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OLEKSANDR D. BORYSENKO AND OLGA V. BORYSENKO

LIMIT BEHAVIOR OF NON-AUTONOMOUS
RANDOM OSCILLATING SYSTEM OF THIRD
ORDER UNDER RANDOM PERIODIC

EXTERNAL DISTURBANCES
IN RESONANCE CASE

The asymptotic behavior of the general type third order non-autono-
mous oscillating system under the action of small non-linear random
periodic perturbations of “white”and “Poisson” types in resonance
case is investigated.

1. INTRODUCTION

The asymptotic behavior of the general type third order non-autonomous
oscillating system under the action of small non-linear random periodic per-
turbations of ”"white” and " Poisson” types in the non-resonance case is inves-
tigated in O.D.Borysenko, O.V.Borysenko [1]. The overview of papers de-
voted to the averaging method, proposed by N.M.Krylov, N.N.Bogolyubov
2], and its applications to random oscillatory systems of different types is
presented in O.D.Borysenko, O.V.Borysenko [3] with corresponding refer-
ences.

In this paper we will investigate the behaviour, as ¢ — 0, of the general
type third order non-autonomous oscillating system driven by stochastic
differential equation

2" (t) + ax”(t) + b2/ (t) + ab’x(t) =
= & fo(uot, x(t), '(t), 2" (1)) + fe(t, x(t), '(t), 2" (1))

(1)
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with non-random initial conditions x(0) = xg, 2/(0) = xp, 2”(0) = xj, where
e > 0 is a small parameter, f.(¢,z,2',2") is a random function such that

Hefmtt [ [ foga (ttmsa8, 3(s), 2/ (s), 2" (s), 2) D(ds, dz),
R

ki > 0,7 = 0,m+1; a > 0,b > 0; f;,7 = 0,m+1 are non-random
functions, periodic on u;t,j = 0,m + 1 with period 2m; {w;(t),7 = I,m}
are independent one-dimensional Wiener processes; v(dt, dy) = v(dt, dy) —
I(dy)dt, Ev(dt,dy) = Il(dy)dt, v(dt,dy) is the Poisson measure indepen-
dent on w;(t),j = 1,m; II(A) is a finite measure on Borel sets in R.

We will consider the equation (1) as a system of stochastic differential
equations

dx(t) = 2/(t)dt
d'(t) = 2"(t)dt
do"(t) = [—ax"(t) — b*2'(t) — ab®z(t)+
+ % foluot, (1), o' (), 2" (1)) Jdi+

+ Z e f(pst, (), ' (t), 2" (t))dw; (t)+

+€km+l / ferl(,uerlta x(t>7 Z‘l(t), lel(t), Z)ﬁ(dt, dZ),
R

z(0) = xg, 2'(0) = zj, 2"(0) = xy.

In what follows we will use the constant K > 0 for the notation of different
constants, which are not depend on ¢.

From Borysenko O. and Malyshev 1. [4], using the obvious modifications
we obtain following results

Lemma. Let for each v € RY there erists

1 T+A _
lim — t,z)dt = f(x
Jim [ pa) it = fo)
uniformly with respect to A, the function f(x) is bounded, continuous, func-
tion f(t,x) is bounded and continuous in x uniformly with respect to (t,x) in
any region t € [0,00), |z| < K, and stochastic processes £(t) € R?, n(t) € R
are continuous, then
¢

i [ (2 0o €06)) ds = [ o)) ds

e—0 0
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almost surely for all arbitrary t € [0,T].

Remark. Let f(¢,x,z) is bounded and uniformly continuous in z with
respect to ¢t € [0,00) and z € R in every compact set |z| < K,z € R%. Let
II(-) be a finite measure on the o-algebra of Borel sets in R and let

A
lim l/TJr ft,x, 2)dt = f(x, z),

T—o00 A

uniformly with respect to A for each € R% 2z € R, where f(z,2) is
bounded, uniformly continuous in x with respect to z € R in every compact
set |z| < K. Then for any continuous processes £(t) € R? and n(t) € R we
have

i [ (206006600 2) tazpis = [ [ Feto) mcaz)as.
2. MAIN RESULT

We will study the resonance case: p; = Pih for some Jj=0m+1,
qj
where p; and g; are relatively prime integers. Let us consider the following

representation of processes z(t), 2/ (t), z" (t):
x(t) = C(t) exp{—at} + A1 (t) cos(bt) + Ay(t) sin(bt),
' (t) = —aC/(t) exp{—at} — bA, (t) sin(bt) + bAs(t) cos(bt),
2" (t) = a®C(t) exp{—at} — b*A;(t) cos(bt) — b* Ay(t) sin(bt),
N(t) = C(t) exp{—at}.

e Palt) + ()
(1) + 2(t
N(t) =
( ) a2 + b2 Y
A (t) = cosaccos(bt + a)z(t) — Slr;btx'(t) _ana sn;ébt +o) 2" (t),
bt i bt
Ay (t) = cos asin(bt + a)x(t) + COZ Z'(t) + smozco;( ) z"(t),

where o = arctg (b/a). We can apply Ito formula [5] to stochastic process
£(t) = (N(t),A(t), As(t)) and obtain for the process £(t) the system of
stochastic differential equations
1
dN(t) = —aN(t) dt + PR dM(t),
sin acos (bt + )
b2

sin asin (bt + «)
b2

dA (1) = — AM(t), dAs(t) = dM(t),
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dM(t) = € fo(uot, N(t), Ay (t), As(t), t)dt+ (3)

+ e filpit, N (1), Au(t), Ao (1), t)dw; (t)+

ok / et (tansat, N (), Ay (1), Ag(t), £, 2)i(dt, d2)),
R

a’rg — x) azxy + (a* + b*)z} + ab®zg
40 =" 40 = a2t

b’zo +
NO =

where fj(ujt, N, Ay, Agyt) =

fi(ujt, N + Ajcosbt + Apsinbt,—aN — bA;sinbt + bAycosbt,a®N —
b2A1 cosbt — b2A2 sin bt), ] = O,—m, fm-‘,—l (Mm+1t, N, Al, AQ, t, Z) =
fmi1 (pmsrt, N + Ay cosbt + Ay sinbt, —aN — bA; sinbt + bAy cosbt, a®> N —
b2 A cos bt — b? Ay sin bt 2).

Theorem. Let II(R) < oo, t € [0,ty], kK = min(ko,2k;,j = 1,m+1). Let
us suppose, that functions f;,7 = 0,m +1 bounded and satisfy Lipschitz
condition on x,x',x". If given below matriz 5%(Ay, As) is positive definite,
then: '

1. Let p; = % - b, for 5 = 0,m+1, where p; and q; some relatively

j _
prime integers. If kg = 2k;, j = 1,m+1, then the stochastic process

£.(t) = £(t/%) weakly converges, as e — 0, to the stochastic process £(t) =
(0, A1 (), Ay(t)), where A(t) = (Ai(t), Ay(t)) is the solution of the system of

stochastic differential equations

dA(t) = a(A(t))dt + G(A(t))dw(t), (4)

where O_J(A) = (O_[(l) (Al, AQ), O_[(z) (Al, Ag)),

@(1)(141’142) - _

27 2w

Z //fo(w,Al,Az,t)(&sinw+bcosw)ei("erlt) dt di,

pon+qol=0 0 0

Am2b(a? + b?) %

1

A2(A, A= —
a4 Ay 47T2b(a2+b2)x

21 2w

> / / fo(ih, Ay, Ay, t)(acostp — bsing)e W+ gt dop,

pon+qol=0 0 0
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1
47202 (a2 + b?)? X

(NI

5(141, AQ) = {B(Alv A2)}

21 2w

Z P21, Ay, Ag, ) B(h)e ™ it dyp
j=1 n+q; =0 00
21 21

Z ///fT?l+1 U, Ay, Ay t, 2) B(y)e ™D TI(dz) dt dip ,

Pm+1n+qm411=0

B(¥) = (Bij(¥),i,j =1,2), Bu(¥) = (asiny + beos))?,
Bis(¢)) = By (v) = —(asiney + bcos ) (acosp — bsin),
By (1) = (acostp — bsiny)?,
fi(0, Ay, Ag, t) = f3(4,0, Ay, Ay, t), §=0,m

fm+1(¢7 Alu A27 t) Z) = fm+1(¢7 07 Ala A27 t) Z)7
w(t) = (w(t),7 = 1,2), w;(t),j = 1,2 — independent one-dimensional
Wiener processes. )
2. If k < kg then in the averaging equation (4) we must put fo = 0; if
k < 2k; for some 1 < j < m+ 1, then in the averaging equation (4) we
must put f; =0 for all such j.
3. If pj # bi | b for some j = 0,m + 1 and arbitrary relatively prime in-
4
tegers p; and q;, then in averaging coefficients in (4) we must put l =n =0

NI

in corresponding sums containing f;.

Proof. Let us make a change of variable ¢t — t/&* in equation (3) and obtain
for the process £.(t) = (N (£), A5(t), A5(1)) = (N(t/e4), Ay(t/e), Ao(t/*))
the system of stochastic differential equations

ko—Fk

dN.(t) = l—;ikzv (1) + §+b2 o(pot /2%, NL(), AS(1), AS(t), /") | dt+

cki—k/2

+Z g ot/ N(8), AS(0), A5(0), £/ dws (1) +

m+1

2 [ Tt 4 N0 A0, 4500,/ 210 ),

sin asin(bt/e* + )
b2

3B gt R, N (1), A5 (1), AS(0)) s ()

j=1

dA5 (1) = - [0 fy(pot /%, NL(t), A5 (1), A5(t))de+ (5)
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+ghm+1 / fm+1(um+1t/5kaNs(t)aAi(t%A;(t)aZ>l7€(dt7 dz)],

sin o cos(bt/e* + )
b2

30 gt 5 NL(0), A1), A5(E). /) 1)+

J=1

+5km+1/fm+1(,um+lt/€ () AE() Ag(t)vt/gkvz)DE(dt’ dz>]’

where w5 (t) = e¥/2w;(t/¥), v.(t, A) = v(t/e*, A)—11(A)t/e*, here A is Borel
set in R. For any € > 0 the processes w; (t), j = 1,m are the independent
Wiener processes and 7.(t, A) is the centered Poisson measure independent
on wi(t), j=1,m.

Since we have relationship N.(t) = exp{—at/e*}C(t/e*) and process
C.(t) = C(t/€") satisfies the stochastic equation

dA5(t) = ("7 foluot/*, No(t), A3 (t), A5(2), t/<*)dt+

as/ek

C.(t) :C(O)+6k°_k/ 62+b2 foluos/e®, No(s), AS(s), A5(s), s/e") ds+

eas/e"

—i—Zek k/Q/ 2—|—b2 ~(,u]s/s N.(s), A5(s), A5(s), s/<") dws(s)+

as/s
febm / [ S e /24 N (s), A5 (5) A, /2, 2) o ),

a? + b2

b2
where C(0) = 220 we can obtain estimate

a2+b2
m~+1
E|N€(t)|2 < K[€72at/5k + €k(1 _ eant/sk)(teﬂkofk) + Z €2kjfk)]‘
j=1

Therefore lim._o E|N.(¢)]* = 0 and it is sufficient to study the behaviour,
as € — 0, of solution to the system of stochastic differential equations

sin asin(bt/e* + o)

E €4 folpot /5, A5 (), A5(t))dt+

dA () = —
+ 3 TR f (it R, AT (1), A5(#))duws (1) +
j=1

+€km+1 /R ferl (,Uerlt/Ek: Ai (t)v Ag (t)7 Z>175(dt’ dZ)],

sin o cos(bt/e” + )

b2 (%~ foluot /", A3 (1), A3(t), £/ )dt+  (6)

dA5(t) =
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7j=1

+€km+1 / fm+1 (,uerlt/Eka Ai (t)v Ag (t)7 t/€k7 Z>175(dt’ dZ)],
R

with initial conditions A5(0) = A;(0), A5(0) = A3(0).
Let us denote A.(t) = (A5(t), A5(t)). Using conditions on coefficients of
equation (6) and properties of stochastic integrals we obtain estimates

m+1
E||[A.(1)]* < K (1 4 2e2ko—k) |y Z€2kjk> |
7=1

m+1
El|A:(t) — A(s)|]? < K (\t — 5|22 ko=k) |t — | Z 82k-jk-> '
=1

Similarly for the process (.(t) = ((5(t), (5(t)), where

. L Psinasin(% 4+ a) o s . 5 S, .
Gi(t) == Do b [ IS T (R A), Ag(e), S o)~
j=1

Porsinasin(® +a) ;0 s L A CREN
—€km+1 /0 /R b2 - fm-i—l( ;121 7A1(S)7 A2(S)7 €_k’ Z)V5(d87 dz)]’

. — Psinacos(Y +a) o s L . s .
Gl = Yo et [ IR TR A (). Ajle), Sp)duss)+
j=1

b sinacos(® +a) . 1S s .
penn [ [ SRACSELO f (B (), A5(5), S 2 )
0o JR

we derive estimates

m+1 mal
B[] < Kt 78 E||G(t) = ()P S Kt —s| Y e,
J=1 =

Therefore for stochastic process n.(t) = (A:(t),(.(t)) conditions of weak
compactness [6] are fulfilled

limlim sup P{|n.(t) —n.(s)| > 8} = 0 for any § > 0, t,s € [0, 77,
B0 <=0 |, iz,

lim lim sup P{|n.(t)| > N} =0,
N—oo EHOtE[O,T]

and for any sequence ¢, — 0,n = 1,2,... there exists a subsequence
Em = Epmm) — 0,m = 1,2,..., probability space, stochastic processes
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Az, (8) = (A7 (1), 457 (1)), 55@(15)75_1( ) = (As(#), Ax(t)), C(t) defined on this
space, such that A, (t) — A(t),(.,,(t) — ((t) in probability, as ¢, — 0,
and finite-dimensional distributions of A., (t), (., (t) are coincide with finite-

dimensional distributions of A, (t), Qem( ). Since we interesting in limit
behaviour of distributions, we can consider processes A, (t), and (., (t)
instead of A, (t), (., (t). From (6) we obtain equation

t

Ao () = A(0) + / b (5, A () ds + G (), Ao = (A1(0), A9(0)), (7)

where a.(t, A) = ( (t A, Ag), o (t Ay, Ag)),

o _sinasin(bt/e* + a)

@gl)(ta Ay, Ag) = b2

folpot/e", Ay, Ag, t/e5),

_psinacos(bt/ef + a) ;
b2

It should be noted that process (.(t) is the vector-valued square integrable

martingale with matrix characteristic

ang)(t?AlyAQ) = (,U{)t/é Al,Ag,t/€ )

(el Z / (s, A{(s), A5(s))ol™D)(s, AS(s), A5(s)) ds+

Jlo

t
1
[ [ A0 A5(0) A55) 21 5, A5 5) A).2) T2, o = 1.2
0

where

JE— sinasin(% + )

L) (s, Ay, Ag) = > fj(%,Al,AQ,g—i),
052,3')(8’141’142) :gkjk/2smo‘cozg +a)fj(g,A1,A2,€%),
(s, Ay, Ag, 2) = —5km+18in&SiI;§g_z - Oé)fm+1(un;187/11,142, ai’“’ z),
VO (s, Ay, Ay, 2) = gkmﬂsinozcozgg—i +a)fm+l(%71417142,€%,2).

For processes A.(t) and (.(t) following estimates hold

E||A-(t) = Ac(s)[[* < K [e"®7 D]t — s|* + ElIC.(6) = ¢:(s)II], (8)



LIMIT BEHAVIOR 25

m+1
EllG(8) = G(s)[[* < K| Y ™)t — s+
j=1
+€4km+1—3k/2|t . S|3/2 +€4km+1_k|t . S|] ’ (9)
B[|A:(t) — A-(s)[|° < K, E|l¢:(t) — ()] < K. (10)

Since A., (t) — A(t),(., (t) — ((t) in probability, as €, — 0, then, using
(10), from (8) and (9) we obtain estimates

ElIA®) — A@s)I|" < K(lt = s+ [t = s]*),  BlIC(t) = C(s)lI" < Clt = s

Therefore processes A(t) and ((t) satisfy the Kolmogorov’s continuity con-
dition [7].

Let us consider the case kg = 2k;, 7 = 1,m + 1. Under these conditions
we have for [,n =1, 2

t

1
lim P /Ozg)(s, A1, Ag)ds = aV (A, Ay),

e—0
0
[
tim 1 [ 32096, A1, A2)ol (s, A1, )+ 1)
o LJ=t
1 —
4 [ 2006, Ary A, 25, Ay A ) | ds = Bl ),

R

where functions @\ (A4;, Ay) and B(A;, Ay) = {Bi,(A1, As), I,n = 1,2} are
defined in the condition of theorem. Since processes A(t), (t) are continu-
ous, then from Lemma and relationships (7), (11) it follows

A(t) =A(O)+/@(A1(S),A2(S))d8+§(t% A(0) = (A1(0), A2(0)), (12)

where ((t) is continuous vector-valued martingale with matrix characteristic
t
(W (1) = /Bm(fll(s),flg(s))ds, I,n=1,2.
0
Hence [8] there exists Wiener process w(t) = (w;(t),j = 1,2), such that

f(t):/6(A1(3),A2(3))du‘)(5), (A1, As) = {B(A1, A)Y2. (13)
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Relationships (12), (13) mean, that process A(t) satisfies equation (4). Un-
der conditions of theorem the equation (4) has unique solution. There-
fore process A(t) does not depend on choosing of sub-sequence &,, — 0,
and finite-dimensional distributions of process A, (t) converge to finite-
dimensional distributions of process A(t). Since processes A, (t) and A(t)
are Markov processes, then using the conditions for weak convergence of
Markov processes [7], we complete the proof of statement 1 of theorem.

Let us consider the case k < ko. Then coefficients o’ (t, A1, Ag),i=1,2
of equation (7) tend to zero, as ¢ — 0. Repeating with obvious modifications
the proof of statement 1) of theorem we obtain proof of the first statement
of 2).

In the case k < 2k;, 7 =1,m in (11) we have

O’él’j)(t,Al,Ag)O'én’j)(t,Al,Ag) _ O(€2kj_k)7 I,n=1,2.

Then we can complete the proof in this case as above. In the same way we
consider the case k < 2k, 41. The statement 3) follows from result of [1].C]
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