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OLEXANDRA KAMENSCHYKOVA

APPROXIMATION OF RANDOM PROCESSES BY
CUBIC SPLINES

Approximation of some classes of random processes by cubic splines
with given accuracy and reliability is considered. Estimations of
deviation of approximating spline from original process are obtained.
A few examples of approximation are considered. Application of
splines for simulation of processes is also studied.

1. INTRODUCTION

Let {X(t),t € T = [a,b]} be a random Ly (2)-process.

Denote by A := {a =ty < ... <ty = b} — the partition of the segment
[a,b] into N parts. Assume that the values {y;,i = 0, N} of the process
X (t) in corresponding points {t;,i = 0, N} are known.

The problem of approximation of such process X (t) with given accuracy
and reliability in norms of different spaces (C(a,b]), L,(T) etc.) by cubic
splines, constructed on known values of the process in partition points, with
given boundary conditions, is considered.

We recall some basic definitions and facts used in the article.

Let (€2, B, P) be a standard probability space.

Definition 1. The process X () approximates the process X (t) with given
accuracy € > 0 and reliability 1 — 6,0 < § < 1 in space A if the next
inequality is satisfied:

P{HX(t) - X(t)HA > 5} <.

Definition 2. [1] Function Sa ,(t) (or Sa(t)), continuous on [a, b] with its
first and second derivatives, which is a cubic polynomial on every segment
[ti_1,t],i =1, N, and which satisfies the conditions Sa(t;) = y;,i = 0, N, is
called a cubic spline on A, which interpolates values y; in the knots of A.
Denote by Yn(t) := X (t) — Sa(t),t € T, the deviation random process.
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54 OLEXANDRA KAMENSCHYKOVA

Definition 3. [2] A continuous even convex function u = (u(z),z € R)
is called an Orlicz N-function, if it is monotonically increasing for x > 0,
u(O)annd@HO as x —0 and @—mxy as x — oo.

Assumption Q: [3] The assumption Q holds for an Orlicz N-function ¢, if

TR

===—x—0
=0 .2

Remark 1. The constant ¢ can be equal to oco.

Definition 4. [3] Let ¢ be an Orlicz N-function satisfying the assumption
Q. A zero mean random variable £ belongs to the space Sub,(2) (the space
of p-sub-Gaussian random variables), if there exists a constant 7¢ > 0 such
that the inequality

Eexp (A) < exp (p(re)))
holds VA € R.

Proposition 1. [2]-[4] The space Sub,(?) is a Banach space with respect
to the norm

T

»(§) =inf{a > 0: Eexp (A) < exp(¢(aN)), X € R}.

Definition 5. [2] Let T be a parametric space. A random process {X (t),t €
T} belongs to the space Sub,(N2) if for all ¢ € T X(t) € Sub,(£2) and
super Tp(X (1)) < o0,

Definition 6. [5] A family A of random variables £ € Sub, () is called
strictly Sub,(2) if there exists a constant C'y > 0 such that for any finite
set I, & € A, i€ 1, and for VA; € R the inequality holds:

T, <Z AZ@-) <Oy |E <Z Ai§i>2

1€l i€l

1/2

Cy is called a determinative constant.

Definition 7. [5] ¢-sub-Gaussian random process {X (t),t € T'} is called
strictly Sub,(€2) if the family of random variables {X (¢),t € T'} is strictly
Suby,(€2).

Definition 8. [2] Let f = (f(z),z € R) be a real-valued function. The
function f* = (f*(z),r € R) defined by the formula f*(z) = sup,cp(zy —
f(y)) is called the Young-Fenchel transform of the function f.
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2. ESTIMATIONS OF THE DEVIATION PROCESS

Denote by M; := SX(t;),j = 0, N — the so-called "moments” of spline

. — hs ) - -

SA(t), hj = tj_tj—ly,] = ]_,N, )‘j = thrJ;lerl’ Hi = 1_/\j7 ] = ]_,N — 1.
As the spline S (t) is a cubic polynomial on every segment of partition
and as Sa, S\, SR are continuous we obtain the system of N — 2 equations

for the moments of spline M;,j =0, N ([1]):

oV R — (s — ) B
pi M1+ 2M; + N\jM;pq =6 (i1 = yi) /P — (Y — yi-1) /Dy (1)
h]’ + hj+1

For unique solution of this system we specify 2 additional — boundary
conditions — in the next form:

2M0 + /\0M1 = do ,U,NMN_l + 2MN = dN, (2)

where Ao, do, pin, dy are given values.
The equalities (1) and (2) defining the spline can be written in the matrix
form:

"
AM =d, (3)
wher
2 XN O My dy
M1 2 )\1 0 ..........
A = 0 M2 2 )\2 .......... M — 7 _

................. UN 2 MN dN
dj,j =1, N —1 — right sides of (1).
Denote by |A| = max; h; the diameter of the partition A, and ( such
finite number that max;<j<y ‘hAj' <.

Theorem 1. Let X(t) be Ly(S2)-process which satisfies the inequality

sup BIX (¢ + h) = X(8)|" < o*(h), (4)
teT
where a(h),h > 0 is a known function such that o(h),h > 0 increases
monotonically, %,h > 0 is non-decreasing and o(h) | 0,h | 0. Suppose

Sa(t) is the spline which interpolates this process and satisfies the boundary
conditions (2). Then ¥t € T

BV < (S22 147 1167+ aldo +aldwl] + 3) o(80).
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_ (b—a)’

where ¢y = ola)"

Remark 2. By the norm of matrix A we mean || A ||= max; Zj ;|-

Proof. For t € [tj_1,t;],7 =1, N we receive the equalities ([1]):

(t; —t)? = hj (t—tj-1)° =1
SA(t) = M;_4(t; —t)———L + M;(t —t;_4) L+
J J 6h] J J 6h]
S T (2= (). (6)

J

From (3) we obtain: M; ZN 1A di + A do + A dN, where
AE;D are the elements of the matrix A~ 1. Coefﬁcients before Mj_l, M;

2

y '(t_tj1>

(t; —t)*> —h3 _ |
SV

6h,

h2
9f

(8= t5-1)* = hj| _
6h,

(t; —1)

Besides,

/2

h2(Ed?)\/> h? v vi—uia)’)

]( z) _ J E Yi+1 Yi _ Yi Yi—1 S ﬂQO'(‘AD,
6 hi + hita Py hi

1/2

<E (W—X(t}—}-%(%_(t + 1 1))) ) g (|A]).

J

We get:

W (EM;_ )2 + (EM2)?) < 2| A7 || [68%0 (|A]) + |AP(|do| + [dn])]. (7)
Thus

(VR0 < (E(M-% 2+ EQE)) o+ 2a1A) <

3
< 1 2 2 o '
< 9f FA™ [ {6570 (|A]) + A (|do] + ldn )] + Fo(|A])
As |A| <b—a and ﬁ decreases on h, then
AP Al _ (b—a)?
< (b—a < =: ¢y,
A2 = Vo) = ot —w

SO
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BV < (S22 147 1165 + aldd + alayl] + 5 ) a(A):

Corollary 1. In the case of uniform partition of T' and the next boundary
conditions \g = dy = uy = dy = 0, i.e. My = My = 0, the inequality (5)

pecomes (E((Sa(t) — X (1)) < (3;\4/5 * g) ’ (%) ‘

Proof. The corollary results from Theorem 1 and the next proposition.

Proposition 2. [1] If for the matriz A |Xo| < 2, |un| < 2, then || A7 ||<
max[(2 — \g) 1, (2 — pn) L 1.

Theorem 2. Let X(t) be Lo(S2)-process which satisfies (4), Sa(t) be the
spline which interpolates this process and satisfies boundary conditions (2),
A, Yy(t), co, B are defined above. Then Vt,t + h € [a,b],Yh > 0 the estima-
tion holds true:

(E(Yn(t+h) = Yn(1)*)"? <

< o(h) (4+ ) A1 (68 + ol + \de) | ®)

Proof. Consider 2 possible cases.
Case 1. Let t,t 4+ h € [t;_1,t;],j =1, N, then

(B(Yn(t+h) = Yu()*)"? < (E(Sa(t+h) = Sa(t))*)? + o (h).

From (6) we get

I:= (E(Sa(t+h) — Sa(t))V? = (B(M;_I, + M;I, — I3)*)"/?,

L) - (t; = t)(h? = 2h(t; — t)) — h((t; — (t +h))* = 1?) e
! 6h; =7 3n;
(t —tj_1)(W* + 2h(t —t;_1)) + h((t + h —t;_1)* = h3) s h
|IQ| = < h’ - a7
6h; 7 3h;

(BB = (B((y; — 5-1) 70" < o(h)

J

h
— <o(h
<o
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From (7) and the inequalities above we obtain:

< 3%]-'2 | A7Y | [68%0(JA]) + coo(JAN)(|do| + |dn])] + o(h) <

< o) (12 A7 | (6 + el + D))

~
AN

(as 5L < hy, 8> 1, then - < &y as h < A then ko (|A]) < a(h)).

(B e+ 1) = Y0)) 2 < o(h) (2 57 1471 165 + culdol + dn])).

Case 2. Now suppose t € [t;_1,t;],i =1,N —1, t+he[t;1,t],j=
2, N,i < j, then again (E(Yy(t + h) — Yy(t))?)Y2 < I + o(h), where

I = (E(Sa(t+h)—Sat))"? = (B(Sa(t + h) — Sa(tj—1))*)"* +
b (E(Sa(tm) - Sa@))Y + (B(Sali) - Sa(0))1 <
45 —1 2
< o) (345 147 1 65 + ulll + dx)) )

(B )~ Y0 < o) (44 5 147166 + o] + a1

Thus from cases 1,2 we obtain (8).

Corollary 2. In the case of uniform partition of the segment T and bound-
ary conditions \g = dy = uy = dy =0, i.e. My = My = 0, the inequality
(8) becomes

(E(Yn(t+h) = Yn)HY? <120(h), t,t+heT, h>0.

Denote m; := S)(t;),7 = 0, N, then for t € [t;_1,t;],7 = 1, N, the next
equality is satisfied ([1]):

t_t2t—t_ t—t._ Qt_t
& 2
ti— )220t —tiq) + h; F ot D22t — 1) 4 B
+ yj_l(J ) ( (hz j-1) J)+yj( j-1) (h(gj ) ])’
! J

whence the system of N — 2 equations follows:
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Ay + 2m + pymygy = X LY gy WL TN =1L (9)
hj hj1
We set the next boundary conditions:
2m0 + Homy1 = Cg /\NmN_1 +2my = CN, (10)

where (g, cg, Ay, cn are the specified values.
The equalities (9) and (10), which define the spline, can be written in
the matrix form:

2 Mo 0 mo Co
)\1 2 1251 0 ...
0 )\2 2 M2 e

................. AN 2 my CN

where ¢;,j =1, N — 1 are the right sides of (9).

Theorem 3. Let X (t) be Lo(S2)-process, Sa(t) — spline, which interpolates
it and satisfies the boundary conditions:

2mg = 2y5, 2my = 2y, (12)
where y) = X'(to), yy = X'(tn). Assume there 3X'(t),t € T, and
(B(X'(t) — X'(s))Y? <wi(h),Vt,s € T: |t —s| < h, (13)

where wy(h) is a positive monotonically increasing function, %(h) T, wi(h) |
0,h ] 0. Then

(B(0)7)7 < 21A]- wn(|A]), Ve € T,

(B (WP < Sen(|A) e T,

Proof. Denote the matrix of coefficients in (11) by B under boundary con-
ditions (12) and equations 3mg = 3y, = ¢y, 3my = 3yl = cn instead of the
first and the last equation of the system (11).

From (11) we get: B(nmi —+7¢) = (I —+B)¢, where nii = (my, ..., my)7,
— T
¢ = (co,...,cn)'. But
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0
)\1(01 - Co) - M1(02 - 01)

1
(I-3B) = ,

)\Nfl(CNfl - CN72) - ,UNfl(CN - CNfl)
0

whence

(B (1= 3B)T )2 < max (Aan(BIAD + e BIAD) < 3w (1A,

k=1,N—-1

1
(B |70 = 7€ )72 < BT (B || (I = 3B) )Y < 3un(|A)).

Wl =

S

Then Vj = 1I,N —1 3 € [tj_1,t] 0 3 = X'(§) and 2 = X'(a),
ﬁ
X = X'(b), so denoting X" = (X'(ty), ..., X'(tn))" = (Yo, - yn)" we ob-
tain:

— 1 1 —
(B[ mi—X" ") < (B Fi—g? 1)V +(E | g?—X’ I)'? < 4w (|A)).

Let’s use the next representation and inequalities: for t € [t;_1,t;],j =
1,N

Y — Yj— 3 tio+t\° 1
Si) - %:[F(t_%) .
J .

+ (m; — ) (y§—1+y}—2'¥>]+h—(t—%) X

h; j
X [(my —y;) — (mjr —y5_0) + (Y — ¥5-1)], (14)
2
% t_tj+tj—1 _l <1’ it_tj+tj_1 <l’
02 2 =2 h 2 |72
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s - o\ 1/2
(B (my—))?) " < 4w, (E (y—%) ) < (1)),

J

then from (14) for ¢t € [t;_4,¢;],7 =1, N:

?

9\ 1/2

——y 1

(E (S’A(t)—%) ) < 5(4+4+1+1)w1(|A|)+
J

19

b4t DA = S (lA),

whence Vt € T' (t* is the closest of ends ¢;_4,%; to t):

(BX'(1) — SA (D)) < wu(|A]) + S (1A]) = Ten(A]),

t

(B(X() — Sa(t))2 = (B( /

t*

(X' (u) = Sa(u)du)?)'? < %!A\wl(\A!)-

Theorem 4. Let X (t) be a Ly(Q2)- process, Sa(t) — spline, which interpo-
lates it under the boundary conditions:

() 2o+ My = (U2 = ) 26+ M = 5% (o = 2582 ) or

where y, = X'(to), Yy = X'(tn), vy = X"(to), v = X" (tn). Assume there
3X"(t),t € T, and

(E(X"(t) — X"(s)>)Y/2 < wy(h),Vt,s € T : |t —s| < h, (15)
where wy(h) is a positive monotonically increasing function, %(h) 1S non-

decreasing, wo(h) | 0,h | 0. Then

(B(Yn()*)"? <

D
2AP - wn(|A], Vi € T,
(B(YX(8)*)"? < 5|Alwn(|A]), VE € T,
(B(YR(8)*)"? < Swn(|Al), vt € T
Proof. From (3) under (i) boundary conditions we obtain:

A - Yy - %Aﬁ,

W =
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do —dy
1 — pa(di — do) — Ai(da — dy)
dy —dn—

Note that for (ii) the arguments will be the same as for (i) except that the
first and the last elements of the vector (16) will be equal to zero, but all
the inequalities will remain true.

Notice that % = (yj“_yj)/Zj:lh;iylj_y"‘l)/hj = yltj_1,t;,tj41] — the dif-
ference quotient. So % = 1X"(&;) for some point & € (tj_1,t;41). From
Taylor’s formulae with the remainder term in the Lagrange form we get that
for some point &y, tg < & < t1, the equality is satisfied: % = =yo)/m v _

h1 -
5X"(&). Similar statement holds true for dy. Thus as

1 .
3 (E(nlde = di—1) = Ai(diyr — di))*)"? < 3ws(|A]), k=T, N — 1,

SB[y — )7 < 3wn(1A)), S(Bld — dy1))? < Ban(|A]),

we receive the estimation:

(B || (I = }4)d [)V* < 3ws(|A]), whence

— 1= _ 1 —
(BN 30 )2 < A B (-2 AT )7 < 3un(|A)).

But from the equalities above for d;,i = 1, N — 1,dy, dy we get:

— 1—)
(B X7 == d |92 < w(|Al),

SO

— 1 1 —
(BIM-X"|)? < (B M-Zd )7+ E]5d-X" )" <

< dwn(|A]), X7 = (X"(to), o X" (tx))T

Sa(t) is a piecewise-linear function, then Vt € [t;_,t;],j =1, N

(BIX"(t) = SAMP)'? < (BIX"(t) = X"(t;))* +
+ (BIX"(t;) = Sa(t)])'* < bwa(|A]).

Since Sa(t;) = X(t;),7 = 0, N, then from Rolle’s theorem for any interval
(ti—1ty) 3§ X'(§) = Sal§), soVE € [t 1], j = LN
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(B(IX'(t) = SA@D)Y? = (B( [ (X"(u) = Sa(u)du])?)"? <

&5

< 5t =&l - wal|A]) < 5[Alws(JA]),

(EQX0) - SsO) = (B [ (00— Saw)aul?) <
. 5
< =] 5[ALs(JA]) < S|APw(JA])
(t* is the closest of ends ;_1,t; to t).
3. EXAMPLES OF APPROXIMATION (SPACE L,(T"))

Theorem 5. i) Let { X (t),t € T = [a,b]} be a SSub,(Q2)-process with deter-
minative constant Cy and which satisfies (4), Sa(t) is the spline interpolat-
ing this process under boundary conditions 2My + NoMy = dy, punMy_1+
2Mpy = dy, where g, dy, pin, dn are given values. Then Ve > 0 :

ey ( £ ) 1 5 >
c3Cra(JA]) ) e3Cra(|A]) (b—a)t/p =77

where p(_l)(t) t > 0 is the inverse function for p(t), p(t) is the density of
(,0 fO dt C3 = 9\2/5 || A_l H [652 + Co|d0| + Co|dN|] + %, A,ﬁ,CO
are deﬁned above, the next inequality holds:

p{HX(t) = Sa®)ll,, > 5} < 2exp {_90* (C3CAJ(‘AB(U — u)l/p) } ’

where ©* is the Young-Fenchel transform of the function p,p > 1.

i) Let {X(t),t € T = [a,b]} be a separable SSub,(S2)-process with deter-
minative constant Cy, satisfying (4) and assume [ ¢(In(o"V (u)))du < oo
for all z and for sufficiently small v > 0 where w( ) = u/o"V(u). For
Vi, s € T put EX(t)X(s) = R(t,s) and suppose PRLS) orists and satisfies

OtOs
2
sup (M ) < W (h),
u=t,v=s

[t—s|<h Oudv
h

where wyi(h) is a positive monotonically increasing function, ) 1S non-

O?R(u,v) _ 20°R(u,v)
Oudv |, _,_. Oudv

u=v=t uU=v

decreasing, wi(h) | 0,h | 0. Then for the spline with boundary conditions
2mo = 245, 2my = 2yly, where yo = XD (ty),yy = XV (ty), Ve > 0
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oD ( € ) ! c >y
FCAAw(JA]) ) ZCAAlwi(JA]) (b= a)tr =
the inequality holds true:

P{IX(@) = Salt)l,, > <} < QGXP{‘@* (%qmrwlazww— a>1/p> }

i) Let {X(t),t € T = [a,b]} be a separable SSub,(S2)-process with de-
terminative constant Cy, satisfying (4) and assume [, 1(In(cY (u)))du <
oo for all z and for sufficiently small v > 0 where ¥(u) = u/p =Y (u). For
Vi, s € T put EX(t)X(s) = R(t,s) and suppose ORLS) orists and satisfies

Ot29s?
4
sup (8 R(u,v)

*R(u,v)
ou?ov?

B 20'R(u,v)
Ju?ov?

[t—s|<h 8U28U2

u=v=t U=vV=8 u=t,v=s

) < wj(h),

where wy(h) is a positive monotonically increasing function, %(h) 1S non-

decreasing, wa(h) | 0,h | 0. Then for the spline with boundary conditions

2My+ M, = & (yh;y . y6> 2My+ My = & (;,;V . %) or 2My =

2y0, 2My = 2y}, where yi = X(z)(to),yﬁ(f = X(Q)(tN), Ve >0:

_ € 1 €
pY (5 ) - > p,
SCAlAZ - wy(|A]) ) ZCAlA2 - wa(]A]) (b — a)l/r

the inequality holds:

P10 - a0, > =} <200 {~ (s mmge—a) |

Proof. The theorem comes from theorems 1,3,4, theorem 3.1 from [6] (in-
equality for norm in L,(T) of Sub,(€2) process) and theorems 3.7-3.9 from
[7] (conditions for the existence of continuous partial derivatives of a random

field of the space SSub,(£2)).

Example 1. Assume o(h) =ch®,0< a <1,c¢>0,p=2,p(z) =2?/2,T =
[0,1],¢ = @ = 1, the partition A is uniform, Cy = 1.

Applying theorem 5, let’s obtain the inequalities for the order of partition
N, which should be satisfied in order that the corresponding spline with
given boundary conditions approximates the original process with given
accuracy ¢ and reliability 1 — § in the norm of L,.

a) Let the boundary conditions for spline be SX(0) = SX(0) = 0. Then
for e = 0.03,6 = 0.01 we get N > 244, fore =0.1,0 = 0.1 = N > 55.
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b) assume that the conditions of theorem 5 ii) are satisfied, wy(h) = h.
Then for e = 0.03,6 = 0.01 for the corresponding spline we derive N > 24;
for e =0.1,0 = 0.1 we have: N > 12.

c) assume that the conditions of theorem 5 iii) are satisfied, wqo(h) = h.
We get: for e = 0.03,0 = 0.01 for the corresponding spline the order of the
partition should meet N > 7, for e =0.1,0 =0.1 = N > 4.

4. APPLICATION OF SPLINES FOR SIMULATION OF GAUSSIAN PROCESSES

Consider the problem of simulation of centered gaussian process {£(t),
t € T =[0,1]}, with known covariance function B(t,s) = E{(t)£(s),t, s €
T, in L,(T) with given accuracy € > 0 and reliability 1 — 9,0 < § < 1 by
spline with corresponding boundary conditions (2).

Then the algorithm of such simulation is following:

1) for given B(t,s) choose such function o(h) = ch® ¢ > 0,0 < a < 1,
that sup, er.,—s<n(B(t, 1) — 2B(t, s) + B(s, s)) < o?(h).

2) for given ¢, 0 and obtained o (h) find the order of spline N :

P (I £@) = Sa(®) llz,m)>€) < 0.

(using theorem 5 i)). Calculate the points of the partition t; = %, k=0,N
and nonnegatively definite matrix R = (Ri;);—o, Rij = B(ti, t;).
3) get eigenvalues b, ..., b3 and eigenvectors g, ..., oy of R.
ﬁ
Lo
Then as it is known the matrix A = | ... | reduces R to diagonal form
TN
oo ...
2
i.e. D= ARAT where D = 0 8 0
..... 0 b%

4) simulate vector ? = (€oy---»Cny ), G ~ N(0,1) are independent, cal-
culate 7 = (1, ..., Nn ), where 1; = b;(;.
—)

5) find vector E = A7, construct corresponding spline with boundary
conditions (2) — desired model of the process £(¢).
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