UDC 519.21
NATALIA KRUGLOVA

DISTRIBUTION OF THE MAXIMUM OF THE CHENTSOV RANDOM FIELD

Let $D=[0,1]^{2}$ and $X(s, t),(s, t) \in D$, be a two-parameter Chentsov random field.
The aim of this paper is to find the probability distribution of the maximum of $X(s, t)$
on a class of polygonal lines.

1. Introduction

Let $\{X(s, t): s, t \geq 0\}$ be a standard Chentsov field of two parameters that is a separable real Gaussian stochastic process such that

1) $X(0, t)=X(s, 0)=0$ for all $s, t \in[0,1]$;
2) $E[X(s, t)]=0$ for all $s, t \geq 0$;
3) $E\left[X(s, t) X\left(s_{1}, t_{1}\right)\right]=\min \left\{s, s_{1}\right\} \min \left\{t, t_{1}\right\}$ for all (s, t) and $\left(s_{1}, t_{1}\right) \in D$.

This definition is given by Yeh [6] in 1960. Another (equivalent) definition is given by Chentsov [7] in 1955 in terms of the probability density of $X(s, t)$. Yeh showed that the sample paths of this field are continuous with probability one and $X(s, t)$ has independent stationary increments in the plane.

The probability distributions of functionals of a Chentsov random field like $M=$ $\max _{(s, t) \in D} X(s, t)$ are not yet known. Some trivial probability distribution theory for $X(s, t)$ can be obtained by using the known results about the standard Wiener process.

The distribution of the supremum of a Chentsov random field on the curve $f(s)$, where $f(s)$ is a non-decreasing function of s, can be obtained, since a transformation of $X(s, f(s))$ is equivalent to a one-dimensional standard Wiener process.

The probability distribution of the supremum of $X(s, t)$ on the boundary of a unit square is obtained by Paranjape and Park [1]. This probability is of its own interest, and it gives a nice lower bound for the probability distribution of the supremum of $X(s, t)$ over the whole unit square D, which is unknown yet.

Park and Skoug [5] have found the probability that $X(s, t)$ crosses a barrier of the type ast $+b s+c t+d$ on the boundary $\partial \Lambda$, where $\Lambda=[0, S] \times[0, T]$ is a rectangle. Later on, I. Klesov [3] considered a probability of the form

$$
\begin{equation*}
P(L, g)=P\left\{\sup _{L} X(s, t)-g(s, t)<0\right\}, \tag{1}
\end{equation*}
$$

where X is a Chentsov random field on $D=[0,1]^{2}, L \subset D$, and g is an almost everywhere Lebesgue continuous function on D. He presented results, where $g(s, t)$ is a linear function and L is a polygonal line with one point of break. Klesov and Kruglova [8] considered a probability of the form (1), where L is a polygonal line with two points of break.

The main purpose of this paper is to evaluate the probability distribution of the form (1), where $g(s, t)=\lambda$ and L is a polygonal line with several points of break. we can

[^0]express this distribution in a very useful form: as an expression of the "tail" of the two-dimensional Gauss process.

2. Auxiliary results

Lemma 1. (Doob's Transformation Theorem) [2]. Let $X(t)$ be any Gaussian process with covariance function $R(s, t)=u(s) v(t), s \leq t$, if the ratio $a(t)=u(t) / v(t)$ is continuous and strictly increasing with inverse $a_{1}(t)$, then $w(t)$ and $Y\left(a_{1}(t)\right) / v\left(a_{1}(t)\right)$ are stochastically equivalent processes.

Lemma 2. (Malmquist's Theorem 1) [4]. For a standard Wiener process $w(t)$ and for $b>0, a \geq 0, s_{1} \leq a t^{\prime}+b$,

$$
\begin{gathered}
P\left\{w(t) \leq a t+b, 0<t<t^{\prime} \mid w\left(t^{\prime}\right)=s_{1}\right\}= \\
=P\left\{w(t) \leq b t+\left(a t^{\prime}+b-s_{1}\right) / t^{\prime}, 0<t<\infty\right\}= \\
=1-\exp \left\{-2 b\left(a t^{\prime}+b-s_{1} / t^{\prime}\right\}\right.
\end{gathered}
$$

Lemma 3. (Malmquist's Theorem 2) [4]. For a standard Wiener process $w(t)$ and for $b>0, a \geq 0$,

$$
\begin{aligned}
& P\left\{w(t) \leq a t+b, x<t \leq y \mid w(x)=s_{1}, w(y)=s_{2}\right\}= \\
& \quad=1-\exp \left\{-\frac{2 R}{1-R^{2}} \cdot \frac{P_{1}-s_{1}}{\sqrt{x}} \cdot \frac{P_{2}-s_{2}}{\sqrt{y}}\right\},
\end{aligned}
$$

where $R=\sqrt{\frac{x}{y}}, s_{1} \leq P_{1}=a x+b, s_{2} \leq P_{2}=a y+b$.
Let L be a line as shown in Fig. 1 and given by the formula

$$
\begin{equation*}
L=\left\{(s, t): s a^{-1}+t=1, s \leq k ; s+t b^{-1}=1, s>k,(s, t) \in D\right\} \tag{2}
\end{equation*}
$$

where $\tan \alpha=a, \tan \beta=b, k=\frac{a(b-1)}{a b-1}, \alpha, \beta>\frac{\pi}{4}$.

Theorem 1. (Paranjape and Park)[1]. Let $\{X(s, t): s, t \geq 0\}$ be a standard Chentsov field. Then

$$
\begin{align*}
& P\left\{\sup _{(s, t) \in L} X(s, t) \leq \lambda\right\} \\
& = \tag{3}\\
& =\Phi\left(\frac{\lambda(a+c)}{a \sqrt{c}}\right)-\exp \left\{\frac{-2 \lambda^{2}}{a}\right\} \Phi\left(\frac{\lambda(c-a)}{a \sqrt{c}}\right)- \\
& \quad-\exp \left\{\frac{-2 \lambda^{2}}{b}\right\} \Phi\left\{\frac{\lambda(1-b c)}{b \sqrt{c}}\right\}+\exp \left\{-2 \lambda^{2}\left(a^{-1}+b^{-1}-2\right)\right\} \\
& \quad \times \Phi\left\{\lambda c^{-1 / 2}\left(b^{-1}-c-2\right)\right\} .
\end{align*}
$$

3. Main Results and proofs

Let L be a line as shown in Fig. 2 and given by the formula

$$
L= \begin{cases}t=1-\frac{s\left(1-y_{1}\right)}{x_{1}}, & s \in\left[0, x_{1}\right] \\ t=-\frac{s\left(y_{1}-y_{2}\right)}{x_{2}-x_{1}}+\frac{x_{2} y_{1}-x_{1} y_{2}}{x_{2}-x_{1}}, & s \in\left(x_{1}, x_{2}\right] \\ t=-\frac{s y_{2}}{1-x_{2}}+\frac{y_{2}}{1-x_{2}}, & s \in\left(x_{2}, 1\right] .\end{cases}
$$

Theorem 2. Let $X(s, t)$ be a standard Chentsov random field on a unit square. Let the polygonal line L have two points of break $Q_{1}\left(x_{1}, y_{1}\right)$ and $Q_{2}\left(x_{2}, y_{2}\right)$ and be given by formula (4). Let the coordinates of Q_{1} and Q_{2} satisfy the conditions

1) $y_{2}<y_{1}$;
2) $\frac{x_{2}}{y_{2}}>\frac{x_{1}}{y_{1}}$.

Then

$$
\begin{gathered}
P_{2}=P\left\{\sup _{(s, t) \in L} X(s, t)<\lambda\right\} \\
\times \int_{-\infty}^{\frac{\lambda}{y_{1}}} \int_{-\infty}^{\frac{\lambda}{y_{2}}} \frac{1}{2 \pi \sqrt{\frac{x_{1}}{y_{1}}\left(\frac{x_{2}}{y_{2}}-\frac{x_{1}}{y_{1}}\right)}} \exp \left\{-\frac{u_{1}^{2}}{\frac{2 x_{1}}{y_{1}}}\right\} \exp \left\{-\frac{\left(u_{2}-u_{1}\right)^{2}}{2\left(\frac{x_{2}}{y_{2}}-\frac{x_{1}}{y_{1}}\right)}\right\} \\
\times\left(1-\exp \left\{-\frac{2 \lambda y_{1}}{x_{1}}\left(\frac{\lambda}{y_{1}}-u_{1}\right)\right\}\right)\left(1-\exp \left\{-2 \lambda\left(\frac{\lambda}{y_{2}}-u_{2}\right)\right\}\right)
\end{gathered}
$$

$$
\begin{equation*}
\times\left(1-\exp \left\{-\frac{2\left(\lambda-u_{1} y_{1}\right)\left(\lambda-u_{2} y_{2}\right)}{\left(x_{2} y_{1}-x_{1} y_{2}\right)}\right\}\right) d u_{1} d u_{2} \tag{5}
\end{equation*}
$$

Corollary 1. Passing to the limit as $Q_{1} \longrightarrow Q_{2}$ and using (5), we obtain a result which agrees with Park's result for a polygonal line with a single point of break (Theorem 1).

Let us denote that $x_{0}=0, x_{n+1}=1, y_{0}=1, y_{n+1}=0$. Let L be a line given by the formula

$$
\begin{equation*}
L=\{(s, t): t=v(s), s \in[0,1]\} \tag{6}
\end{equation*}
$$

For which $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ are the points of break where

$$
v(s)=\sum_{i=1}^{n+1}\left(-\frac{s\left(y_{i-1}-y_{i}\right)}{x_{i}-x_{i-1}}+\frac{x_{i} y_{i-1}-x_{i-1} y_{i}}{x_{i}-x_{i-1}}\right) I_{\left(x_{i-1} ; x_{i}\right]}(s) .
$$

Let us denote $\Delta_{0}=0, \Delta_{i}=\frac{x_{i}}{y_{i}}, i=\overline{1, n}, \Delta_{n+1}=\infty$.
The following theorem is a generalization of Theorem 2.
Theorem 3. Let $X(s, t)$ be a standard Chentsov random field on a unit square. Let $u_{0}=u_{n+1}=0$. Let the polygonal line L have n points of break and be given by formula (6). Let the coordinates of these points satisfy the conditions

1) $y_{1}>\cdots>y_{n}$;
2) $\frac{x_{1}}{y_{1}}<\cdots<\frac{x_{n}}{y_{n}}$.

Then

$$
\begin{aligned}
P_{n}= & P\left\{\sup _{(s ; t) \in L} X(s ; t)<\lambda\right\}=\int_{-\infty}^{\frac{\lambda}{y_{1}}} \ldots \int_{-\infty}^{\frac{\lambda}{y_{n}}} \prod_{i=1}^{n} \varphi_{0, \Delta_{i}-\Delta_{i-1}}\left(u_{i}-u_{i-1}\right) \\
& \times \prod_{i=1}^{n+1}\left(1-\exp \left\{-\frac{2\left(\frac{\lambda}{y_{i-1}}-u_{i-1}\right)\left(\frac{\lambda}{y_{i}}-u_{i}\right)}{\left(\Delta_{i}-\Delta_{i-1}\right)}\right\}\right) d u_{1} \ldots d u_{n}
\end{aligned}
$$

where $\varphi_{0, \Delta}(u)$ is the density of the Gaussian random variable with variance Δ.
Proof. Let the restriction of $X(s, t)$ over L be denoted by $w_{1}(s)$. Then

$$
w_{1}(s)=X(s, v(s))
$$

Let us find the derivation of $v(s)$.
$v^{\prime}(s)=\sum_{i=1}^{n+1}-\frac{\left(y_{i-1}-y_{i}\right)}{x_{i}-x_{i-1}} I_{\left(x_{i-1} ; x_{i}\right]}(s)<0$ because of conditions over coordinates of points.
This means that $v(s)$ is monotone decreasing function.
Using the covariance property of $X(s, t)$, we can write

$$
\operatorname{cov}\left(w_{1}\left(s_{1}\right), w_{1}\left(s_{2}\right)\right)=\operatorname{cov}\left(X \left(s_{1}, v\left(s_{1}\right), X\left(s_{2}, v\left(s_{2}\right)\right)=s_{1} v\left(s_{2}\right), 0<s_{1} \leqslant s_{2} \leqslant 1\right.\right.
$$

$a(s)=\frac{s}{v(s)}$ is continuous monotone increasing function. We can write $a(s)$ in an explicit form:

$$
a(s)=\sum_{i=1}^{n+1} \frac{s}{-\frac{s\left(y_{i-1}-y_{i}\right)}{x_{i}-x_{i-1}}+\frac{x_{i} y_{i-1}-x_{i-1} y_{i}}{x_{i}-x_{i-1}}} I_{\left(x_{i-1}, x_{i}\right]}(s)
$$

It is enough to prove a continuity $a(s)$ in the points $x_{i}, i=\overline{1, n}$:

$$
a\left(x_{i}\right)=\frac{x_{i}}{-\frac{x_{i}\left(y_{i-1}-y_{i}\right)}{x_{i}-x_{i-1}}+\frac{x_{i} y_{i-1}-x_{i-1} y_{i}}{x_{i}-x_{i-1}}}=\frac{x_{i}}{y_{i}} .
$$

$$
a\left(x_{i}+\right)=\frac{x_{i}}{-\frac{x_{i}\left(y_{i}-y_{i+1}\right)}{x_{i+1}-x_{i}}+\frac{x_{i+1} y_{i}-x_{i} y_{i+1}}{x_{i+1}-x_{i}}}=\frac{x_{i}}{\frac{y_{i}\left(x_{i+1}-x_{i}\right)}{x_{i+1}-x_{i}}}=\frac{x_{i}}{y_{i}}
$$

That is $a\left(x_{i}\right)=a\left(x_{i+}\right)$ continuous in the point x_{i}. That is $a(s)$ continuous in $(0 ; 1) . s$ is a monotone increasing function and $v(s)$ is a monotone decreasing function. That is why $a(s)$ is a monotone increasing function. For $a(s)$ the inverse will be the function:

$$
a^{-1}(s)=\sum_{i=1}^{n+1} \frac{s\left(x_{i} y_{i-1}-x_{i-1} y_{i}\right)}{s\left(y_{i-1}-y_{i}\right)+x_{i}-x_{i-1}} I_{\left[\Delta_{i-1}, \Delta_{i}\right)} .
$$

It is necessary to notice that $v(0)=-\frac{x_{0}\left(y_{0}-y_{1}\right)}{x_{1}-x_{0}}+\frac{x_{1} y_{0}-x_{0} y_{1}}{x_{1}-x_{0}}=y_{0}=1$ and $v(1)=$ $-\frac{x_{n+1}\left(y_{n}-y_{n+1}\right)}{x_{n+1}-x_{n}}+\frac{x_{n+1} y_{n}-x_{n} y_{n+1}}{x_{n+1}-x_{n}}=y_{n+1}=0$. That is why $a(0)=0$ and $\lim _{t \rightarrow 1} a(t)=\infty$.

$$
\frac{1}{v\left(a^{-1}(s)\right)}=\sum_{i=1}^{n+1}\left(\frac{s\left(y_{i-1}-y_{i}\right)+x_{i}-x_{i-1}}{x_{i} y_{i-1}-x_{i-1} y_{i}}\right) I_{\left[\Delta_{i-1}, \Delta_{i}\right)}(s)
$$

The functions $a(s)$ and $v(\cdot)$ satisfy the conditions of Doob's transformation theorem. Thus,

$$
\begin{gathered}
w^{*}(s)=\sum_{i=1}^{n+1}\left(\frac{s\left(y_{i-1}-y_{i}\right)+x_{i}-x_{i-1}}{x_{i} y_{i-1}-x_{i-1} y_{i}}\right) \\
\times w_{1}\left(\frac{s\left(x_{i} y_{i-1}-x_{i-1} y_{i}\right)}{s\left(y_{i-1}-y_{i}\right)+x_{i}-x_{i-1}}\right) I_{\left[\Delta_{i-1}, \Delta_{i}\right)}(s)
\end{gathered}
$$

and $w(t)$ are stochastically equivalent processes.

$$
\begin{gathered}
P_{n}(\lambda)=P\left\{\sup _{(s ; t) \in L} X(s ; t)<\lambda\right\}=P\left\{\sup _{s \in[0,1]} X(s ; v(s))<\lambda\right\} \\
=P\left\{\sup _{s \in[0,1]} w_{1}(s)<\lambda\right\}=P\left\{\sup _{s \in[0, \infty)} w_{1}\left(a^{-1}(s)\right)<\lambda\right\} \\
=P\left(\bigcap_{s \geqslant 0}\left\{w_{1}\left(a^{-1}(s)\right)<\lambda\right\}\right) \\
=P\left(\bigcap_{s>0}\left\{w_{1}\left(a^{-1}(s)\right)<\lambda\right\} \bigcap\left\{X\left(a^{-1}(0), v\left(a^{-1}(0)\right)\right)<\lambda\right\}\right) \\
=P\left(\bigcap_{s>0}\left\{w_{1}\left(a^{-1}(s)\right)<\lambda\right\} \bigcap \Omega\right)
\end{gathered}
$$

Because $X\left(a^{-1}(0), v\left(a^{-1}(0)\right)\right)=X(0,1)=0$ and that is why

$$
\begin{gathered}
\left\{X\left(a^{-1}(0), v\left(a^{-1}(0)\right)\right)<\lambda\right\}=\Omega \\
P_{n}=P\left(\bigcap_{s>0}\left\{w_{1}\left(a^{-1}(s)\right)<\lambda\right\}\right)=P\left\{\bigcap_{s>0} \frac{w_{1}\left(a^{-1}(s)\right)}{v\left(a^{-1}(s)\right)}-\frac{\lambda}{v\left(a^{-1}(s)\right)}<0\right\}= \\
=P\left\{\sup _{s \in(0, \infty)} \frac{w_{1}\left(a^{-1}(s)\right)}{v\left(a^{-1}(s)\right)}-\frac{\lambda}{v\left(a^{-1}(s)\right)}<0\right\}=P\left\{\sup _{s \in(0, \infty)} w(t)-\frac{\lambda}{v\left(a^{-1}(s)\right)}<0\right\}= \\
=P\left\{w(t)<\frac{\lambda\left(x_{i}-x_{i-1}\right)}{x_{i} y_{i-1}-x_{i-1} y_{i}}+\frac{\lambda t\left(y_{i-1}-y_{i}\right)}{x_{i} y_{i-1}-x_{i-1} y_{i}} ; t \in\left(\Delta_{i-1} ; \Delta_{i}\right], i=\overline{1, n+1}\right\}
\end{gathered}
$$

$$
\begin{aligned}
& =\int_{-\infty}^{\frac{\lambda}{y_{1}}} \cdots \int_{-\infty}^{\frac{\lambda}{y_{n}}} \frac{1}{(2 \pi)^{n / 2}} P\left\{w(s)<\lambda+\frac{\left(1-y_{1}\right) s \lambda}{x_{1}}, s \in\left(0 ; \Delta_{1}\right] \mid w\left(\Delta_{1}\right)=u_{1}\right\} \times \\
& \quad \times \prod_{i=2}^{n} P\left\{w(t)<\frac{\lambda\left(x_{i}-x_{i-1}\right)}{x_{i} y_{i-1}-x_{i-1} y_{i}}+\frac{\lambda t\left(y_{i-1}-y_{i}\right)}{x_{i} y_{i-1}-x_{i-1} y_{i}} ; t \in\left(\Delta_{i-1} ; \Delta_{i}\right]\right. \\
& \left.\quad \mid w\left(\Delta_{i-1}\right)=u_{i-1}, w\left(\Delta_{i}\right)=u_{i}\right\} \\
& \times P\left\{w(t)<\frac{\lambda\left(1-x_{n}\right)}{y_{n}}+\lambda t, t>\Delta_{n} \mid w\left(\Delta_{n}\right)=u_{n}\right\} \times \prod_{i=1}^{n} \frac{\varphi_{0, \Delta_{i}-\Delta_{i-1}}\left(u_{i}-u_{i-1}\right)}{\sqrt{\Delta_{i}-\Delta_{i-1}}} d u_{i} .
\end{aligned}
$$

Then, by using Lemma 2 and Lemma 3, we get

$$
\begin{aligned}
P_{n}= & P\left\{\sup _{(s ; t) \in L} X(s ; t) \leqslant \lambda\right\} \\
= & \int_{-\infty}^{\frac{\lambda}{y_{1}}} \ldots \int_{-\infty}^{\frac{\lambda}{y_{n}}} \prod_{i=1}^{n+1}\left(1-\exp \left\{-\frac{2\left(\frac{\lambda}{y_{i-1}}-u_{i-1}\right)\left(\frac{\lambda}{y_{i}}-u_{i}\right)}{\left(\Delta_{i}-\Delta_{i-1}\right)}\right\}\right) \\
& \quad \times \prod_{i=1}^{n} \varphi_{0, \Delta_{i}-\Delta_{i-1}}\left(u_{i}-u_{i-1}\right) d u_{1} \ldots d u_{n}
\end{aligned}
$$

Bibliography

1. S.R. Paranjape and C. Park, Distribution of the supremum of the two-parameter Yeh-Wiener process on the boundary, Appl. Probab. 10 (1973), no. 4, 875-880.
2. J.L. Doob, Heuristic approach to Kolmogorov-Smirnov theorems, Ann. Math. Statist. 20 (1949), 393-403.
3. I.I. Klesov, On the probability of attainment of a curvilinear level by a Wiener field, Probab. and Math. Statist. 51 (1995), 63-67.
4. S. Malmquist, On certain confidence contours for distribution functions, Ann. Math. Statist. 25 (1954), 523-533.
5. C. Park and D.L. Skoug, Distribution estimates of barrier-crossing probabilities of the YehWiener process, Pacific Journal of Mathematics 78 (1978), 455-466.
6. J. Yeh, Wiener Measure in a Space of Functions of Two Variables, Transactions of the American Mathematical Society 95 (1960), 433-450.
7. N.N. Chentsov, Wiener random fields depending on several parameters, Doklady AN SSSR 46 (1956), no. 4, 607-609. (Russian)
8. O.I. Klesov and N.V. Kruglova, Distribution of the maximum of the two-parameter Chentsov random field, Naukovi visti NTUU "KPI" 4 (2007), 136-141. (Ukrainian)

National Technical University of Ukraine ("KPI")
E-mail: natahak@ukr.net

[^0]: Key words and phrases. Two-parameter Chentsov random field, probability distribution, standard Wiener process.

