отклонения отдельных участков экспериментальных диаграмм длительной прочности от соответствующих участков базовых диаграмм, а затем прогнозирование проводится фактически снова по уравнению (3) с учетом установленных обобщенных показателей отклонений.

Прогнозирование искомого значения длительной прочности σ_t по исходному $\sigma_{\alpha t}$ выполняется с помощью формулы

$$\sigma_t = \sigma_{\alpha t} - \beta (\sigma_{\alpha t} - \sigma'_t), \tag{4}$$

где σ'_t – напряжения описываемой уравнением (3) базовой диаграммы; β – обобщенный показатель отклонений отдельных участков экспериментальных диаграмм длительной прочности исследуемого материала от соответствующих участков базовых диаграмм.

Если в уравнение (4) вместо искомого значения σ_t подставить экспериментальное значение σ_{t_3} при $t = t_3$, то из (4) для определения экспериментального значения отклонения получим формулу

$$\beta_{\mathfrak{H}} = \frac{\sigma_{\alpha t} - \sigma_{t\mathfrak{H}}}{\sigma_{\alpha t} - \sigma_{t}'} = \frac{\Delta \sigma_{t\mathfrak{H}}}{\Delta \sigma_{t}'},\tag{5}$$

где $\Delta \sigma_{t_2}$, $\Delta \sigma'_t$ – понижение напряжений, устанавливаемое соответственно по экспериментальной и базовой диаграммам длительной прочности за одно и то же время от αt до tэ при ориентировочном отношении $t \kappa \alpha t$ порядка 10.

В рамках этого метода решаются две задачи. В первую очередь анализируются экспериментальные данные, затем на основе результатов анализа выполняется прогнозирование. При анализе диаграммы длительной прочности разбиваются на отдельные участки. Далее информация о каждом участке представляется характеристиками $\sigma_{\alpha t}$ и β_{9} , например в виде точек в системе координат $\beta_{9} - \sigma_{\alpha t}$. В качестве примера это показано на рисунке, где представлены данные [12] по МБД, которые, как отмечалось выше, обрабатывались в [12] по методу (1), (2).

Длительная прочность стали 18Cr–10Ni–Ti (X18H10T) по данным работы [12] для различных интервалов изменения $t: a - 10^2 ... 10^3; \ 6 - 10^3 ... 10^4; \ e - 10^4 ... 10^5$ ч.

Из рисунка следует, что используемое в формуле (4) усредненное значение β для всего массива характеристик β_3 приближается к 1,2. В целом зависимость характеристик β_3 от температуры сравнительно слабая, четко видны общие пределы их изменения и т.п. Анализ такой информации на основе значений β позволяет эффективно выделить общее в закономерностях длительного разупрочнения различных материалов, а на основе значений β_3 – характерное или особенное. Рассмотрим подробнее в таком плане известные данные испытаний длительностью 100000 ч и более.

Предварительный анализ таких данных показал, что целесообразно ориентироваться на следующие временные интервалы: $10^3 ... 10^4$; $10^4 ... 10^5$; $10^5 ... 2 \cdot 10^5$; $2 \cdot 10^5 ... 3 \cdot 10^5$ ч с введением для этих последовательных четырех временных интервалов значений $\beta = \beta_1$; $\beta = \beta_2$; $\beta = \beta_3$ и $\beta = \beta_4$. Как оказалось, связь между этими значениями β в первом приближении можно представить в виде

$$\beta_{n+1} = \beta_n + \Delta \beta_{n+1} \tag{6}$$

ISSN 0556-171Х. Проблемы прочности, 2000, № 3

27

при $\Delta \beta_{n+1} = 0,2$ или в виде

$$\beta_2 = \beta_1 + 0.2; \tag{7}$$

$$\beta_3 = \beta_2 + 0.2; \tag{8}$$

$$\beta_4 = \beta_3 + 0.2. \tag{9}$$

Это означает, что после того как по σ_{10^3} и σ_{10^4} с помощью формулы (5) установлено значение β_3 , в формуле (4) принимается β равным $\beta_1 = \beta_3$, затем по формуле (7) определяется $\beta = \beta_2$; вновь по формуле (4) рассчитывается σ_{10^5} по σ_{10^4} , а затем определяется β_3 по формуле (8); в формуле (4) принимается $\beta = \beta_3$ и рассчитывается σ_{210^5} по установленному значению σ_{10^5} , и наконец, по (9) рассчитывается β_4 и с помощью формулы (4), в которой принимается $\beta = \beta_4$, – значение $\sigma_{3\cdot10^5}$ по $\sigma_{2\cdot10^5}$.

В мировой практике известно около 400 диаграмм длительной прочности, полученных при длительности эксперимента 10⁵ ч и более. Около половины таких диаграмм обрабатывалось в настоящей работе. Анализ заключался в следующем.

В табл. 1 согласно данным работы [12] приведены экспериментальные значения σ_{10^3} , σ_{10^4} и σ_{10^5} . По значениям σ_{10^3} и σ_{10^4} , приняв их соответственно как $\sigma_{\alpha t}$ и σ_{t3} , с помощью формулы (5) определяли значение β_3 и в (4) принимали $\beta = \beta_3$. Неизвестным в формуле (4) оставалось лишь значение σ'_t , определяемое по формуле (3). Сначала в (3) вместо σ'_t и t подставляется $\sigma_{\alpha t}$ и αt , что приводит к уравнению с одним неизвестным σ_1 . Значение σ_1 и задает базовую диаграмму длительной прочности, которая в данном случае проходит через точку с координатами $\sigma_{\alpha t}$, αt . После этого по формуле (3) при установленном значении σ_1 рассчитывается значение σ'_t , а затем по формуле (7) – значение β_2 , при этом в формуле (4) принимается $\beta = \beta_2$ и рассчитывается σ_{10^5} по σ_{10^4} .

Таким образом, в третьей колонке приведены экспериментально установленные значения β_1 по σ_{10^3} и σ_{10^4} , в пятой – значения β_2 , рассчитанные по формуле (7), в шестой – σ_{10^5} , рассчитанные по формуле (4) на основании σ_{10^4} и установленного значения $\beta = \beta_2$, в седьмой – экспериментальные значения (σ_{10^5})₃, и наконец, в восьмой – погрешности такого прогнозирования длительной прочности, определенные по формуле

$$\Delta = \frac{\sigma_{10^5} - (\sigma_{10^5})_{\mathfrak{H}}}{(\sigma_{10^5})_{\mathfrak{H}}} \cdot 100\%.$$
(10)

аблица 1 Длительная прочность жаропрочной стали X18H10T по данным работы [12]								
<i>T</i> , ⁰C	$\sigma_{\!_{10^3}},$ МПа	β_1	$\sigma_{\! 10^4}^{}$, МПа	β_2	$\sigma_{\!_{10}{}^5}$, МПа	(σ ₁₀ 5) _э , МПа	$\Delta, \%$	
600	282	1,06	208	1,26	136,2	143	-4,7	
	272	1,09	198	1,29	127,3	137	-7,1	
	282	1,35	188	1,55	106,1	128	-17,1	
	219	1,40	137	1,60	70,0	77	-9,1	
	216	1,30	141	1,50	77,1	80	-3,6	
	235	1,32	154	1,52	84,7	83	2,0	
	242	1,28	162	1,48	92,0	104	-11,5	
	240	1,29	160	1,49	90,3	91	-0,7	
	270	1,30	182	1,50	104,5	117	-10,7	
650	202	1,18	137	1,38	79,4	83	-6,9	
	185	0,95	136	1,15	88,4	83	3,7	
	181	1,10	125	1,30	74,4	80	-9,5	
	148	1,21	95	1,41	50,6	46	6,5	
	141	1,09	95	1,29	54,4	49	7,8	
	164	1,12	111	1,32	64,1	53	17,5	
	165	1,18	109	1,38	60,7	69	-14,8	
	161	1,09	110	1,29	64,4	63	-0,5	
	176	1,12	120	1,32	70,1	65	4,9	
700	132	1,27	81	1,47	40,2	48	-7,7	
	132	1,29	80	1,49	39,0	50	-13,8	
	124	1,22	77	1,42	39,0	44	-2,1	
	96	1,27	56	1,47	25,7	30	-4,3	
	101	1,16	63	1,36	32,1	31	14,5	
	110	1,14	70	1,34	36,8	40	1,4	
	110	1,00	75	1,20	43,7	41	15,9	
	103	0,96	71	1,16	42,0	41	11,5	
	117	1,17	74	1,37	38,6	45	-5,7	

Некоторые особенности и возможности обобщенного анализа ...

Обобщенным показателем прогнозирования для n = 27 рассматриваемых в табл. 1 случаев будет средняя квадратическая погрешность, определяемая по формуле

$$S = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \Delta_i^2} \,. \tag{11}$$

Таким образом, с помощью МБД особенность массива данных, приведенных в табл. 1, определена величинами $\Delta\beta_2 = 0,2$ и S = 9,5%, т.е. если согласно (7) будем считать, что величина β возрастает при переходе из временного интервала $10^3 \dots 10^4$ в интервал $10^4 \dots 10^5$ ч на 0,2 и примем это за основу, то таким образом обеспечивается прогнозирование с практически приемлемой величиной S. Если необходимо увеличить точность прогнозирования, то следует перейти к анализу каждого случая. Аномалии выявляются по величине Δ , причем в качестве физической характеристики может использоваться величина β_3 , которая пересчитывается в показатель длительной прочности, т.е. показатель степени в зависимости $t \sim \sigma^n$.

Примечание. Среднеквадратическая погрешность прогнозирования 9,5%.

В. В. Кривенюк, Л. А. Заслоцкая, Д. С. Авраменко

Соответственно значения β_3 и Δ дают возможность проводить дальнейший углубленный анализ данных о длительной прочности. Не рассматривая более подробно этот вопрос, заметим, что поскольку данные для девяти идентичных плавок при 600°С должны быть близкими, явно завышенное значение $\Delta = 17,1\%$ для одной из них нелогично. Таким образом, весь этот массив данных характеризуется величинами $\beta = \beta_1$, $\Delta\beta = 0,2$ и тремя-четырьмя отклонениями, выявляемыми по $\Delta \ge 12...13\%$.

Рассмотрим аналогично приведенные в [13] данные для стали 12Сг. Величина S в этом случае при использовании соотношения (7) несколько выше и составляет 11%, что также близко к практически приемлемому. Тем не менее, судя, например, по значениям Δ при температуре 450°С, равным для различных плавок – 3,1; – 3,0; – 2,5; – 6,7; 22,9; 4,0; – 13,8; – 13,7%, при сравнительно низких значениях Δ встречаются и отдельные значительные отклонения, например $\Delta = 22,9\%$, которые существенно ухудшают показатель S и являются нелогичными, так как рассматриваются близкие по своим свойствам плавки, испытываемые в идентичных условиях нагружения. Обращает на себя внимание то, что основной массив значений Δ слабо зависит от температуры и нагрузки, которые в данном случае изменяются в достаточно широких пределах. Это свидетельствует в какой-то мере об удачном выборе уравнения базовых диаграмм.

Возможны случаи, когда соотношение (7) неприемлемо. Об этом можно судить по результатам обработки данных [17]. При использовании (7) в ряде случаев погрешности прогнозирования оказались недопустимо высокими. Так, если при температуре 550°С значения Δ для девяти плавок составляли – 7,1; – 3,0; – 11,0; 0,5; 2,7; – 1,8; –1,7; – 2,3; – 3,8%, то при температуре 600°С – соответственно 17,2; 36,7; 45,8; 58,5; 42,8; 66,8; 43,8; 39,6; 35,9%. После замены $\Delta\beta_2 = 0,2$ на $\Delta\beta_2 = 0,7$ значения погрешностей уменьшились до – 20,6; – 5,9; 2,8; 8,7; – 1,0; 18,0; 1,4; – 2,9; – 5,1%. Таким образом, метод базовых диаграмм позволяет легко выявлять те значения $\Delta\beta_2$, которые в итоге приводят к значения *S*, не превышающим 12%.

Окончательно уточненные значения $\Delta\beta_2$ для всего массива диаграмм длительной прочности, число которых превышает 200 и которые получены при длительности эксперимента 10^5 ч и более, приведены в табл. 2, там же указаны значения *S*. В этой таблице, в частности, для стали 12Х2М1 (1) при температуре 600°С приведено уточненное значение $\Delta\beta_2 = 0.7$, о котором говорилось выше.

Таким образом, с помощью характеристик $\Delta\beta_2$ зафиксированы важные особенности всего массива диаграмм длительной прочности. В случае необходимости выполнения более тщательного анализа дополнительно должны учитываться такие же данные, как и в табл. 1.

Из табл. 2 следует, что наиболее вероятными являются значения $\Delta\beta_2 = 0,2$, но возможны и существенные отклонения. Однако следует подчеркнуть, что чем больше отклонения, тем легче выявлять их причину. Поэтому можно утверждать, что выполненный обобщенный анализ и его результаты в виде данных табл. 1 и 2 создают благоприятную основу для последующего обобщенного анализа на более высоком уровне. В задачу такого анализа уже должно входить объяснение на основе физических

положений различия значений $\Delta\beta_2$, обусловленных изменениями показателей ползучести и длительной прочности. Такие изменения традиционно являются предметом физических исследований [18, 19].

№ опыта	Материал	<i>T</i> , °C	$\Delta \beta_2$	<i>S</i> ,%					
1	X18H10T	600	0,2	9,5					
2		650	0,2						
3		700	0,2						
4	X13	450	0.4	11.0					
5		500	0.2	· ·					
6		550	0.3						
7		600	0,4						
8	12X2M1(1)	500	0.2	12.3					
9		550	0.2						
10		600	0.7						
11		650	-0.2						
12	103203 (1 (0)	450	0.0	10.6					
12	12X2M1(2)	450	0,2	10,6					
13		500	0,2						
14		550	0,2						
15		600	0						
16		650	-0,1						
17	12MX	450	0,8	12,6					
18		500	0,4						
19		550	-0,38						
20	12XM	450	0.8	13.3					
21		500	0.4	(15.0)					
22		550	-0.1						
23		600	0,4						
24	25X1M1Φ	500	0.2	9.8					
25		550	0.7	(12.7)					
26		600	0.5	(1-,7)					
20	173713 (1 2	450	0,0	0.1					
27	15X1M1Φ	450	0,8	9,1					
28		500	0,5	(10,9)					
29		550	0,6						
30		600	0,1						

Таблица 2

Значения среднеквадратической погрешности прогнозирования S по МБД при использовании приведенных значений $\Delta\beta_2$

Примечание. В скобках приведены значения S с учетом отдельных максимальных величин Δ .

Согласно [20, 21], ползучесть и длительную прочность следует прогнозировать с учетом констатации различных температурно-силовых или температурно-временных областей, в пределах которых определяющим является действие одного механизма пластического деформирования или разрушения. В связи с этим при переходе из одной температурно-временной области в другую должны изменяться параметры описания исследуемых закономерностей, соответственно исходные и прогнозируемые характеристики должны относится к одной температурно-временной области. Это положение весьма существенно затрудняет прогнозирование. Оно полностью справедливо только в том случае, если между параметрами закономерностей в различных температурно-силовых областях отсутствует связь. Проявление зависимостей вида (7)–(9) или подобных им свидетельствует, в частности, о наличии связи между наклонами отдельных участков диаграмм длительной прочности. На проявлении такой взаимосвязи акцентируется внимание авторов экспериментов длительностью 36 лет или 300000 ч в работе [22], где рассматривается линейная экстраполяция данных о длительной прочности из временного интервала $10^4 ...3 \cdot 10^4$ в интервал $10^4 ...10^5$ ч, а затем из интервала $3 \cdot 10^4 ...10^5$ в интервал $10^5 ...3 \cdot 10^5$ ч. Определяется погрешность линейной экстраполяции в первом

$$\Delta_1 = \frac{\sigma'_{10^5} - \sigma_{10^5}}{\sigma_{10^5}} \cdot 100\%, \tag{12}$$

где σ'_{10^5} – прогноз; σ_{10^5} – эксперимент, и во втором интервалах

$$\Delta_2 = \frac{\sigma'_{3:10^5} - \sigma_{3:10^5}}{\sigma_{3:10^5}} \cdot 100\%, \tag{13}$$

устанавливается взаимосвязь между Δ_1 и Δ_2 и делается заключение о существовании между этими величинами определенной зависимости. По сути, в изложенном выше подходе в рамках соотношений (6)–(9) рассматривается такая же зависимость, что и отражено в табл. 2. Это означает, что упомянутые выше и отстаиваемые в [20, 21] закономерности изменения наклонов отдельных участков кривых длительной прочности могут быть использованы для значительного повышения эффективности прогнозирования. Перейдем теперь непосредственно к анализу приведенных в табл. 3 данных [22], обработанных МБД.

Для каждого материала в табл. З соответствующая информация представлена в четырех строках. В первой и третьей – даны значения длительной прочности и $\Delta\beta_n$, определенные по экспериментальным кривым соответственно для гладких и надрезанных образцов, во второй и четвертой – значения этих характеристик, рассчитанные по описанной выше методике (3)–(11) при одинаковых $\Delta\beta_{n+1} = 0,2$. Таким образом, в качестве исходных использовались характеристики σ_{10^3} и σ_{10^4} , а затем прогнозировались характеристики σ_{10^5} ; $\sigma_{2:10^5}$ и $\sigma_{3:10^5}$ при $\Delta\beta_n$, одинаковых для всех временных интервалов и равных 0,2. Прогнозирование было проведено при S = 13,3%.

Рассмотрим результаты анализа для гладких образцов. Из первой строки для материала I следует, что $\Delta\beta_2$, определенное по экспериментальным кривым, равно 0,01, т.е. $\beta_2 - \beta_1 = -0,01$, вместо принятого в расчете значения 0,2, в то время как $\Delta\beta_3 = 0,22$, т.е. практически равно 0,2.

Габлица 3												
длительная прочность жаропрочных сталей по данным работы [22]												
Мате	ериал	σ_{10^2}	$\beta_{\mathfrak{s}}$	σ_{10^3}	β_1	σ_{10^4}	β_2	σ_{10^5}	β_3	$\sigma_{2\cdot 10^5}$	β_4	$\sigma_{3\cdot 10^5}$
I	1	-	_	105,5	0,99	72	0,98	46,5	1,20	40,0	-	_
	2	-	_	105,5	0,99	72	1,19	42,0	1,39	34,2	1,59	29,7
	3	-	_	115,0	0,96	80	0,92	56,0	-	-	-	_
	4	_	_	115,0	0,96	80	1,16	47,9	1,36	39,5	1,56	34,5
п	1	422	1,10	335	1,14	246	0,97	185,0	1,23	165,0	1,14	156,0
	2	_	_	335	1,14	246	1,34	160,3	1,54	136,6	1,74	122,4
	3	520	1,22	400	1,89	235	1,43	145,0	1,30	127,0	1,54	117,0
	4	_	_	400	1,89	235	2,00	111,0	2,00	-	_	_
III	1	540	2,00	330	1,63	204	1,46	120,0	1,75	100,0	_	_
	2	_	_	330	1,63	204	1,83	101,4	2,03	79,0	-	_
	3	520	1,73	350	1,87	200	1,73	102,0	2,00	82,0	-	_
	4	-	_	350	1,87	200	2,00	88,0	2,00	-	_	_
IV	1	460	0,46	420	0,97	334	1,38	228,0	1,80	197,0	_	_
	2	_	_	420	0,97	334	1,17	243,2	1,37	215,5	_	_
	3	470	0,88	384	1,58	250	1,30	163,0	_	_	_	_
	4	_	_	384	1,58	250	1,78	135,5	_	_	_	_
V	1	_	_	377	0,91	298	0,89	232,0	0,79	218,0	1,35	195,0
	2	_	_	377	0,94	298	1,14	215,0	1,34	189,8	1,54	174,1
	3	_	_	440	0,87	360	1,11	268,0	1,33	240,0	-	_
	4	_	_	440	0,87	360	1,07	272,3	1,27	244,5	_	_
VI	1	_	_	388	0,84	315	1,00	238,0	1,27	214,0	1,55	192,0
	2	_		388	0,84	315	1,04	235,5	1,24	210,4	1,44	194,5
	3	_		445	0,88	363	1,00	250,0	1,10	228,0	_	_
	4	_		445	0,88	363	1,08	273,5	1,28	245,3		_

Некоторые особенности и возможности обобщенного анализа ...

Для материала II $\Delta\beta_2 = -0,17$; $\Delta\beta_3 = 0,26$; $\Delta\beta_4 = 0,09$. Обобщенный же анализ известных из литературных источников экспериментальных данных (более 200 диаграмм длительной прочности) показывает, что уменьшение значений β или отрицательные значения $\Delta\beta$ при переходе в следующий временной интервал встречаются редко. Следовательно, ориентирование на расчет по (6)–(9) при $\Delta\beta = 0,2$ оправдано. Для материала III экспериментальные результаты также несколько нелогичны, так как значение $\Delta\beta_2 = -0,17$, в то время как $\Delta\beta_3 = 0,29$. Для материала IV $\Delta\beta_2 = 0,41$; $\Delta\beta_3 = 0,42$. В этом случае значение $\Delta\beta_2$ выше принятых в (7) и (8), но эти отклонения сравнительно невысокие. Для материала V значение $\Delta\beta_2 = -0,02$; $\Delta\beta_3 = -0,1$; $\Delta\beta_4 = 0,56$. В этом случае, как следует из обобщенного анализа, значения $\Delta\beta_{n+1}$ должны плавно возрастать по мере перехода из одного временного интервала в другой. Наконец, для материала VI значения $\Delta\beta_2 = 0,16$; $\Delta\beta_3 = 0,27$; $\Delta\beta_4 = 0,28$, что хорошо согласуется с принятыми в (7)–(9).

Примечание. I – нелегированная сталь; II – 1,6Cr–0,1Mo–1,28V; III – 2,6Cr–0,48Mo–0,26V; IV – 2,7Cr–0,74Mo–0,51V–0,48W; V – 20Cr–0,96Mo; VI – 18Cr–0,67Ni–8Ti.

В. В. Кривенюк, Л. А. Заслоцкая, Д. С. Авраменко

Проанализируем аналогично данные для надрезанных образцов. Для материала I значения $\Delta\beta_{n+1}$ для гладких и надрезанных образцов практически идентичны. Значения $\Delta\beta_{n+1}$ для надрезанных образцов материала II в основном отрицательные, в то время как для гладких они близки к нулю. Более высоким значениям $\Delta\beta_{n+1}$ соответствует повышение временной интенсивности поврежденности. Следовательно, для надрезанных образцов в данном случае проявляется обратная закономерность, т.е. по мере увеличения длительности нагружения интенсивность поврежденности понижается.

Поведение гладких и надрезанных образцов материала III в рассматриваемом аспекте практически идентично. Для материала IV в противоположность значению $\Delta\beta_2 = 0,41$, полученному для гладких образцов, для надрезанных установлено значение $\Delta\beta_2 = -0,28$, что также свидетельствует о понижении интенсивности временной поврежденности. Для материала V (надрезанные образцы) изменения $\Delta\beta_{n+1}$ согласуются в основном с $\Delta\beta_{n+1} = 0,2$ в (7)–(9). Для материала VI (гладкие и надрезанные образцы) изменения $\Delta\beta_{n+1}$ близкие, причем для надрезанных они лучше согласуются с $\Delta\beta_{n+1} = 0,2$ в (7)–(9). Столь подробный анализ дает основание обратить внимание на следующие два обстоятельства.

При анализе данных испытаний до 300000 ч (табл. 3) не было выявлено значений $\Delta\beta_{n+1}$, существенно отличающихся от $\Delta\beta_{n+1} = 0,2$ в (7)–(9), по крайней мере, они значительно меньше некоторых значений $\Delta\beta_{n+1}$, установленных в результате обобщенного анализа более 200 диаграмм длительной прочности при длительности эксперимента 10⁵ ч (табл. 2). С точки зрения перспективы это является обнадеживающим фактором развития прогнозирования длительной прочности на 300000 ч и более. Кроме того, из этого следует, что более тщательный анализ значений $\Delta\beta_{n+1}$ в табл. 2 будет представлять интерес для обработки и анализа тех же данных в табл. 3, равно как и наоборот.

В работе [23] со ссылкой на довольно большое число исследований делается вывод о подкрепляющем эффекте концентратора напряжений и дается объяснение сути этого эффекта. В этой связи рассмотрим приведенные в табл. 3 результаты испытаний надрезанных образцов.

Судя по данным для материала I во временном интервале $10^3 ...10^5$ ч, с отмеченным утверждением можно согласиться, а по данным для материала II – уже нельзя, т.е. при 10^3 ч прочность надрезанных образцов $\sigma_{10^3} = 400$ МПа выше по сравнению с прочностью гладких $\sigma_{10^3} = 335$ МПа, однако при 10^5 ч положение изменяется, т.е. прочность надрезанных образцов $\sigma_{10^5} = 145$ МПа меньше прочности гладких $\sigma_{10^3} = 185$ МПа; аналогично для материала III: в первом случае прочность надрезанных образцов $\sigma_{10^3} = 350$ МПа выше, чем $\sigma_{10^3} = 330$ МПа для гладких, а во втором, наоборот, $\sigma_{10^5} = 102$ МПа для надрезанных и $\sigma_{10^5} = 120$ МПа для гладких, более того, для материала IV обратная закономерность наблюдается

уже в первом случае и составляет соответственно $\sigma_{10^3} = 384$ МПа для надрезанных и $\sigma_{10^3} = 420$ МПа для гладких, а во втором – $\sigma_{10^5} = 163$ МПа для надрезанных и $\sigma_{10^5} = 228$ МПа для гладких; для материалов V и VI снова подтверждается роль подкрепляющего эффекта. Опыт применения МБД свидетельствует о том, что в этих условиях для уточнения роли концентратора необходимо некоторое обобщение соответствующих экспериментальных данных. Более широкое использование МБД полезно в связи с тем, что, как показывает сравнение с параметрическими методами, он позволяет существенно уменьшить число лишних постоянных и, как следствие, более четко выявлять роль искомого эффекта.

Таким образом, настоящее исследование дает основание утверждать, что переход к систематическому анализу отклонений от довольно общих закономерностей длительного разрушения следует рассматривать как важный элемент принципиального развития современного прогнозирования характеристик длительной прочности металлических материалов.

Резюме

За допомогою методу базових діаграм проаналізовано більше двохсот діаграм тривалої міцності, одержаних при тривалості експерименту 100000 г і більше. Показано, що робота лише з відхиленнями окремих ділянок експериментальних діаграм від відповідних ділянок базових як у режимі аналізу відомих експериментальних даних, так і в режимі прогнозування тривалої міцності відкриває нові значні можливості підвищення точності та надійності прогнозування.

- Goldhoff R. M. Towards the standardization of time-temperature parameter usage in elevated temperature data analysis // J. Test. Evaluation, JTEVA. – 1974. – 2, N 5. – P. 378 – 424.
- Мэнсон, Энсайн. Успехи за последнюю четверть века в развитии методов корреляции и экстраполяции результатов испытаний на длительную прочность // Теорет. основы инж. расчетов. Сер. Д. – 1979. – № 4. – С. 9 – 18.
- 3. *Работнов Ю. Н.* Ползучесть элементов конструкций. М.: Наука, 1966. 752 с.
- Conway J. B., Flagella P. N. Creep-rupture data for refractory metals to high temperatures. – New York; London; Paris: Gordon and Breach Sci. Publ., 1971. – 787 p.
- Аршакуни А. Л., Локощенко А. М., Киселевский В. Н. и др. Закономерности ползучести и длительной прочности. Справочник / Под ред. С. А. Шестерикова. – М.: Машиностроение, 1983. – 102 с.
- 6. Шестериков С. А., Локощенко А. М. Ползучесть и длительная прочность металлов // Итоги науки и техники. Механика деформируемого твердого тела. М.: ВИНИТИ, 1980. Т. 13. С. 3 104.

- В. В. Кривенюк, Л. А. Заслоцкая, Д. С. Авраменко
 - 7. Larson R. R., Miller J. Time-temperature relationship for rupture creep stress // Trans. ASME. 1952. 74, N 5. P. 765 775.
 - 8. *Manson S. S., Haferd A. M.* A liner time-temperature relation for extrapolation of creep and stress rupture data // NASA TN. 1953. TN. 2890.
- 9. Orr R. I., Sherby O. D., Dorn J. E. Correlation of rupture data for metals at elevated temperatures // Trans. ASM. 1954. 46. P. 113 128.
- 10. *Data* sheets on the elevated-temperature properties of 1Cr–0,5Mo Steel // NRIM Creep Data Sheet. 1990. N 35A.
- 11. *Data* sheets on the elevated-temperature properties of 1Cr-1Mo-0,25V Steel // Ibid. N 9B.
- 12. *Data* sheets on the elevated-temperature properties of 18Cr–8NiTi Stainless steel // Ibid. 1987. N 5B.
- 13. *Data* sheets on the elevated-temperature properties of 12Cr steel // Ibid. N 13A.
- 14. Кривенюк В. В. Прогнозирование длительной прочности тугоплавких металлов и сплавов. Киев: Наук. думка, 1990. 248 с.
- Писаренко Г. С., Кривенюк В. В. Новый подход к прогнозированию длительной прочности металлов // Докл. АН СССР. Механика. – 1990.
 – 312, № 3. – С. 558 – 562.
- Кривенюк В. В., Скляревский Д. Р. Особенности прогнозирования характеристик длительной прочности металлических материалов при долговечностях более 100000 ч // Пробл. прочности. – 1994. – № 12. – С. 37 – 42.
- 17. *Data* sheets on the elevated-temperature properties of 2,25Cr–1Mo Steel // NRIM Creep Data Sheet. 1986. N 3B.
- 18. Фрост Г. Дж., Эшби М. Ф. Карты механизмов деформации. Челябинск: Металлургия, 1989. – 328 с.
- 19. Красовский А. Я. Термодинамическая природа степенных эмпирических зависимостей характеристик прочности и разрушения материалов от времени. Сообщ. 1. Ползучесть и длительная прочность // Пробл. прочности. 1996. № 2. С. 5 24.
- 20. Миллер К. Ползучесть и разрушение / Пер. с англ. М.: Металлургия, 1986. 120 с.
- 21. Ковпак В. И. Прогнозирование жаропрочности металлических материалов. Киев: Наук. думка, 1981. 240 с.
- 22. Herman D., Granacher Ju., Granacher Jo. Ergebnisse aus zeitstandversüchen bei 500°C mit einer Beanspurchungsdauer bis über 3000000 h // Archiv für das Eisenhüttenwesen. – 1979. – N 7. – S. 299 – 303.
- 23. Шестериков С. А., Локощенко А. М. Влияние концентрации напряжений на длительную прочность // Пробл. прочности. – 1996. – № 5. – С. 39 – 43.

Поступила 18. 11. 99