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ANDREY A. DOROGOVTSEV

CONDITIONING OF GAUSSIAN FUNCTIONALS

AND ORTHOGONAL EXPANSION

In the article, we consider terms of the Gaussian chaotic expansion under conditioning
with respect to some sigma-field and discuss the possibility to organize the orthogonal
expansion from them.

1. Introduction

Let H be a real separable Hilbert space with inner product (·, ·) and norm ‖ · ‖. On
a probability space (Ω,F , P ), define a Gaussian random element ξ in H with zero mean
and identity covariation. If dimH = ∞, then ξ is not a random element in a usual sense.
In this case, ξ is a family of jointly Gaussian random variables {(ϕ, ξ), ϕ ∈ H} which
linearly depend on ϕ and have the properties

1) E(ϕ, ξ) = 0,
2) E(ϕ, ξ)(ψ, ξ) = (ϕ, ψ).

Such ξ is often called in the literature as a generalized Gaussian random element or white
noise in H [1, 2]. Suppose that the σ-field F is generated by ξ. Under this condition,
the space L2(Ω,F , P ) has a chaotic expansion [1]. The members of this expansion are
multidimensional Hermite polynomials (infinite-dimensional if dimH = ∞) which can
be described as follows. Denote, by Pn, the set of all polynomials of degree not greater
than n from {(ϕ, ξ); ϕ ∈ H}. Let P̃n be the closure of Pn in L2(Ω,F , P ). Define, for
n ≥ 0,

Kn+1 = P̃n+1 � P̃n

and K0 = P0. It is well known that

L2(Ω,F , P ) =
∞⊕

n=0
Kn.

The elements of Kn can be described using the one-dimensional Hermite polynomials [3].
Let

Hn(x) = (−1)ne
x2
2

(
d

dx

)n

e−
x2
2 , n ≥ 0, x ∈ R

be one-dimensional Hermite polynomials.
Consider the orthonormal basis {ek; k ≥ 1} in H (here we suppose that dimH = ∞; in
the opposite case, the explanation will be the same with the trivial corrections). Denote
ξk = (ek, ξ) for k ≥ 1 and, by ξr1 ∗ . . . ∗ ξrn for r1, . . . , rn ≥ 1, the product ξr1 · . . . · ξrn ,
in which the powers are substituted by the Hermite polynomials of the same degree. For
example,

ξ1 ∗ ξ2 ∗ ξ3 ∗ ξ2 = ξ1H2(ξ2)ξ3.
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Let An be a symmetric n-linear Hilbert–Schmidt form on H. The form An can be de-
scribed in terms of the basis {ek; k ≥ 1} as follows

An =
∞∑

r1...rn=1

ar1...rner1 ⊗ . . . ⊗ ern ,

where er1 ⊗ . . . ⊗ ern is a tensor product and ar1...rn are symmetric with respect to all
permutations of indices. Define

(1.1) An(ξ, . . . , ξ) =
∞∑

r1...rn=1

ar1...rnξr1 ∗ . . . ∗ ξrn .

It can be proved [3] that (1.1) converges in the square mean and that every element
of Kn has a unique representation (1.1). Moreover,

EAn(ξ, . . . , ξ)Bn(ξ, . . . , ξ) = n!(An, Bn)n.

Here, (·, ·)n is the scalar product in the tensor power H⊗n. Note that the elements of Kn

can be described as a multiple Wiener integrals if ξ is built with the help of a random
Gaussian measure [4]. The most important case for us is that, when the white noise ξ is
generated by the standard Wiener process w. Namely, put H = L2([0; 1]) with the usual
inner product and define

(ϕ, ξ) =
∫ 1

0

ϕ(r)dw(r)

for ϕ ∈ L2([0; 1]) . It can be easily verified that ξ is a Gaussian white noise. Now the
elements of Kn can be described as follows. Every An from the symmetric part of H⊗n

has the representation as a multiple integral, i.e., for ϕ1, . . . , ϕn ∈ H ,

An[ϕ1, . . . , ϕn] =

1∫
n. . .

∫
0

an(r1, . . . , rn)ϕ(r1) . . . ϕ(rn)dr1 . . . drn.

Here, the symmetric kernel an belongs to the space L2([0; 1]n) and

An(ξ, . . . , ξ) =

1∫
n. . .

∫
0

an(r1, . . . , rn)dw(r1) . . . dw(rn).

The last integral is a useful notation for

n!
∫

0≤r1≤...≤rn≤1

an(r1, . . . , rn)dw(r1) . . . dw(rn).

As follows from the stated above, every square-integrable functional α of ξ has a repre-
sentation of the form

(1.2) α =
∞∑

n=0

An(ξ, . . . , ξ),

where A0 = Eα and

Eα2 =
∞∑

n=0

n!‖An‖2
n.

In a particular case where ξ is generated by w, representation (1.2) has the form

(1.3) α =
∞∑

n=0

1∫
n. . .

∫
0

an(r1, . . . , rn)dw(r1) . . . dw(rn)
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and

Eα2 =
∞∑

n=0

n!

1∫
n. . .

∫
0

an(r1, . . . , rn)2dr1 . . . drn.

Series (1.2) or (1.3) is often referred to as the Itô-Wiener expansion. We will also use
this term. The Itô-Wiener expansion is a powerful tool in the studying of Gaussian
functionals due to its various and deep relations with the infinite-dimensional measure
theory, stochastic calculus and martingale theory. In the modern time increases the
interest in non-Gaussian objects that are built from the initial Gaussian noise. Examples
of such objects are the stopped Wiener process, skew Brownian motion, and Arratia flow
of coalescing Brownian particles [5–7]. The investigation of functionals of such processes
leads to the natural question about the modification of the Itô–Wiener expansion for
these cases. In this article, we consider how the Itô–Wiener expansion changes under
the conditioning. More precisely the problem can be formulated as follows. Let F ′ be
a sub-σ-field of F . From the previous considerations, one can conclude that the set of
random variables

(1.4) {E(An(ξ, . . . , ξ)/F ′), An ∈ H⊗n, n ≥ 0}
is dense in L2(Ω,F ′, P ). But in general under conditioning with respect to F ′ we loose
the orthogonality. The following example shows this and will be useful in the future.

Example 1.1. Suppose that H = L2([0; 1]) and ξ is generated by the Wiener process w
as it was described above. Let τ be the stopping time with respect to the flow of σ-fields
generated by w. Consider the σ-field Fτ of random events associated with the random
time τ. Note that Fτ coincides with the σ-field generated by the stopped process {w(s∧
τ); s ∈ [0; 1]}. For the symmetric kernel an ∈ L2([0; 1]n) the conditional expectation is
given by

E

(∫
0≤t1≤...≤tn≤1

an(t1, . . . , tn)dw(t1) . . . dw(tn)/Fτ

)
=

=
∫

0≤t1≤...≤tn≤τ

an(t1, . . . , tn)dw(t1) . . . dw(tn).

Two such random variables for different n can be not orthogonal. Really

E

∫ τ

0

w(t)dw(t)w(τ) = E

∫ τ

0

w(t)dt =
∫ 1

0

Ew(t)1I{τ≥t}dt.

The last value is not equal to zero for example when

τ = inf{1, t : w(t) = 1}.
Thus the aim of the article is to describe the orthogonal expansion of L2(Ω,F ′, P ) which
is built from the set (1.4).

2. Projections of Kn and polynomially nondegenerated measures

This section is devoted to properties of the set

(2.1) Hn = {E(An(ξ, . . . , ξ)/F ′) : An ∈ H⊗n}.
It is well known that the conditional expectation with respect to a sub-σ-field F ′ is an
orthogonal projector in L2(Ω,F , P ). Denote it by R. Then

Hn = R(Kn).
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This section contains the conditions under which R(Kn) is closed in L2(Ω,F , P ). Note
that this property does not hold without additional assumptions. Consider the following
example.

Example 2.1. Let {ek; k ≥ 1} be an orthonormal basis in H. Denote ξk = (ek, ξ). Then
{ξk; k ≥ 1} are the independent standard normal variables. For every k ≥ 1, consider
the random variable

ηk = 1I[−1+ak;1+ak](ξk).
Here, the positive constants {ak; k ≥ 1} are chosen in such a way that the series

∞∑
k=1

∣∣∣∣∣
[∫ −1+ak

−∞
xp1(x)dx +

∫ +∞

1+ak

xp1(x)dx

] [∫ −1+ak

−∞
p1(x)dx +

∫ +∞

1+ak

p1(x)dx

]−1
∣∣∣∣∣+

+
∫ 1+ak

−1+ak

xp1(x)dx
/ ∫ 1+ak

−1+ak

p1(x)dx

converges and consists of positive summands. Define, for every k ≥ 1,

ζk = E(ξk/ηk).

Let us take the σ-field F ′ as
F ′ = σ(ηk; k ≥ 1).

Due to the independence of {ηk; k ≥ 1}, the operations of conditional expectation with
respect to F ′ and a single ηk commute. Now consider the sequence from K1

Sn =
n∑

k=1

ξk, n ≥ 1.

For every n ≥ 1,

E(Sn/F ′) =
n∑

k=1

ζk.

Note that, due to the condition on {ak; k ≥ 1}, the series
∞∑

k=1

ζk

converges in L2(Ω,F , P ). But there is no random variable α in K1 such that

(2.2) E(α/F ′) =
∞∑

k=1

ζk.

Really, every α ∈ K1 has a unique representation

α =
∞∑

k=1

bkξk

with

(2.3)
∞∑

k=1

b2
k < +∞.

Then

(2.4) E(α/F ′) =
∞∑

k=1

bkζk.
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Comparing (2.2) and (2.4) and taking the conditional expectation with respect to ηk ,
one can get

bk = 1, k ≥ 1.

This proves our statement.

According to the previous example, additional conditions on F ′ must be imposed to
assure us that R(Kn) is closed. The next theorem presents such a condition.

Theorem 2.1. Suppose that there exists such Δ ∈ F of positive probability which has
the property
∀ n ≥ 1 ∀ An ∈ Kn :

(2.5) An/Δ = E(An/F ′)/Δ.

Here, for a random variable η, the symbol η/Δ means the restriction of η on the set Δ.
Then, for every n ≥ 1, R(Kn) is a closed subspace of L2(Ω,F , P ).

Before proving the theorem, let us consider an example when condition (2.5) holds.

Example 2.2. Suppose that H and ξ are the same as in Example 1.1. Consider a
stopping time τ such that

P{τ = 1} > 0.

As was mentioned above, for every multiple integral

Ik(ak) =
∫ 1

0

. . .

∫ tk

0

ak(t1, . . . , tk)dw(t1) . . . dw(tk),

we have

E(Ik(ak)/Fτ ) =
∫ τ

0

. . .

∫ tk

0

ak(t1, . . . , tk)dw(t1) . . . dw(tk).

Hence
Ik(ak)

/
{τ=1} = E(Ik(ak)/Fτ )

/
{τ=1}.

Consequently, Fτ satisfies condition (2.5).

Consider the proof of the theorem.

Proof. The proof is based on the notion of polynomially nondegenerated measure which
was introduced in [8]. Consider a probability measure μ on the separable Banach space
B. Suppose that μ has the weak moments of any order and the polynomials are dense in
L2(B, μ). Also let a closure of the linear span of suppμ coincide with B. Define H ′ as a
closure of B∗in L2(B, μ). For every ϕ ∈ H ′, define

j(ϕ) =
∫

B

〈ϕ, u〉uμ(du),

where, on the right-hand side, we consider the Pettise integral. Denote, by H1, the image
j(H ′). Since j is the one-to-one correspondence one can define the inner product in H1

by the formula

(h, n)1 :=
∫

B

〈j−1(h), u〉〈j−1(n), u〉μ(du).

It can be proved that, with this product, H1 is a Hilbert space densely and compactly
embedded in B [8]. So, every finite-dimensional symmetric n-linear form An on B can be
considered as an element of the tensor power H⊗n

1 . Denote, by Jn(An), the orthogonal
polynomial related to An. Note that, in general, the degree of An can be less than n (see
[8] for the corresponding example).
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The measure μ is referred to as a polynomially nondegenerated if, for every n ≥ 1,
there exist such constants c′n, c′′n > 0 that, for an arbitrary finite-dimensional n-linear
form An, the following inequality holds:

c′n|An|n ≤
∫

B

Jn(An)2(u)μ(du) ≤ c′′n|An|n.

It was proved in [8] that the restriction of the Gaussian measure on the ball is poly-
nomially nondegenerated. Then it was proved in [9] that the restriction of the Gaussian
measure on an arbitrary set of positive measure is nondegenerated. We will use the last
fact in the following way. Let us consider a Hilbert space H̃ such that H is densely
embedded in H̃ and the embedding i is a Hilbert–Schmidt operator. Then ξ̃ = i(ξ) can
be correctly defined as a usual random element in H̃. Define the Gaussian measure μ as a
distribution of ξ̃ in H̃. Since i is an embedding, there exists the one-to-one correspondence
between the σ-field F and the Borel σ-field in H̃ under which the probability P turns into
the measure μ. Note also that the polynomials of ξ̃ are the polynomials of ξ. The space
H plays the same role for the measure μ as a space H1 in the above construction. The
elements of H are often called by the measurable linear functionals related to the mea-
sure μ. The polynomials of ξ̃ with the coefficients, which are the Hilbert–Schmidt forms
on H, are called by the measurable polynomials. The set of measurable polynomials
contains the usual polynomials (see [8] for details). Also, every measurable polynomial
of ξ̃ is a polynomial of ξ, and every polynomial of ξ is a measurable polynomial of ξ̃.

Denote, by Δ̃, the subset of H̃ which corresponds to Δ. Since Δ̃ has positive measure μ

(as well as Δ by the condition of the theorem), the restriction of μ on Δ̃ is polynomially
nondegenerated [9]. Consider the sequence {ql; l ≥ 1} from Kn such that

R(ql) → η, l → ∞
in the square mean. Then the restrictions R(ql)

/
Δ

tend to the restriction η
/

Δ
. Due to

the condition of the theorem, for every l ≥ 1,

R(ql)
/

Δ
= ql

/
Δ

.

It follows from the above reasonings that the sequence {ql; l ≥ 1} converges in L2(Δ̃, μ).
Then {Jn(ql); l ≥ 1} is a fundamental sequence in L2(Δ̃, μ). Since μ is polynomially
nondegenerated on Δ̃, {ql; l ≥ 1} is fundamental in Kn. Then there exists q ∈ Kn such
that

ql → q, l → ∞
in the square-mean. The continuity of R implies now that η = R(q). Hence, R(Kn) is
closed. Theorem 2.1 is proved.

Remark. Note that condition (2.5) of the theorem can be reformulated as follows. For
every Q ∈ P ,

R(Q)
/

Δ
= Q

/
Δ

.

But, in general, it is much more difficult to check it in this form.

3. The orthogonal expansion for L2(Ω,F ′, P )

In this section, we suppose that R(Kn) is closed for every n ≥ 1. The sufficient
condition for this was given in Theorem 2.1. Let us recall that Kn is in one-to-one
correspondence with the symmetric part of H⊗n. To use this correspondence, we also
suppose that R is one-to-one on every Kn. Note that this condition is fulfilled in Example
1.2. Under these assumptions, R has a continuous inverse as a linear operator from Kn

to R(Kn).
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Lemma 3.1. For every n ≥ 1, there exists a unique continuous linear operator Qn :
L2(Ω,F , P ) → Kn such that
∀ η ∈ L2(Ω,F , P ), Bn(ξ, . . . , ξ) ∈ Hn :

EηR(Bn(ξ, . . . , ξ)) = EQn(η)Bn(ξ, . . . , ξ).

Proof. Denote, by Πn, the projector on R(Kn) (by our assumption, R(Kn) is a closed
subspace). Then, due to the assumption on R, Qn can be defined as R−1(Πn). The
uniqueness of Qn is evident.

To describe the operators Qn, it is enough to describe the expectations

EAm(ξ, . . . , ξ)R(Bn(ξ, . . . , ξ)).

We will do this for F ′ from Example 1.2.

Example 3.1. Suppose that H = L2([0; 1]) and ξ is generated by the Wiener process
w. Take F ′ = Fτ for the stopping time τ which has the property

P{τ = 1} > 0.

Then the assumptions on the operator R hold. Now, to describe Qn, we have to find, for
m ≤ n,

E

∫ 1

0

. . .

∫ tm−1

0

am(t1, . . . , tm)dw(tm) . . . dw(t1)∫ τ

0

. . .

∫ tn−1

0

an(t1, . . . , tn)dw(tn) . . . dw(t1) =

= E

∫ 1

0

1I{τ≥t1}

∫ t1

0

. . .

∫ tm−1

0

am(t1, . . . , tm)dw(tm) . . . dw(t2)∫ t1

0

. . .

∫ tn−1

0

an(t1, . . . , tn)dw(tn) . . . dw(t2)dt1.

Let the random variable 1I{τ≥t} have the Itô–Wiener expansion

1I{τ≥t} =
∞∑

k=0

∫ t

0

. . .

∫ tk

0

αk(t1, . . . , tk)dw(tk) . . . dw(t1).

Then [3, 4] one can find the Itô–Wiener expansion for the product of two multiple integrals
as ∫ t1

0

. . .

∫ tm

0

am(t1, . . . , tm)dw(tm) . . . dw(t2)∫ t1

0

. . .

∫ tn

0

an(t1, . . . , tm)dw(tn) . . . dw(t2) =

=
1

(m − 1)!(n − 1)!

t1∫
. . .

∫
0

am(t1, t2, . . . , tm)dw(t2) . . . dw(tm)

t1∫
. . .

∫
0

an(t1, t2, . . . , tn)dw(t2) . . . dw(tn) =

=
1

(m − 1)!(n − 1)!

m−1∑
i=0

1
i!

(m − 1)!(n − 1)!
(m − 1 − i)!(n − 1 − i)!

·

·
t1∫

m+n−2−2i. . .

∫
0

∧
t1∫
i. . .

∫
0

am(t1, r1, . . . , rm−i−1, s1, . . . , si)·
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·an(t1, rm−i, . . . , rm+n−2−2i, s1, . . . , si)ds1 . . . dsidw(r1) . . . dw(rm+n−2−2i) =
m−1∑
i=0

1
i!

(am(t1, . . . ), an(t1, . . . ))σi .

Here, Λ means the symmetrization with respect to variables r1, . . . , rm+n−2−2i. Using
the obtained relation, one can conclude that

E

∫ 1

0

. . .

∫ tm−1

0

am(t1, . . . , tm)dw(tm) . . . dw(t1)·∫ τ

0

. . .

∫ tn−1

0

an(t1, . . . , tm)dw(tm) . . . dw(t1) =

=
∫ 1

0

m−1∑
i=0

1
i!

t1∫
i. . .

∫
0

αmn−2−2i(r1, . . . , rmn−2−2i)·

(am(t1, . . . , an(t1, . . . ))σi
(r1, . . . , rm+n−2−2i)dr1 . . . drm+n−2i.

The last formula gives us the possibility to obtain the expression for Qn(am).

As was mentioned in Section 1, the union of R(Kn), n ≥ 0 is dense in L2(Ω,F ′, P )
and our aim is to built an orthogonal expansion using the elements of R(Kn),
n ≥ 0. For every symmetric An ∈ H⊗n, we are looking for such Xk ∈ H⊗n,
k = 0, . . . , n − 1, that
∀ j = 0, . . . , n − 1

(3.1)
n−1∑
k=0

Qj(Xk) = Qj(An).

We will prove that the solution to (3.1) exists and is unique by induction. Note that,
for n = 1, 2, it is true. Suppose that (3.1) has a solution for every n ≤ N. Consider (3.1)
for AN+1. By Y (Ak), we denote for Ak, k ≤ N , the sum

Y (Ak) = Ak =
k−1∑
j=0

Xj ,

where X0, . . . , Xk−1 is the solution to (3.1) for Ak. The next lemma will be useful.

Lemma 3.1. For arbitrary Bk, there exists a unique Ak such that

(3.2) Qk(Y (Ak)) = Bk.

Proof. As was mentioned above, under our conditions on F ′, equality (3.2) is equivalent
to

(3.3) R(Qk(Y (Ak))) = R(Bk).

Let us denote, by G′
k−1, the orthogonal projector on R(P̃k−1) and, by G′′

k , the orthogonal
projector on R(Kk). Then (3.3) can be written as

(3.4) G′′
kG′

k−1(R(Ak)) + R(Ak) = R(Bk).

To prove the statement of Lemma 3.1, it is enough to check that the operator norm
of G′′

kG′
k−1 is less than unity. The opposite suggestion (‖G′′

kG′
k−1‖ = 1) leads to the

existence of the sequence {Cn
k ; n ≥ 1} with the properties

1) ER(Cn
k )2 = 1, n ≥ 1,

2) E(R(Cn
k ) − G′

k−1R(Cn
k ))2 → 0, n → ∞.
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This contradicts the condition that

R(Cn
k )
∣∣
Δ

= Cn
k (ξ, . . . , ξ)

∣∣
Δ

, n ≥ 1

and the above-mentioned fact [9] that the restriction of a Gaussian measure on the set
of positive measure is polynomially nondegenerated. So the hypothesis ‖G′′

kG′
k−1‖ = 1

is wrong. Consequently, the solution to (3.4) exists, is unique, and can be obtained by
the iteration method. Lemma 3.1 is proved.
Remark. Note that, due to the properties of R, the iteration method can be applied
directly to (3.2).

Now let us rewrite (3.1) in terms of Y. Let us look for C0, . . . , CN such that
∀ j = 0, . . . , N :

(3.5) Qj

(
N∑

k=0

Y (Ck)

)
= Qj(AN+1).

Note that, due to the properties of Y , (3.5) actually is a triangular system:
∀ j = 0, . . . , N

(3.6) Qj

(
j∑

k=0

Y (Ck)

)
= Qj(AN+1).

Accordingly to Lemma 3.1, (3.6) has a unique solution.
Note that the orthogonal “polynomials” Y (Ak) can be obtained by the iteration

method. It is clearly seen in the case F ′ = Fτ because, in this situation, the opera-
tors Q (and G, respectively) become integral operators of the first kind.
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