Theory of Stochastic Processes Vol.13 (29), no.1-2, 2007, pp.132-143

VOLODYMYR MASOL AND MYKOLA SLOBODIAN

ESTIMATION OF THE RATE OF CONVERGENCE TO THE LIMIT DISTRIBUTION OF THE NUMBER OF FALSE SOLUTIONS OF A SYSTEM OF NONLINEAR RANDOM BOOLEAN EQUATIONS THAT HAS A LINEAR PART

The theorem on a estimation of the rate of convergence $(n \to \infty)$ to the Poisson distribution of the number of false solutions of a beforehand consistent system of nonlinear random equations, that has a linear part, over the field GF(2) is proved.

1. INTRODUCTION

Let us consider a system of equations over the field $\mathrm{GF}(2)$ consisting of two elements

$$\sum_{k=1}^{g_i(n)} \sum_{1 \le j_1 < \dots < j_k \le n} a_{j_1 \cdots j_k}^{(i)} x_{j_1} \cdots x_{j_k} = b_i, \quad i = 1, 2, \dots, N,$$
(1)

that satisfies condition (A)

1) coefficients $a_{j_1...j_k}^{(i)}$, $1 \leq j_1 < ... < j_k \leq n, k = 1, ..., g_i(n)$, i = 1, ..., N, are independent random variables that take value 1 with probability $P\{a_{j_1...j_k}^{(i)} = 1\} = p_{ik}$ and value 0 with probability $P\{a_{j_1...j_k}^{(i)} = 0\} = 1 - p_{ik}$;

2) elements b_i , i = 1, ..., N, are the result of the substitution of a fixed n-dimensional vector \overline{x}^0 , which has $\rho(n)$ components equal to one, into the left-hand side of the system (1);

3) function $g_i(n)$, i = 1, ..., N, is nonrandom, $g_i(n) \in \{2, ..., n\}$, i = 1, ..., N.

Denote by ν_n the number of false solutions of the system (1), i.e. the number of solutions of the system (1) different from the vector \overline{x}^0 . We are interested in estimation of the rate of convergence to the limit distribution

²⁰⁰⁰ Mathematics Subject Classifications. Primary 60C05, 15A52, 15A03.

Key words and phrases. System of nonlinear random Boolean equations, field GF(2), rate of convergence.

of random variable $\nu_n, n \to \infty$. Such an estimation was considered in [2] under condition that there are no linear terms in each equation of the system (1) with probability 1. Besides, the essential in [2] was the condition $\rho(n) = \rho n, 0 < \rho < 1$.

Theorem. Assume that the following conditions hold: (A);

$$n - N = m, \ m = const, \ -\infty < m < \infty;$$
 (2)

$$0 \le \delta_{i1}(n) \le p_{i1} \le 1 - \delta_{i1}(n), \quad i = \overline{1, N}; \tag{3}$$

there exists a function $\varphi(n)$ such that for any ε_0 , $\varepsilon_0 \in (0, 1)$, there exists $n_0 = n_0(\varepsilon_0)$, $n_0 \in N$, such that for any $n \ge n_0$ there exists ε , $\varepsilon \in (0, 1)$

$$\sum_{i=1}^{N} \exp\{-\varepsilon\varphi(n)\delta_{i1}(n)\} \le \varepsilon_0;$$
(4)

for any i = 1, 2, ..., N there exists a set $T_i \neq \emptyset$ such that for all sufficiently large values n

$$T_i \subseteq \{2, \ldots, g_i(n)\}, \ 0 \le \delta_{it}(n) \le p_{it} \le 1 - \delta_{it}(n), \quad t \in T_i; \quad (5)$$

for any ε_1 , $\varepsilon_1 \in (0; 1)$ and any integer $k \ge 0$ there exists $n_1 = n_1(\varepsilon_1, k)$, $n_1 \in N$ such that for any $n \ge n_1$

$$2^{\beta} B(n) < \varepsilon_1, \tag{6}$$

where $B(n) = \sum_{i=1}^{N} \exp\{-2\sum_{t\in T_i} \delta_{it}(n)C_{f(n)}^t\}, \ \beta = \left[\frac{\log_2\mu(n)}{3}\right], \ \mu(n) = \frac{n}{\varphi(n)\ln n}, \ \mu(n) \ge 2^{3k}, \ f(n) \ takes \ integer \ positive \ values, \ f(n) = o(\varphi(n)), \ n \to \infty, \ [\cdot] \ is \ a \ sign \ of \ integer \ part.$

Then for fixed k = 0, 1, 2, ...

$$\left| P\{\nu_{n} = k\} - \frac{\lambda^{k}}{k!} e^{-\lambda} \right| \leq \left(\frac{2e\lambda}{\beta}\right)^{\beta} \left[2 + 2^{\beta+1} B(n) + \Theta_{2} \left(1 + 2^{\beta+1} B(n)\right) + 6 \Theta_{1}\right] + \left(\frac{2e\lambda}{k}\right)^{k} \beta e^{2\lambda} B(n) + \left(\frac{e\lambda}{k}\right)^{k} \beta e^{\lambda} \left[\Theta_{2} \left(1 + 2^{\beta+1} B(n)\right) + 6 \Theta_{1}\right],$$

$$(7)$$

where $\lambda = 2^m$, $\delta_i = \min\left\{\delta_{i1}(n), \frac{2\ln n}{\sqrt{\varepsilon\varphi(n)}}\right\}$,

$$\Theta_1 = \exp\left\{-2^{-2\beta}\sum_{i=1}^N \delta_i + 2^\beta + \beta + \ln n - m\ln 2\right\},\$$
$$\Theta_2 = 2^{-n} \exp\left\{\varepsilon 2^\beta \varphi(n) \left(\beta + \ln\left(\frac{ne}{\varepsilon 2^\beta \varphi(n)}\right)\right) + 2^\beta + 2\ln(\varepsilon 2^\beta \varphi(n))\right\}$$

134 VOLODYMYR MASOL AND MYKOLA SLOBODIAN

3. AUXILIARY STATEMENTS

Let $x^1, ..., x^k$ be *n*-dimensional Boolean vectors which are all distinct and do not coincide with $x^0, x^{\nu} = (x_1^{\nu}, ..., x_n^{\nu}), \nu = \overline{0, k}, 1 \leq k < \infty$. Let $i_{\{u_1, ..., u_s\}}$ $(j_{\{u_1, ..., u_s\}})$ denote the number of units (zeros) standing at those and only those positions of all vectors $x^{u_1}, ..., x^{u_s}$, where all vectors $x^{u_{s+1}}, ..., x^{u_k}, x^0$ have zeros (units), $u_{\nu} \in \{1, ..., k\}, u_{s+1}, ..., u_k \in \{1, ..., k\} \setminus \{u_1, ..., u_s\}$. See details [1].

Denote by $M\nu_n^{[k]}$ k-th factorial moments of a random variable ν_n ; let $M\nu_n^{[0]} \equiv 1$.

Statement. ([1]) Under condition (A) for $k \ge 1$

$$M\nu_n^{[k]} = 2^{-kN} S(n, \ k; \ Q), \tag{8}$$

where

$$S(n, k; Q) = \sum_{s=0}^{n-\rho(n)} \sum (n-\rho(n))! \left((n-\rho(n)-s)! \prod_{i\in I} i! \right)^{-1} \times \sum_{s'=0}^{\rho(n)} \sum '\rho(n)! \left((\rho(n)-s')! \prod_{j\in J} j! \right)^{-1} Q, \ s+s' \ge 1$$
(9)

$$Q = \prod_{i=1}^{N} \left(1 + \sum_{\nu=1}^{k} \sum_{1 \le u_1 < \dots < u_{\nu} \le k} \prod_{t=1}^{g_i(n)} (1 - 2p_{it})^{\Gamma_{t,k}^{\{u_1,\dots,u_{\nu}\}}} \right);$$
(10)

summation $\sum (\sum')$ is taken over all $i \in I$ $(j \in J)$, where $I = \{i_{\{u_1,...,u_\nu\}} : 1 \le u_1 < \cdots < u_\nu \le k, \nu = 1, ..., k\}$ $(J = \{j_{\{u_1,...,u_\nu\}} : 1 \le u_1 < \cdots < u_\nu \le k, \nu = 1, ..., k\})$ such that

$$\sum_{i \in I} i = s \left(\sum_{j \in J} j = s' \right);$$

numbers $i \ (i \in I), \ j \ (j \in J)$ in (9) satisfy the following relations

$$\sum_{i \in I_{\{u\}}, j \in J_{\{u\}}} (i+j) \ge 1, \quad u = 1, \dots, k,$$

 $\sum_{l=0}^{k-2} \sum_{1 \le \mu_1 < \ldots < \mu_l \le k} \left(i_{\{u_1, \mu_1, \ldots, \mu_l\}} + j_{\{u_1, \mu_1, \ldots, \mu_l\}} + i_{\{u_2, \mu_1, \ldots, \mu_l\}} + j_{\{u_2, \mu_1, \ldots, \mu_l\}} \right) \ge 1,$

$$1 \le u_1 < u_2 \le k$$

for $1 \le u_1 < ... < u_{\nu} \le k$, $\nu \in \{1, ..., k\}$, and $t \in \{1, ..., n\}$ the inequality

$$\Gamma_{t,k}^{\{u_1,\dots,u_\nu\}} \ge \sum_{(i,j)\in T} \left(C_i^t + C_j^t \right)$$
(11)

holds, where $T = I_{\{u_1,...,u_{\nu}\}} \times J_{\{u_1,...,u_{\nu}\}}$. Here

$$I_{\{u_r,...,u_{\nu}\}} = \left\{ i_{\{\sigma_1,...,\sigma_{\psi},\,\mu_1,...,\mu_l\}} : A(\psi,\,l,\,k) \right\},\$$
$$J_{\{u_r,...,u_{\nu}\}} = \left\{ j_{\{\sigma_1,...,\sigma_{\psi},\,\mu_1,...,\mu_l\}} : A(\psi,\,l,\,k) \right\},\$$

where $A(\psi, l, k)$ denotes the following constraint set: $1 \leq \sigma_1 < ... < \sigma_{\psi} \leq$ $k, \sigma_z \in \{u_1, ..., u_\nu\}, z = 1, ..., \psi, \psi = 1, ..., \nu, \psi \equiv 1 \pmod{2}, 1 \le \mu_1 < 0$ $\dots < \mu_l \le k, \ \mu_1, \dots, \mu_l \notin \{u_1, \dots, u_\nu\}, \ l = 0, \dots, k - \nu.$ The explicit form of $\Gamma_{t,k}^{\{u_1, \dots, u_\nu\}}$ for $1 \le u_1 < \dots < u_\nu \le k, \ \nu \in \{1, \dots, k\},$

 $t = 1, 2, ..., g_i(n), i = 1, ..., N$ is given in [1].

We use statement 1 and divide the expression (8) into finite number of addends:

$$M\nu_n^{[k]} = 2^{-kN} \sum_{\Delta \ge 0} S^{(\Delta)}(n,k;Q),$$
(12)

where $S^{(\Delta)}(n, k; Q)$ differs from S(n, k; Q) by all *i* and *j* $(i \in I, j \in J)$ involved in the expression S(n, k; Q) according to (9), but accept values such that there exist exactly Δ distinct collections $\omega_{\alpha} = \{u_1^{(\alpha)}, \ldots, u_{\xi_{\alpha}}^{(\alpha)}\}$ $1 \leq u_1^{(\alpha)} < \cdots < u_{\xi_{\alpha}}^{(\alpha)} \leq k, \ \xi_{\alpha} \in \{1, ..., k\}, \ \alpha = 1, ..., \Delta$, such that for each of them there is a $t^{(\alpha)} \in \{2, ..., r\}$, satisfying the inequality

$$\Gamma^{\omega_{\alpha}}_{t^{(\alpha)},\,k} < C^{t^{(\alpha)}}_{r},\tag{13}$$

and for all collections $\{v_1, ..., v_{\gamma}\}, 1 \leq v_1 < \cdots < v_{\gamma} \leq k, \gamma = 1, ..., k,$ that satisfy $\{v_1, ..., v_{\gamma}\} \neq \omega_{\alpha}, \ \alpha = 1, ..., \ \Delta$ the estimate

$$\Gamma_{t,k}^{\{v_1,\dots,v_\gamma\}} \ge C_r^t \tag{14}$$

holds for all $t \in \{2, \ldots, r\}$, where

$$r = [\varepsilon \varphi(n)].$$

To prove the theorem, we use the following lemma. Lemma 1. If conditions (2), (5) and (6) hold, then

$$S_1 = \lambda^k + \theta(k, n), \tag{15}$$

where

$$S_{1} = 2^{-kN} S^{(0)}(n, k; Q),$$

$$|\theta(k, n)| \leq 2^{k+1} u(k) + 2^{mk} \Theta_{2} \left(1 + 2^{-mk+k+1} u(k) \right),$$

$$u(k) = 2^{mk} \sum_{i=1}^{N} \exp\left\{ -2 \sum_{t \in T_{i}} \delta_{it}(n) C_{r}^{t} \right\},$$

136 VOLODYMYR MASOL AND MYKOLA SLOBODIAN

$$0 \le k \le \beta. \tag{16}$$

The proof is similar to the proof of Lemma 1 in [2], provided $\Delta = 0$.

Further we will prove that for $\Delta \geq 1$ the following statement takes place: Lemma 2. Under conditions of the theorem, for such $k, k \in \mathbb{Z}_+ \cup \{0\}$, that satisfy formula (16), and for all sufficiently large values of n

$$p_1 \le 6 \left(2^{2^k}\right) 2^{(m+1)k-m} \exp\left\{-2^{-2k} \sum_{i=1}^N \delta_i + \ln n\right\},$$
 (17)

where $p_1 = 2^{-kN} \sum_{\Delta=1}^{2^k - 1} S^{(\Delta)}(n, k; Q).$

Proof. Denote by $M_1(\tilde{M}_1)$ the set of all $i, i \in I$ $(j, j \in J)$ that does not belong to $I_{\omega_{\alpha}}(J_{\omega_{\alpha}}), \alpha = 1, ..., \Delta$; and by $M_2 = I \setminus M_1, \ \tilde{M}_2 = J \setminus \tilde{M}_1$. Let $R_1(\tilde{R}_1)$ be the cardinal number of $M_1(\tilde{M}_1)$. Let z be the smallest integer such that

$$\Delta \le 2^z - 1, \ 1 \le z \le k. \tag{18}$$

According to Statement 2.1 in [1] we obtain:

$$R_1 \le 2^{k-z} - 1;$$
 $\tilde{R}_1 \le 2^{k-z} - 1.$ (19)

If

$$\Gamma_{t,k}^{\{u_1,\ldots,\,u_\nu\}} < C_r^t,\tag{20}$$

for some collection $\{u_1, ..., u_\nu\}$, $1 \le u_1 < \cdots < u_\nu \le k$, $\nu = 1, ..., k$, and some $t \in \{2, ..., r\}$, then from (11) we get

$$0 \le i < r, \quad i \in I_{\{u_1, \dots, u_\nu\}}; \quad 0 \le j < r, \quad j \in J_{\{u_1, \dots, u_\nu\}}.$$
(21)

Further, it follows from (13), (20) and (21) that the inequalities

$$0 \le i < r \qquad (0 \le j < r) \tag{22}$$

hold for all $i \in M_2$ $(j \in \tilde{M}_2)$. Using (3) at $i = \overline{1, N}$ and $\alpha = \overline{1, \Delta}$ we obtain

$$\left. \prod_{t=1}^{g_i(n)} (1 - 2p_{it})^{\Gamma_{t,k}^{\omega_{\alpha}}} \right| \le (1 - 2\delta_{i1}(n))^{\Gamma_{1,k}^{\omega_{\alpha}}}.$$
(23)

Let restriction G_1 hold: there exist $i \in M_2$ and (or) $j \in \tilde{M}_2$ such that $i \in \left(\frac{r}{E_n}, r\right]$ and (or) $j \in \left(\frac{r}{E_n}, r\right]$ where

$$E_n > 3, \quad E_n = o(\ln n), \ n \to \infty.$$

Put

$$p_2 = p_1 - S_2, \tag{24}$$

where

$$S_2 = 2^{-kN} \sum_{\Delta=1}^{2^{k-1}} S_{(G_1)}^{(\Delta)}(n,k;Q),$$

 $S_{(G_1)}^{(\Delta)}(n,k;Q)$ differs from $S^{(\Delta)}(n,k;Q)$ in such a way that summation over parameter s' in (9) is restricted by G_1 .

Let G_1 hold. Using (11) for the some α , $\alpha = 1, ..., \Delta$, we get

$$\Gamma_{1,k}^{\omega_{\alpha}} \ge \frac{r}{E_n}.$$
(25)

Taking into account (23) and (25), we find the estimate

$$\left|\prod_{t=1}^{g_i(n)} (1-2p_{it})^{\Gamma_{t,k}^{\omega_\alpha}}\right| \le \exp\left\{-2\delta_{i1}(n)\frac{r}{E_n}\right\},\,$$

for i, i = 1, ..., N and some $\alpha \in \{1, ..., \Delta\}$. Now using (18) we obtain

$$Q \le 2^{zN} \exp\left\{-2^{-z} \left(N - \sum_{i=1}^{N} \exp\left\{-2\delta_{i1}(n)\frac{r}{E_n}\right\}\right)\right\}.$$
 (26)

Thus, using Gelder inequality and relation (4), we estimate Q as

$$Q \le \hat{Q},\tag{27}$$

where $\hat{Q} = 2^{zN} \exp\left\{-2^{-z} \left(N - N^{1-A_n}\right)\right\}$, $A_n = \frac{2\varepsilon}{E_n}$. Taking into account restriction G_1 , relations (19) and (22) we find

$$S_{2} \leq 2^{-kN} \sum_{z=1}^{k} \sum_{\Delta=2^{z-1}}^{2^{z}-1} \sum_{1 \leq \zeta_{1} < \dots < \zeta_{d} \leq 2^{k}-1} \times \\ \times \sum_{s=0}^{n-\rho n} C_{n-\rho(n)}^{s} \sum_{s_{1}+s_{2}=s} C_{s}^{s_{1}} \left(\sum_{\substack{\sum \\ i \in M_{2}} i=s_{1}} \frac{s_{1}!}{\prod \\ i \in M_{2}} i! \right) \left(\sum_{\substack{\sum \\ i \in M_{1}} i=s_{2}} \frac{s_{2}!}{\prod \\ i \in M_{1}} i! \right) \times \\ \times \sum_{s'=0}^{\rho(n)} C_{\rho(n)}^{s'} \sum_{s_{1}'+s_{2}'=s'} C_{s'}^{s_{1}'} \left(\sum_{\substack{\sum \\ j \in \tilde{M}_{2}} j=s_{1}'} \frac{s_{1}'!}{\prod \\ j \in \tilde{M}_{2}} j! \right) \left(\sum_{\substack{\sum \\ j \in \tilde{M}_{1}} j=s_{2}'} \frac{s_{2}'!}{\prod \\ j \in \tilde{M}_{1}} j! \right) \hat{Q}.$$
(28)

It follows from (27) and (28) that

$$S_2 \le \frac{2^{2^k} 2^{mk}}{2^m} \exp\left\{-2^{-k} N\left(1 - N^{-A_n}\right) + 2^k \varepsilon \varphi(n) \ln\left(\frac{ne}{2^k \varepsilon \varphi(n)}\right)\right\}.$$
 (29)

Let restriction G_2 hold: there exist $i \in M_2$ and (or) $j \in \tilde{M}_2$ such that $i \in \left(\frac{r}{\ln n}, \frac{r}{E_n}\right]$ and (or) $j \in \left(\frac{r}{\ln n}, \frac{r}{E_n}\right]$. Let us consider sum p_3 . Put

$$p_3 = p_2 - S_3, \tag{30}$$

where

$$S_3 = 2^{-kN} \sum_{\Delta=1}^{2^{k-1}} S^{(\Delta)}_{(G_2)}(n,k;Q).$$

Here $S_{(G_2)}^{(\Delta)}(n,k;Q)$ differs from $S^{(\Delta)}(n,k;Q)$ in such a way that summation in (9) is restricted by G_2 .

If G_2 hold, then similarly to (27) (we just replace A_n by $\tilde{A}_n = \frac{2\varepsilon}{\ln n}$) we obtain

$$Q \le 2^{zN} \exp\left\{-2^{-k} \left(1 - e^{-2\varepsilon}\right)N\right\}.$$
(31)

Using G_2 and relation (19), we find an estimate S_3 (similarly to S_2):

$$S_3 \le \frac{2^{2^k} 2^{mk}}{2^m} \exp\left\{-2^{-k} \left(1 - e^{-2\varepsilon}\right) N + \frac{2^k \varepsilon \varphi(n)}{E_n} \ln\left(\frac{neE_n}{2^k \varepsilon \varphi(n)}\right)\right\}.$$
 (32)

Let restriction G_3 hold: for all $i \in M_2$ and $j \in \tilde{M}_2$

$$0 \le i \le \frac{r}{\ln n}, \qquad 0 \le j \le \frac{r}{\ln n}.$$
(33)

Let us consider sum p_4 . Put

$$p_4 = p_3 - S_4, (34)$$

where

$$S_4 = 2^{-kN} \sum_{\Delta=1}^{2^{k-1}} S^{(\Delta)}_{(G_3, 2^z - 2)}(n, k; Q).$$

In (34), $S_{(G_3,2^z-2)}^{(\Delta)}(n,k;Q)$ differs from $S^{(\Delta)}(n,k;Q)$ in such a way that summation in (9) is restricted by G_3 and $\Delta < 2^z - 1$.

Using (11) we obtain

$$\Gamma_{1,k}^{\omega_{\alpha}} \ge (s^{(\alpha)} + \tilde{s}^{(\alpha)}) \tag{35}$$

for all $\alpha = 1, ..., \Delta$, where $s^{(\alpha)} = \sum_{i \in I_{\omega_{\alpha}}} i, \ \tilde{s}^{(\alpha)} = \sum_{j \in J_{\omega_{\alpha}}} j.$ Taking into account (23) and (35) for i = 1, ..., N and $\alpha = 1$.

Caking into account (23) and (35) for
$$i = 1, ..., N$$
 and $\alpha = 1, ..., \Delta$,

$$\left|\prod_{t=1}^{g_i(n)} \left(1 - 2p_{it}\right)^{\Gamma_{t,k}^{\omega_{\alpha}}}\right| \le \exp\left\{-\frac{2\delta_i}{2^k}(s^{(\alpha)} + \tilde{s}^{(\alpha)})\right\}.$$

Using equality $e^{-y} \le 1 - \frac{y}{2}, \ 0 \le y < 1$, for $i = 1, \dots, N, \alpha = 1, \dots, \Delta$, we get

$$\left|\prod_{t=1}^{g_i(n)} (1 - 2p_{it})^{\Gamma_{t,k}^{\omega_{\alpha}}}\right| \le 1 - \frac{\delta_i}{2^k} (s^{(\alpha)} + \tilde{s}^{(\alpha)}).$$
(36)

Taking into account (5), (6), (14) and (36) we obtain

$$2^{-kN} \sum_{\Delta=1}^{2^{k}-1} S_{(G_{3})}^{(\Delta)}(n, k; Q) \leq 2^{-kN} 2^{2^{k}} \sum_{s=0}^{n-\rho(n)} C_{n-\rho(n)}^{s} \sum_{s_{*}=0}^{s} R_{1}^{s-s_{*}} \times \left(\sum_{\sum_{i \in M_{2}} i=s_{*}} \frac{s!}{(s-s_{*})!} \left(\prod_{i \in M_{2}} i! \right)^{-1} \right) \times \sum_{s'=0}^{\rho(n)} C_{\rho(n)}^{s'} \sum_{\tilde{s}_{*}=0}^{s'} \tilde{R}_{1}^{s'-\tilde{s}_{*}} \left(\sum_{\sum_{i \in \tilde{M}_{2}} i=\tilde{s}_{*}} \frac{s!}{(s'-\tilde{s}_{*})!} \left(\prod_{j \in \tilde{M}_{2}} j! \right)^{-1} \right) \times \\ \times \exp\left\{ -2^{-z} \sum_{i=1}^{N} \frac{\delta_{i}}{2^{k}} \sum_{\alpha=1}^{\Delta} (s^{(\alpha)} + \tilde{s}^{(\alpha)}) + 2^{k-mk} u(k) \right\}, \quad s+s' \geq 1.$$
(37)

Now, taking into consideration (2), we obtain

$$2^{-kN} \sum_{\Delta=1}^{2^{k}-1} S_{(G_{3})}^{(\Delta)}(n, k; Q) \leq \\ \leq 2^{2^{k}} 2^{mk} 2^{-zn} (\Delta+1)^{N} \exp\left\{\frac{k2^{k} \varepsilon \varphi(n) \ln 2}{\ln n} + \frac{2^{k} \varepsilon \varphi(n)}{\ln n} \ln\left(\frac{en \ln n}{2^{k} \varepsilon \varphi(n)}\right)\right\} \times \\ \times \exp\left\{-2^{-z+1} \sum_{i=1}^{N} \frac{\delta_{i}}{2^{k}} \sum_{\alpha=1}^{\Delta} (s^{(\alpha)} + \tilde{s}^{(\alpha)}) + 2^{k-mk} u(k))\right\}, \quad s+s' \geq 1, \quad (38)$$

where $S_{(G_3)}^{(\Delta)}(n,k;Q)$ differs from $S^{(\Delta)}(n,k;Q)$ in such a way that summation in (9) is restricted by G_3 .

If $\Delta < 2^z - 1$, then it follows from (38) and the inequality $\max\{s_*, \tilde{s}_*\} \leq \frac{2^k \varepsilon \varphi(n)}{\ln n}$, that

$$S_4 \le \frac{2^{2^k} 2^{mk}}{2^m} \exp\left\{-2^{-k} N + 2^{k+1} \varepsilon \varphi(n)\right\}.$$
(39)

Let $\Delta = 2^z - 1$. Then we can put

$$p_5 = p_4 - S_5, \tag{40}$$

where

$$S_5 = 2^{-kN} \sum_{\Delta=1}^{2^{k}-1} S_{(G_3, 2^z - 1)}^{(\Delta)}(n, k; Q).$$

Here, $S_{(G_3,2^z-1)}^{(\Delta)}(n,k;Q)$ differs from $S^{(\Delta)}(n,k;Q)$ in such a way that summation in (9) is restricted by G_3 and condition $\Delta = 2^z - 1$. Using (2), (6), (19), the inequality

$$\sum_{\alpha=1}^{\Delta} \left(s^{(\alpha)} + \tilde{s}^{(\alpha)} \right) \ge s_* + \tilde{s}_*,\tag{41}$$

where

$$s_* = \sum_{i \in M_2} i, \quad \tilde{s}_* = \sum_{j \in \tilde{M}_2} j,$$

and relation (37) it is easy to verify that

$$S_5 \le \frac{2^{2^k} 2^{(m+1)k}}{2^m} \exp\left\{-2^{-2k} \sum_{i=1}^N \delta_i + \ln n\right\},\tag{42}$$

provided

$$s_* + \tilde{s}_* \ge 1. \tag{43}$$

Now, let us check that if $\Delta = 2^z - 1$, $1 \le z \le k$, and $z \in \{k, k - 1\}$ or $k \in \{1, 2\}$, then there exists some α , $\alpha \in \{1, 2, ..., \Delta\}$, such that $\xi_{\alpha} \le 2$. Indeed, when z = k or $k \in \{1, 2\}$, the existence of the mentioned parameter α is obvious. For z = k - 1 the existence of the parameter α such that $\xi_{\alpha} \le 2$, follows from Remark 2 in [1, p.1217].

Let restrictions G_4 hold:

$$s_* + \tilde{s}_* = 0,$$
 (44)

$$\xi_{\alpha} \ge 3, \ \alpha = 1, \dots, \ \Delta, \ \Delta = 2^{z} - 1, \ 1 \le z \le k - 2, \ 3 \le k < \infty.$$
 (45)

We can put

$$p_6 = p_5 - S_6, \tag{46}$$

$$S_6 = 2^{-kN} \sum_{\Delta=1}^{2^k - 1} S^{(\Delta)}_{(G_4)}(n,k; Q).$$

where $S_{(G_4)}^{(\Delta)}(n,k;Q)$ differs from $S^{(\Delta)}(n,k;Q)$ in such a way that summation in (9) is restricted by G_4 .

Let restriction (44), $\Delta = 2^z - 1$, $R_1 < 2^{k-z} - 1$, and $\tilde{R}_1 < 2^{k-z} - 1$ hold. Then using (38), by virtue of (19), we obtain the estimate

$$S_{6} \leq (1+o(1)) 2^{2^{k}+zN-kN} \sum_{s=0}^{n-\rho(n)} C_{n-\rho(n)}^{s} |M_{1}|^{s} \sum_{s'=0, s'+s\geq 1}^{\rho(n)} C_{\rho(n)}^{s'} \left|\tilde{M}_{1}\right|^{s'} \leq \frac{2^{2^{k}+1}2^{mk}}{2^{m}} \left(1-2^{1-k}\right)^{n}.$$
(47)

It remains to check the relation

$$S_7 \le \frac{2^{2^k} 2^{mk}}{2^m} \exp\left\{-n2^{-k+1} + \varepsilon\varphi(n)\ln\left(\frac{n\,e}{\varepsilon\varphi(n)}\right) + \ln\sqrt{\varphi(n)}\right\},\qquad(48)$$

where

$$S_7 = p_6 = 2^{-kN} \sum_{\Delta=1}^{2^k - 1} S^{(\Delta)}_{(G_4, \tilde{R}_1)}(n, \, k; \, Q), \tag{49}$$

under restrictions G_4 and

$$R_1 = \tilde{R}_1 = 2^{k-z} - 1. \tag{50}$$

In (49), $S_{(G_4,\tilde{R}_1)}^{(\Delta)}(n, k; Q)$ differs from $S^{(\Delta)}(n, k; Q)$ in such a way that summation in (9) is restricted by G_4 and (50).

In analogy to how it was done in [1], we make use of conditions (50) and relations G_4 to verify that there exists an element j_* , $j_* \in \tilde{M}_1$, satisfying the inequality $j_* \leq r$. Therefore, under the restrictions G_4 and (50) we get

$$S_7 \le 2^{2^k} 2^{(k-z)m} \left(1 - \frac{1}{2^{k-z}}\right)^n \sum_{l=0}^r C_n^l.$$

Next, taking into account Stirling formula, we obtain (48).

Analyzing restrictions (G_i) , i = 1, 2, 3, 4, it is easy to verify that (9) holds for all possible values of parameter s, s', i and j ($i \in I, j \in J$), that satisfy (13) for which $\Delta \geq 1$.

Equalities (24), (30), (34), (40), (46) and (49) combined with (29), (32), (39), (42), (47) and (48) prove (17) under the conditions of the theorem.

Lemma 3. Under conditions of the theorem, for such $k, k \in \mathbb{Z}_+ \cup \{0\}$, that satisfy formula (16),

$$M\nu_n^{[k]} = \lambda^k + \Phi(k, n), \tag{51}$$

where $\Phi(k, n) = \theta(k, n) + p_1$.

Proof. By virtue of (12), Lemma 1 and Lemma 2 imply, obviously, (51), where

$$|\Phi(k, n)| \le 2^{mk} \left(2^{k(1-m)+1} u(k) + \Theta_2 \left(1 + 2^{-mk+k+1} u(k) \right) + 6 \exp\left\{ -2^{-2k} \sum_{i=1}^N \delta_i + 2^k + k + \ln n - m \ln 2 \right\} \right).$$

3. Proof of the theorem

To prove the theorem, we will consider the following inequality for all integer $q, q \ge 0$,

$$\left| P\{\nu_n = q\} - \frac{\lambda^q}{q!} e^{-\lambda} \right| \le R_1 + R_2 + R_3,$$
 (52)

where

$$R_{1} = \left| P\{\nu_{n} = q\} - \sum_{k=q}^{q+2\nu-1} (-1)^{k-q} C_{k}^{q} B_{kn} \right|,$$

$$R_{2} = \left| \sum_{k=q}^{q+2\nu-1} (-1)^{k-q} C_{k}^{q} \left[B_{kn} - \frac{\lambda^{k}}{k!} \right] \right|,$$

$$R_{3} = \left| \sum_{k=q}^{q+2\nu-1} (-1)^{k-q} C_{k}^{q} \frac{\lambda^{k}}{k!} - \frac{\lambda^{q}}{q!} e^{-\lambda} \right|,$$

 B_{kn} is the k-th binomial moment of the random variable ν_n .

Choose n such that for any integer $q \ge 0$

$$\frac{\lambda^{q+2\nu}}{q!(2\nu)!} < \left(\frac{2e\lambda}{\beta}\right)^{\beta},\tag{53}$$

where $2\nu = \beta - q$.

It follows from the inequality

$$R_3 < \frac{\lambda^{q+2\nu}}{q!(2\nu)!} \tag{54}$$

and (53) that

$$R_3 < \left(\frac{2e\lambda}{\beta}\right)^{\beta}.\tag{55}$$

Taking into account (51) we obtain

$$\left| B_{q+2\nu,n} - \frac{\lambda^{q+2\nu}}{(q+2\nu)!} \right| = \frac{|\Phi(q+2\nu,n)|}{(q+2\nu)!} \le \frac{2^{(q+2\nu)m}}{(q+2\nu)!} \left(6 \exp\left\{ -2^{-2(q+2\nu)} \sum_{i=1}^{N} \delta_i + 2^{q+2\nu} + q + 2\nu + \ln n - m \ln 2 \right\} \right) + \frac{2^{(q+2\nu)m}}{(q+2\nu)!} \left(2^{q+2\nu+1} B(n) + \Theta_2 \left(1 + 2^{q+2\nu+1} B(n) \right) \right).$$
(56)

Thus

$$\left| B_{q+2\nu,n} - \frac{\lambda^{q+2\nu}}{(q+2\nu)!} \right| \le \frac{2^{m\beta}}{\beta!} \left(6 \Theta_1 + 2^{\beta+1} B(n) + \Theta_2 \left(1 + 2^{\beta+1} B(n) \right) \right).$$
(57)

It follows from Bonferronis inequality [3, p. 68] that

$$0 \le P\{\nu_n = q\} - \sum_{k=q}^{q+2\nu-1} (-1)^{k-q} C_k^q B_{kn} \le C_{q+2\nu}^q B_{q+2\nu,n}.$$
 (58)

142

Applying (53) and (58) to (57), we obtain

$$B_{q+2\nu,n}C_{q+2\nu}^q < \left(\frac{2e\lambda}{\beta}\right)^{\beta} \left(1 + 2^{\beta+1}B(n) + 6\Theta_1 + \Theta_2\left(1 + 2^{\beta+1}B(n)\right)\right).$$
(59)

Hence

$$R_1 < \left(\frac{2e\lambda}{\beta}\right)^{\beta} \left(1 + 2^{\beta+1}B(n) + 6\Theta_1 + \Theta_2\left(1 + 2^{\beta+1}B(n)\right)\right). \tag{60}$$

Further, taking into account (51), it is easy to check that

$$\sup_{q \le k \le q+2\nu-1} C_k^q \left| B_{kn} - \frac{\lambda^k}{k!} \right| \le \left(\frac{2e\lambda}{q} \right)^q e^{2\lambda} B(n) + \left(\frac{e\lambda}{q} \right)^q e^{\lambda} \left(\Theta_2 \left(1 + 2^{\beta+1} B(n) \right) + 6\Theta_1 \right).$$
(61)

Now, using inequality (61), it is easy to verify that

$$R_{2} < \sum_{k=q}^{q+2\nu-1} C_{k}^{q} \left| B_{kn} - \frac{\lambda^{k}}{k!} \right| \leq \left(\frac{2e\lambda}{q} \right)^{q} e^{2\lambda} \beta B(n) + \left(\frac{e\lambda}{q} \right)^{q} e^{\lambda} \beta \left(\Theta_{2} \left(1 + 2^{\beta+1} B(n) \right) + 6\Theta_{1} \right).$$

$$(62)$$

Thus, with the help (52), (55), (60), and (62) we obtain (7). The theorem is proved.

BIBLIOGRAPHY

- Masol, V. I., Limit distribution of the number of solutions of a system of random Boolean equations that has a linear part, Ukr. math. jour., (1998), v. 50, no. 9, 1214–1226 (in Ukrainian).
- Masol, V. I., Slobodian, M. V., Estimation of the rate of convergence to the limit distribution of the number of false solutions of a system of nonlinear random Boolean equations, PT&MS, (2007), (Submitted) (in Ukrainian).
- Sachkov, V. N., Introduction to combinatorial methods in discrete mathematics, M.: Nauka, (1982) (in Russian).

DEPARTMENT OF PROBABILITY THEORY AND MATHEMATICAL STATISTICS, KYIV NATIONAL TARAS SHEVCHENCO UNIVERSITY, KYIV, UKRAINE. *E-mail address*: vimasol@ukr.net

DEPARTMENT OF PROBABILITY THEORY AND MATHEMATICAL STATISTICS, KYIV NATIONAL TARAS SHEVCHENCO UNIVERSITY, KYIV, UKRAINE. *E-mail address*: mslob@ukr.net