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DISTRIBUTION OF THE MAXIMUM

OF THE CHENTSOV RANDOM FIELD

Let D = [0, 1]2 and X(s, t), (s, t) ∈ D, be a two-parameter Chentsov random field.
The aim of this paper is to find the probability distribution of the maximum of X(s, t)
on a class of polygonal lines.

1. Introduction

Let {X(s, t) : s, t ≥ 0} be a standard Chentsov field of two parameters that is a sepa-
rable real Gaussian stochastic process such that

1) X(0, t) = X(s, 0) = 0 for all s, t ∈ [0, 1];
2) E[X(s, t)] = 0 for all s, t ≥ 0;
3) E[X(s, t)X(s1, t1)] = min{s, s1}min{t, t1} for all (s, t) and (s1, t1) ∈ D.

This definition is given by Yeh [6] in 1960. Another (equivalent) definition is given by
Chentsov [7] in 1955 in terms of the probability density of X(s, t). Yeh showed that the
sample paths of this field are continuous with probability one andX(s, t) has independent
stationary increments in the plane.

The probability distributions of functionals of a Chentsov random field like M =
max(s,t)∈D X(s, t) are not yet known. Some trivial probability distribution theory for
X(s, t) can be obtained by using the known results about the standard Wiener process.

The distribution of the supremum of a Chentsov random field on the curve f(s),
where f(s) is a non-decreasing function of s, can be obtained, since a transformation of
X(s, f(s)) is equivalent to a one-dimensional standard Wiener process.

The probability distribution of the supremum of X(s, t) on the boundary of a unit
square is obtained by Paranjape and Park [1]. This probability is of its own interest, and
it gives a nice lower bound for the probability distribution of the supremum of X(s, t)
over the whole unit square D, which is unknown yet.

Park and Skoug [5] have found the probability that X(s, t) crosses a barrier of the
type ast+ bs+ ct+ d on the boundary ∂Λ, where Λ = [0, S]× [0, T ] is a rectangle. Later
on, I. Klesov [3] considered a probability of the form

(1) P (L, g) = P

{
sup

L
X(s, t)− g(s, t) < 0

}
,

whereX is a Chentsov random field on D = [0, 1]2, L ⊂ D, and g is an almost everywhere
Lebesgue continuous function onD. He presented results, where g(s, t) is a linear function
and L is a polygonal line with one point of break. Klesov and Kruglova [8] considered a
probability of the form (1), where L is a polygonal line with two points of break.

The main purpose of this paper is to evaluate the probability distribution of the form
(1), where g(s, t) = λ and L is a polygonal line with several points of break. we can
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express this distribution in a very useful form: as an expression of the ”tail” of the
two-dimensional Gauss process.

2. Auxiliary results

Lemma 1. (Doob’s Transformation Theorem) [2]. Let X(t) be any Gaussian process
with covariance function R(s, t) = u(s)v(t), s ≤ t, if the ratio a(t) = u(t)/v(t) is con-
tinuous and strictly increasing with inverse a1(t), then w(t) and Y (a1(t))/v(a1(t)) are
stochastically equivalent processes.

Lemma 2. (Malmquist’s Theorem 1) [4]. For a standard Wiener process w(t) and for
b > 0, a ≥ 0, s1 ≤ at′ + b,

P
{
w(t) ≤ at+ b, 0 < t < t

′ |w(t
′
) = s1

}
=

= P
{
w(t) ≤ bt+ (at

′
+ b− s1)/t′ , 0 < t <∞

}
=

= 1− exp
{
−2b(at

′
+ b− s1/t′

}
.

Lemma 3. (Malmquist’s Theorem 2) [4]. For a standard Wiener process w(t) and for
b > 0, a ≥ 0,

P {w(t) ≤ at+ b, x < t ≤ y|w(x) = s1, w(y) = s2} =

= 1− exp
{
− 2R

1−R2
· P1 − s1√

x
· P2 − s2√

y

}
,

where R =
√

x
y , s1 ≤ P1 = ax+ b, s2 ≤ P2 = ay + b.

Let L be a line as shown in Fig. 1 and given by the formula
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Figure 1

(2) L =
{
(s, t) : sa−1 + t = 1, s ≤ k; s+ tb−1 = 1, s > k, (s, t) ∈ D} ,

where tanα = a, tanβ = b, k = a(b−1)
ab−1 , α, β > π

4 .
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Theorem 1. (Paranjape and Park)[1]. Let {X(s, t) : s, t ≥ 0} be a standard Chentsov
field. Then

(3)

P

{
sup

(s,t)∈L

X(s, t) ≤ λ
}

= Φ
(
λ(a+ c)
a
√
c

)
− exp

{−2λ2

a

}
Φ
(
λ(c− a)
a
√
c

)
−

− exp
{−2λ2

b

}
Φ
{
λ(1 − bc)
b
√
c

}
+ exp

{−2λ2(a−1 + b−1 − 2)
}

× Φ
{
λc−1/2(b−1 − c− 2)

}
.

3. Main results and proofs

Let L be a line as shown in Fig. 2 and given by the formula

t
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Figure 2

Q1(x1, y1)

Q2(x2, y2)

(4) L =

⎧⎪⎪⎨⎪⎪⎩
t = 1− s(1−y1)

x1
, s ∈ [0, x1]

t = − s(y1−y2)
x2−x1

+ x2y1−x1y2
x2−x1

, s ∈ (x1, x2]

t = − sy2
1−x2

+ y2
1−x2

, s ∈ (x2, 1].

Theorem 2. Let X(s, t) be a standard Chentsov random field on a unit square. Let
the polygonal line L have two points of break Q1(x1, y1) and Q2(x2, y2) and be given by
formula (4). Let the coordinates of Q1 and Q2 satisfy the conditions

1) y2 < y1;
2) x2

y2
> x1

y1
.

Then

P2 = P

{
sup

(s,t)∈L

X(s, t) < λ

}

×
∫ λ

y1

−∞

∫ λ
y2

−∞

1

2π
√

x1
y1

(
x2
y2
− x1

y1

) exp

{
− u2

1
2x1
y1

}
exp

⎧⎨⎩− (u2 − u1)2

2
(

x2
y2
− x1

y1

)
⎫⎬⎭

×
(

1− exp
{
−2λy1

x1

(
λ

y1
− u1

)})(
1− exp

{
−2λ
(
λ

y2
− u2

)})
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(5) ×
(

1− exp
{
−2(λ− u1y1)(λ − u2y2)

(x2y1 − x1y2)

})
du1du2

Corollary 1. Passing to the limit as Q1 −→ Q2 and using (5), we obtain a result which
agrees with Park’s result for a polygonal line with a single point of break (Theorem 1).

Let us denote that x0 = 0, xn+1 = 1, y0 = 1, yn+1 = 0. Let L be a line given by the
formula

(6) L = {(s, t) : t = v(s), s ∈ [0, 1]} .
For which (x1, y1), . . . , (xn, yn) are the points of break where

v(s) =
n+1∑
i=1

(
−s(yi−1 − yi)

xi − xi−1
+
xiyi−1 − xi−1yi

xi − xi−1

)
I(xi−1;xi](s).

Let us denote Δ0 = 0,Δi = xi

yi
, i = 1, n,Δn+1 =∞.

The following theorem is a generalization of Theorem 2.

Theorem 3. Let X(s, t) be a standard Chentsov random field on a unit square. Let
u0 = un+1 = 0. Let the polygonal line L have n points of break and be given by formula
(6). Let the coordinates of these points satisfy the conditions

1) y1 > · · · > yn;
2) x1

y1
< · · · < xn

yn
.

Then

Pn = P

{
sup

(s;t)∈L

X (s; t) < λ

}
=
∫ λ

y1

−∞
. . .

∫ λ
yn

−∞

n∏
i=1

ϕ0,Δi−Δi−1 (ui − ui−1)

×
n+1∏
i=1

⎛⎝1− exp

⎧⎨⎩−2
(

λ
yi−1
− ui−1

)(
λ
yi
− ui

)
(Δi −Δi−1)

⎫⎬⎭
⎞⎠du1 . . . dun

where ϕ0,Δ(u) is the density of the Gaussian random variable with variance Δ.

Proof. Let the restriction of X(s, t) over L be denoted by w1(s). Then

w1(s) = X (s, v(s))
Let us find the derivation of v(s).

v′(s) =
n+1∑
i=1

− (yi−1−yi)
xi−xi−1

I(xi−1;xi](s) < 0 because of conditions over coordinates of points.

This means that v(s) is monotone decreasing function.
Using the covariance property of X(s, t), we can write

cov(w1(s1), w1(s2)) = cov (X(s1, v(s1), X(s2, v(s2)) = s1v(s2), 0 < s1 � s2 � 1

a(s) = s
v(s) is continuous monotone increasing function. We can write a(s) in an explicit

form:

a(s) =
n+1∑
i=1

s

− s(yi−1−yi)
xi−xi−1

+ xiyi−1−xi−1yi

xi−xi−1

I(xi−1,xi](s)

It is enough to prove a continuity a(s) in the points xi, i = 1, n:

a(xi) =
xi

−xi(yi−1−yi)
xi−xi−1

+ xiyi−1−xi−1yi

xi−xi−1

=
xi

yi
.
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a(xi+) =
xi

−xi(yi−yi+1)
xi+1−xi

+ xi+1yi−xiyi+1
xi+1−xi

=
xi

yi(xi+1−xi)
xi+1−xi

=
xi

yi
.

That is a(xi) = a(xi+) continuous in the point xi. That is a(s) continuous in (0; 1). s
is a monotone increasing function and v(s) is a monotone decreasing function. That is
why a(s) is a monotone increasing function. For a(s) the inverse will be the function:

a−1(s) =
n+1∑
i=1

s(xiyi−1 − xi−1yi)
s(yi−1 − yi) + xi − xi−1

I[Δi−1,Δi).

It is necessary to notice that v(0) = −x0(y0−y1)
x1−x0

+ x1y0−x0y1
x1−x0

= y0 = 1 and v(1) =

−xn+1(yn−yn+1)
xn+1−xn

+ xn+1yn−xnyn+1
xn+1−xn

= yn+1 = 0. That is why a(0) = 0 and lim
t→1

a(t) =∞.

1
v(a−1(s))

=
n+1∑
i=1

(
s(yi−1 − yi) + xi − xi−1

xiyi−1 − xi−1yi

)
I[Δi−1,Δi)(s)

The functions a(s) and v(·) satisfy the conditions of Doob’s transformation theorem.
Thus,

w∗(s) =
n+1∑
i=1

(
s(yi−1 − yi) + xi − xi−1

xiyi−1 − xi−1yi

)
×w1

(
s(xiyi−1 − xi−1yi)

s(yi−1 − yi) + xi − xi−1

)
I[Δi−1,Δi)(s)

and w(t) are stochastically equivalent processes.

Pn(λ) = P

{
sup

(s;t)∈L

X (s; t) < λ

}
= P

{
sup

s∈[0,1]

X (s; v(s)) < λ

}

= P

{
sup

s∈[0,1]

w1(s) < λ

}
= P

{
sup

s∈[0,∞)

w1

(
a−1(s)

)
< λ

}

= P

⎛⎝⋂
s�0

{
w1

(
a−1(s)

)
< λ
}⎞⎠

= P

(⋂
s>0

{
w1

(
a−1(s)

)
< λ
}⋂{

X
(
a−1(0), v

(
a−1(0)

))
< λ
})

= P

(⋂
s>0

{
w1

(
a−1(s)

)
< λ
}⋂

Ω

)
Because X

(
a−1(0), v

(
a−1(0)

))
= X(0, 1) = 0 and that is why{

X
(
a−1(0), v

(
a−1(0)

))
< λ
}

= Ω

Pn = P

(⋂
s>0

{
w1

(
a−1(s)

)
< λ
})

= P

{⋂
s>0

w1

(
a−1(s)

)
v (a−1(s))

− λ

v (a−1(s))
< 0

}
=

= P

{
sup

s∈(0,∞)

w1

(
a−1(s)

)
v (a−1(s))

− λ

v (a−1(s))
< 0

}
= P

{
sup

s∈(0,∞)

w(t) − λ

v (a−1(s))
< 0

}
=

= P

{
w(t) <

λ(xi − xi−1)
xiyi−1 − xi−1yi

+
λt(yi−1 − yi)
xiyi−1 − xi−1yi

; t ∈ (Δi−1; Δi] , i = 1, n+ 1
}
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=
∫ λ

y1

−∞
. . .

∫ λ
yn

−∞

1

(2π)n/2
P

{
w(s) < λ+

(1− y1)sλ
x1

, s ∈ (0; Δ1] |w(Δ1) = u1

}
×

×
n∏

i=2

P

{
w(t) <

λ(xi − xi−1)
xiyi−1 − xi−1yi

+
λt(yi−1 − yi)
xiyi−1 − xi−1yi

; t ∈ (Δi−1; Δi]∣∣∣ w(Δi−1) = ui−1, w(Δi) = ui

}

×P
{
w(t) <

λ(1− xn)
yn

+ λt, t > Δn|w(Δn) = un

}
×

n∏
i=1

ϕ0,Δi−Δi−1(ui − ui−1)√
Δi −Δi−1

dui.

Then, by using Lemma 2 and Lemma 3, we get

Pn = P

{
sup

(s;t)∈L

X (s; t) � λ

}

=
∫ λ

y1

−∞
. . .

∫ λ
yn

−∞

n+1∏
i=1

⎛⎝1− exp

⎧⎨⎩−2
(

λ
yi−1
− ui−1

)(
λ
yi
− ui

)
(Δi −Δi−1)

⎫⎬⎭
⎞⎠

×
n∏

i=1

ϕ0,Δi−Δi−1 (ui − ui−1)du1 . . . dun
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