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VOLODYMYR MASOL AND MYKOLA SLOBODIAN

ESTIMATION OF THE RATE OF
CONVERGENCE TO THE LIMIT DISTRIBUTION
OF THE NUMBER OF FALSE SOLUTIONS OF A
SYSTEM OF NONLINEAR RANDOM BOOLEAN

EQUATIONS THAT HAS A LINEAR PART

The theorem on a estimation of the rate of convergence (n → ∞)
to the Poisson distribution of the number of false solutions of a be-
forehand consistent system of nonlinear random equations, that has
a linear part, over the field GF(2) is proved.

1. Introduction

Let us consider a system of equations over the field GF(2) consisting of
two elements

gi(n)∑
k=1

∑
1≤j1<· · ·< jk≤n

a
(i)
j1 · · · jk

xj1 · · · xjk
= bi , i = 1, 2, . . . , N, (1)

that satisfies condition (A)

1) coefficients a
(i)
j1...jk

, 1 ≤ j1 < . . . < jk ≤ n, k = 1, . . . , gi(n),
i = 1, . . . , N , are independent random variables that take value 1 with
probability P{a(i)

j1...jk
= 1} = pik and value 0 with probability P{a(i)

j1...jk
=

0} = 1 − pik;
2) elements bi, i = 1, . . . , N , are the result of the substitution of a fixed

n-dimensional vector x0, which has ρ(n) components equal to one, into the
left-hand side of the system (1);

3) function gi(n), i = 1, . . . , N, is nonrandom, gi(n) ∈ {2, . . . , n},
i = 1, . . . , N.

Denote by νn the number of false solutions of the system (1), i.e. the
number of solutions of the system (1) different from the vector x0. We are
interested in estimation of the rate of convergence to the limit distribution
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of random variable νn, n → ∞. Such an estimation was considered in [2]
under condition that there are no linear terms in each equation of the sys-
tem (1) with probability 1. Besides, the essential in [2] was the condition
ρ(n) = ρn, 0 < ρ < 1.

Theorem. Assume that the following conditions hold: (A);

n − N = m, m = const, −∞ < m < ∞; (2)

0 ≤ δi1(n) ≤ pi1 ≤ 1 − δi1(n), i = 1, N ; (3)

there exists a function ϕ(n) such that for any ε0, ε0 ∈ (0; 1), there exists
n0 = n0(ε0), n0 ∈ N , such that for any n ≥ n0 there exists ε, ε ∈ (0, 1)

N∑
i=1

exp{−εϕ(n)δi1(n)} ≤ ε0; (4)

for any i = 1, 2, ..., N there exists a set Ti �= ∅ such that for all sufficiently
large values n

Ti ⊆ {2, . . . , gi(n)}, 0 ≤ δit(n) ≤ pit ≤ 1 − δit(n), t ∈ Ti; (5)

for any ε1, ε1 ∈ (0; 1) and any integer k ≥ 0 there exists n1 = n1(ε1, k), n1 ∈
N such that for any n ≥ n1

2β B(n) < ε1, (6)

where B(n) =
N∑

i=1
exp{−2

∑
t∈Ti

δit(n)Ct
f(n)}, β =

[
log2 μ(n)

3

]
, μ(n) = n

ϕ(n) ln n
,

μ(n) ≥ 23k, f(n) takes integer positive values, f(n) = o(ϕ(n)), n → ∞, [·]
is a sign of integer part.

Then for fixed k = 0, 1, 2, . . .

∣∣∣∣∣P{νn = k} − λk

k!
e−λ

∣∣∣∣∣ ≤
(

2eλ

β

)β [
2 + 2β+1 B(n)+

+Θ2

(
1 + 2β+1 B(n)

)
+ 6 Θ1] +

(
2eλ
k

)k
βe2λB(n)+

+

(
eλ

k

)k

βeλ
[
Θ2

(
1 + 2β+1 B(n)

)
+ 6 Θ1

]
, (7)

where λ = 2m, δi = min
{
δi1(n), 2 ln n√

εϕ(n)

}
,

Θ1 = exp

{
−2−2β

N∑
i=1

δi + 2β + β + ln n − m ln 2

}
,

Θ2 = 2−n exp
{
ε2βϕ(n)

(
β + ln

(
ne

ε2βϕ(n)

))
+ 2β + 2 ln(ε2βϕ(n))

}
.
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3. Auxiliary statements

Let x1, ..., xk be n-dimensional Boolean vectors which are all distinct and
do not coincide with x0, xν = (xν

1 , ..., x
ν
n), ν = 0, k, 1 ≤ k < ∞. Let i{u1,...,us}

(j{u1,...,us}) denote the number of units (zeros) standing at those and only
those positions of all vectors xu1 , ..., xus , where all vectors xus+1 , ..., xuk , x0

have zeros (units), uν ∈ {1, ..., k}, us+1, ..., uk ∈ {1, ..., k}\{u1, ..., us}. See
details [1].

Denote by Mν[k]
n k-th factorial moments of a random variable νn; let

Mν[0]
n ≡ 1.

Statement. ([1]) Under condition (A) for k ≥ 1

Mν[k]
n = 2−kNS(n, k; Q), (8)

where

S(n, k; Q) =
n−ρ(n)∑

s=0

∑
(n − ρ(n))!

(
(n − ρ(n) − s)!

∏
i∈I

i!

)−1

×

ρ(n)∑
s′=0

∑ ′
ρ(n)!

⎛
⎝(ρ(n) − s′)!

∏
j∈J

j!

⎞
⎠

−1

Q, s + s′ ≥ 1 (9)

Q =
N∏

i=1

⎛
⎝1 +

k∑
ν=1

∑
1≤ u1 < · · · < uν ≤ k

gi(n)∏
t=1

(1 − 2pit)
Γ
{u1 , . . . ., uν}
t, k

⎞
⎠ ; (10)

summation
∑ (∑ ′)

is taken over all i ∈ I (j ∈ J), where I = {i{u1,...,uν} :

1 ≤ u1 < · · · < uν ≤ k, ν = 1, ..., k} (J = {j{u1,...,uν} : 1 ≤ u1 < · · · < uν ≤
k, ν = 1, ..., k}) such that

∑
i∈I

i = s

⎛
⎝∑

j∈J

j = s′
⎞
⎠ ;

numbers i (i ∈ I), j (j ∈ J) in (9) satisfy the following relations

∑
i∈I{u}, j∈J{u}

(i + j) ≥ 1, u = 1, ... , k,

k−2∑
l=0

∑
1≤μ1<...<μl≤k

(
i{u1,μ1,...,μl} + j{u1,μ1,...,μl} + i{u2,μ1,...,μl} + j{u2,μ1,...,μl}

)
≥ 1,

1 ≤ u1 < u2 ≤ k ;

for 1 ≤ u1 < ... < uν ≤ k, ν ∈ {1, ..., k}, and t ∈ {1, ..., n} the inequality

Γ
{u1,...,uν}
t,k ≥ ∑

(i,j)∈T

(
Ct

i + Ct
j

)
(11)
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holds, where T = I{u1,...,uν} × J{u1,...,uν}.
Here

I{ur ,...,uν} =
{

i{σ1,...,σψ, μ1,...,μl} : A (ψ, l, k)
}

,

J{ur ,...,uν} =
{

j{σ1,...,σψ, μ1,...,μl} : A (ψ, l, k)
}

,

where A (ψ, l, k) denotes the following constraint set: 1 ≤ σ1 < ... < σψ ≤
k, σz ∈ {u1, ..., uν} , z = 1, ..., ψ, ψ = 1, ..., ν, ψ ≡ 1 (mod2) , 1 ≤ μ1 <
... < μl ≤ k, μ1, ..., μl /∈ {u1, ..., uν} , l = 0, ..., k − ν.

The explicit form of Γ
{u1,...,uν}
t, k for 1 ≤ u1 < ... < uν ≤ k, ν ∈ {1, ..., k},

t = 1, 2, ..., gi (n), i = 1, ..., N is given in [1].
We use statement 1 and divide the expression (8) into finite number of

addends:
Mν[k]

n = 2−kN
∑
Δ≥0

S(Δ)(n, k; Q), (12)

where S(Δ)(n, k; Q) differs from S(n, k; Q) by all i and j (i ∈ I, j ∈ J)
involved in the expression S(n, k; Q) according to (9), but accept values

such that there exist exactly Δ distinct collections ωα = {u(α)
1 , . . . , u

(α)
ξα

}
1 ≤ u

(α)
1 < · · · < u

(α)
ξα

≤ k, ξα ∈ {1, ..., k}, α = 1, ..., Δ, such that for

each of them there is a t(α) ∈ {2, ..., r}, satisfying the inequality

Γωα

t(α), k
< Ct(α)

r , (13)

and for all collections {υ1, ..., υγ}, 1 ≤ υ1 < · · · < υγ ≤ k, γ = 1, ..., k,
that satisfy {υ1, ..., υγ} �= ωα, α = 1, ... , Δ the estimate

Γ
{υ1, ... , υγ}
t, k ≥ Ct

r (14)

holds for all t ∈ {2, . . . , r} , where

r = [εϕ(n)].

To prove the theorem, we use the following lemma.
Lemma 1. If conditions (2), (5) and (6) hold, then

S1 = λk + θ(k, n), (15)

where
S1 = 2−kNS(0)(n, k; Q),

|θ(k, n)| ≤ 2k+1u(k) + 2mkΘ2

(
1 + 2−mk+k+1u(k)

)
,

u(k) = 2mk
N∑

i=1

exp

⎧⎨
⎩−2

∑
t∈Ti

δit(n)Ct
r

⎫⎬
⎭ ,
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0 ≤ k ≤ β. (16)

The proof is similar to the proof of Lemma 1 in [2], provided Δ = 0.

Further we will prove that for Δ ≥ 1 the following statement takes place:
Lemma 2. Under conditions of the theorem, for such k, k ∈ Z+ ∪{0}, that
satisfy formula (16), and for all sufficiently large values of n

p1 ≤ 6
(
22k

)
2(m+1)k−m exp

{
−2−2k

N∑
i=1

δi + ln n

}
, (17)

where p1 = 2−kN
2k−1∑
Δ=1

S(Δ)(n, k; Q).

Proof. Denote by M1

(
M̃1

)
the set of all i, i ∈ I (j, j ∈ J) that does

not belong to Iωα (Jωα), α = 1, ..., Δ; and by M2 = I\M1, M̃2 = J\M̃1. Let

R1

(
R̃1

)
be the cardinal number of M1

(
M̃1

)
. Let z be the smallest integer

such that
Δ ≤ 2z − 1, 1 ≤ z ≤ k. (18)

According to Statement 2.1 in [1] we obtain:

R1 ≤ 2k−z − 1; R̃1 ≤ 2k−z − 1. (19)

If
Γ
{u1, . . . , uν}
t, k < Ct

r, (20)

for some collection {u1, ..., uν} , 1 ≤ u1 < · · · < uν ≤ k, ν = 1, ..., k, and
some t ∈ {2, . . . , r}, then from (11) we get

0 ≤ i < r, i ∈ I{u1, ... , uν}; 0 ≤ j < r, j ∈ J{u1, ... , uν}. (21)

Further, it follows from (13), (20) and (21) that the inequalities

0 ≤ i < r (0 ≤ j < r) (22)

hold for all i ∈ M2

(
j ∈ M̃2

)
. Using (3) at i = 1, N and α = 1, Δ we

obtain

∣∣∣∣∣∣
gi(n)∏
t=1

(1 − 2pit)
Γωα

t,k

∣∣∣∣∣∣ ≤ (1 − 2δi1(n))Γωα
1,k . (23)

Let restriction G1 hold: there exist i ∈ M2 and (or) j ∈ M̃2 such that

i ∈
(

r
En

, r
]

and (or) j ∈
(

r
En

, r
]

where

En > 3, En = o(ln n), n → ∞.
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Put
p2 = p1 − S2, (24)

where

S2 = 2−kN
2k−1∑
Δ=1

S
(Δ)
(G1)(n, k; Q),

S
(Δ)
(G1)(n, k; Q) differs from S(Δ)(n, k; Q) in such a way that summation over

parameter s′ in (9) is restricted by G1.
Let G1 hold. Using (11) for the some α, α = 1, ... , Δ, we get

Γωα
1, k ≥ r

En
. (25)

Taking into account (23) and (25), we find the estimate∣∣∣∣∣∣
gi(n)∏
t=1

(1 − 2pit)
Γωα

t, k

∣∣∣∣∣∣ ≤ exp
{
−2δi1(n)

r

En

}
,

for i, i = 1, ..., N and some α ∈ {1, ..., Δ}. Now using (18) we obtain

Q ≤ 2zN exp

{
−2−z

(
N −

N∑
i=1

exp
{
−2δi1(n)

r

En

})}
. (26)

Thus, using Gelder inequality and relation (4), we estimate Q as

Q ≤ Q̂, (27)

where Q̂ = 2zN exp
{
−2−z

(
N − N1−An

)}
, An = 2ε

En
.

Taking into account restriction G1, relations (19) and (22) we find

S2 ≤ 2−kN
k∑

z=1

2z−1∑
Δ=2z−1

∑
1≤ζ1<...<ζd≤2k−1

×

×
n−ρn∑
s=0

Cs
n−ρ(n)

∑
s1+s2=s

Cs1
s

⎛
⎜⎜⎜⎝

∑
∑

i∈M2

i=s1

s1!∏
i∈M2

i !

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

∑
∑

i∈M1

i=s2

s2!∏
i∈M1

i !

⎞
⎟⎟⎟⎠×

×
ρ(n)∑
s′=0

Cs′
ρ(n)

∑
s′1+s′2=s′

C
s′1
s′

⎛
⎜⎜⎜⎜⎝

∑
∑

j∈M̃2

j=s′1

s′1!∏
j∈M̃2

j !

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

∑
∑

j∈M̃1

j=s′2

s′2!∏
j∈M̃1

j !

⎞
⎟⎟⎟⎟⎠ Q̂. (28)

It follows from (27) and (28) that

S2 ≤ 22k
2mk

2m
exp

{
−2−kN

(
1 − N−An

)
+ 2kεϕ(n) ln

(
ne

2kεϕ(n)

)}
. (29)
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Let restriction G2 hold: there exist i ∈ M2 and (or) j ∈ M̃2 such that

i ∈
(

r
ln n

, r
En

]
and (or) j ∈

(
r

ln n
, r

En

]
.

Let us consider sum p3. Put

p3 = p2 − S3, (30)

where

S3 = 2−kN
2k−1∑
Δ=1

S
(Δ)
(G2)(n, k; Q).

Here S
(Δ)
(G2)(n, k; Q) differs from S(Δ)(n, k; Q) in such a way that sum-

mation in (9) is restricted by G2.
If G2 hold, then similarly to (27) (we just replace An by Ãn = 2ε

lnn
) we

obtain
Q ≤ 2zN exp

{
−2−k

(
1 − e−2ε

)
N
}

. (31)

Using G2 and relation (19), we find an estimate S3 (similarly to S2):

S3 ≤ 22k
2mk

2m
exp

{
−2−k

(
1 − e−2ε

)
N +

2kεϕ(n)

En

ln

(
neEn

2kεϕ(n)

)}
. (32)

Let restriction G3 hold: for all i ∈ M2 and j ∈ M̃2

0 ≤ i ≤ r

ln n
, 0 ≤ j ≤ r

ln n
. (33)

Let us consider sum p4. Put

p4 = p3 − S4, (34)

where

S4 = 2−kN
2k−1∑
Δ=1

S
(Δ)
(G3,2z−2)(n, k; Q).

In (34), S
(Δ)
(G3,2z−2)(n, k; Q) differs from S(Δ)(n, k; Q) in such a way that

summation in (9) is restricted by G3 and Δ < 2z − 1.
Using (11) we obtain

Γωα
1, k ≥ (s(α) + s̃(α)) (35)

for all α = 1, ... , Δ, where s(α) =
∑

i∈Iωα

i, s̃(α) =
∑

j∈Jωα

j.

Taking into account (23) and (35) for i = 1, ... , N and α = 1, ... , Δ,

∣∣∣∣∣∣
gi(n)∏
t=1

(1 − 2pit)
Γωα

t, k

∣∣∣∣∣∣ ≤ exp

{
−2δi

2k
(s(α) + s̃(α))

}
.
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Using equality e−y ≤ 1− y
2
, 0 ≤ y < 1, for i = 1, ... , N , α = 1, ... , Δ,

we get ∣∣∣∣∣∣
gi(n)∏
t=1

(1 − 2pit)
Γωα

t, k

∣∣∣∣∣∣ ≤ 1 − δi

2k
(s(α) + s̃(α)). (36)

Taking into account (5), (6), (14) and (36) we obtain

2−kN
2k−1∑
Δ=1

S
(Δ)
(G3) (n, k; Q) ≤ 2−kN22k

n−ρ(n)∑
s=0

Cs
n−ρ(n)

s∑
s∗=0

Rs−s∗
1 ×⎛

⎝ ∑∑
i∈M2

i=s∗

s!
(s−s∗)!

( ∏
i∈M2

i!

)−1
⎞
⎠×

ρ(n)∑
s′=0

Cs′
ρ(n)

s′∑
s̃∗=0

R̃s′−s̃∗
1

⎛
⎝ ∑∑

i∈M̃2
i=s̃∗

s!
(s′−s̃∗)!

( ∏
j∈M̃2

j!

)−1
⎞
⎠×

× exp

{
−2−z

N∑
i=1

δi

2k

Δ∑
α=1

(s(α) + s̃(α)) + 2k−mku(k)

}
, s + s′ ≥ 1. (37)

Now, taking into consideration (2), we obtain

2−kN
2k−1∑
Δ=1

S
(Δ)
(G3) (n, k; Q) ≤

≤ 22k

2mk2−zn(Δ + 1)N exp

{
k2kεϕ(n) ln 2

ln n
+

2kεϕ(n)

ln n
ln

(
en ln n

2kεϕ(n)

)}
×

× exp

{
−2−z+1

N∑
i=1

δi

2k

Δ∑
α=1

(s(α) + s̃(α)) + 2k−mku(k))

}
, s + s′ ≥ 1, (38)

where S
(Δ)
(G3)(n, k; Q) differs from S(Δ)(n, k; Q) in such a way that summation

in (9) is restricted by G3.

If Δ < 2z−1, then it follows from (38) and the inequality max{s∗, s̃∗} ≤
2kεϕ(n)

ln n
, that

S4 ≤ 22k
2mk

2m
exp

{
−2−kN + 2k+1εϕ(n)

}
. (39)

Let Δ = 2z − 1. Then we can put

p5 = p4 − S5, (40)

where

S5 = 2−kN
2k−1∑
Δ=1

S
(Δ)
(G3,2z−1)(n, k; Q).
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Here, S
(Δ)
(G3,2z−1)(n, k; Q) differs from S(Δ)(n, k; Q) in such a way that

summation in (9) is restricted by G3 and condition Δ = 2z − 1. Using (2),
(6), (19), the inequality

Δ∑
α=1

(s(α) + s̃(α)) ≥ s∗ + s̃∗, (41)

where

s∗ =
∑

i∈M2

i, s̃∗ =
∑

j∈M̃2

j,

and relation (37) it is easy to verify that

S5 ≤ 22k
2(m+1)k

2m
exp

{
−2−2k

N∑
i=1

δi + ln n

}
, (42)

provided
s∗ + s̃∗ ≥ 1. (43)

Now, let us check that if Δ = 2z − 1, 1 ≤ z ≤ k, and z ∈ {k, k − 1} or
k ∈ {1, 2}, then there exists some α, α ∈ {1, 2, ..., Δ}, such that ξα ≤ 2.
Indeed, when z = k or k ∈ {1, 2}, the existence of the mentioned parameter
α is obvious. For z = k − 1 the existence of the parameter α such that
ξα ≤ 2, follows from Remark 2 in [1, p.1217].

Let restrictions G4 hold:

s∗ + s̃∗ = 0, (44)

ξα ≥ 3, α = 1, ... , Δ, Δ = 2z − 1, 1 ≤ z ≤ k − 2, 3 ≤ k < ∞. (45)

We can put
p6 = p5 − S6, (46)

S6 = 2−kN
2k−1∑
Δ=1

S
(Δ)
(G4)(n, k; Q),

where S
(Δ)
(G4)(n, k; Q) differs from S(Δ)(n, k; Q) in such a way that summation

in (9) is restricted by G4.
Let restriction (44), Δ = 2z −1, R1 < 2k−z −1, and R̃1 < 2k−z −1 hold.

Then using (38), by virtue of (19), we obtain the estimate

S6 ≤ (1 + o(1)) 22k+zN−kN
n−ρ(n)∑

s=0

Cs
n−ρ(n) |M1|s

ρ(n)∑
s′=0, s′+s≥1

Cs′
ρ(n)

∣∣∣M̃1

∣∣∣s′ ≤

≤ 22k+12mk

2m

(
1 − 21−k

)n
. (47)
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It remains to check the relation

S7 ≤ 22k
2mk

2m
exp

{
−n2−k+1 + εϕ(n) ln

(
n e

εϕ(n)

)
+ ln

√
ϕ(n)

}
, (48)

where

S7 = p6 = 2−kN
2k−1∑
Δ=1

S
(Δ)

(G4,R̃1)
(n, k; Q), (49)

under restrictions G4 and

R1 = R̃1 = 2k−z − 1. (50)

In (49), S
(Δ)

(G4,R̃1)
(n, k; Q) differs from S(Δ)(n, k; Q) in such a way that sum-

mation in (9) is restricted by G4 and (50).
In analogy to how it was done in [1], we make use of conditions (50) and

relations G4 to verify that there exists an element j∗, j∗ ∈ M̃1, satisfying
the inequality j∗ ≤ r. Therefore, under the restrictions G4 and (50) we get

S7 ≤ 22k

2(k−z)m
(
1 − 1

2k−z

)n r∑
l=0

C l
n.

Next, taking into account Stirling formula, we obtain (48).
Analyzing restrictions (Gi), i = 1, 2, 3, 4, it is easy to verify that (9)

holds for all possible values of parameter s, s′, i and j (i ∈ I, j ∈ J), that
satisfy (13) for which Δ ≥ 1.

Equalities (24), (30), (34), (40), (46) and (49) combined with (29), (32),
(39), (42), (47) and (48) prove (17) under the conditions of the theorem.

Lemma 3.Under conditions of the theorem, for such k, k ∈ Z+ ∪ {0}, that
satisfy formula (16),

Mν[k]
n = λk + Φ(k, n), (51)

where Φ(k, n) = θ(k, n) + p1.
Proof. By virtue of (12), Lemma 1 and Lemma 2 imply, obviously, (51),

where
|Φ(k, n)| ≤ 2mk

(
2k(1−m)+1u(k) + Θ2

(
1 + 2−mk+k+1u(k)

)
+

+6 exp

{
−2−2k

N∑
i=1

δi + 2k + k + ln n − m ln 2

})
.

3. Proof of the theorem

To prove the theorem, we will consider the following inequality for all
integer q, q ≥ 0, ∣∣∣∣∣P{νn = q} − λq

q!
e−λ

∣∣∣∣∣ ≤ R1 + R2 + R3, (52)
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where

R1 =

∣∣∣∣∣∣P{νn = q} −
q+2ν−1∑

k=q

(−1)k−qCq
kBkn

∣∣∣∣∣∣ ,

R2 =

∣∣∣∣∣∣
q+2ν−1∑

k=q

(−1)k−qCq
k

[
Bkn − λk

k!

]∣∣∣∣∣∣ ,

R3 =

∣∣∣∣∣∣
q+2ν−1∑

k=q

(−1)k−qCq
k

λk

k!
− λq

q!
e−λ

∣∣∣∣∣∣ ,
Bkn is the k-th binomial moment of the random variable νn.

Choose n such that for any integer q ≥ 0

λq+2ν

q!(2ν)!
<

(
2eλ

β

)β

, (53)

where 2ν = β − q.
It follows from the inequality

R3 <
λq+2ν

q!(2ν)!
(54)

and (53) that

R3 <

(
2eλ

β

)β

. (55)

Taking into account (51) we obtain∣∣∣∣∣Bq+2ν, n − λq+2ν

(q + 2ν)!

∣∣∣∣∣ =
|Φ(q + 2ν, n)|

(q + 2ν)!
≤

≤ 2(q+2ν)m

(q + 2ν)!

(
6 exp

{
−2−2(q+2ν)

N∑
i=1

δi + 2q+2ν + q + 2ν + ln n − m ln 2

})
+

+
2(q+2ν)m

(q + 2ν)!

(
2q+2ν+1B(n) + Θ2

(
1 + 2q+2ν+1B(n)

))
. (56)

Thus∣∣∣∣∣Bq+2ν, n − λq+2ν

(q + 2ν)!

∣∣∣∣∣ ≤ 2mβ

β!

(
6 Θ1 + 2β+1B(n) + Θ2

(
1 + 2β+1B(n)

))
.

(57)
It follows from Bonferronis inequality [3, p. 68] that

0 ≤ P{νn = q} −
q+2ν−1∑

k=q

(−1)k−qCq
kBkn ≤ Cq

q+2νBq+2ν, n. (58)
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Applying (53) and (58) to (57), we obtain

Bq+2ν, nCq
q+2ν <

(
2eλ

β

)β (
1 + 2β+1B(n) + 6Θ1 + Θ2

(
1 + 2β+1B(n)

))
.

(59)
Hence

R1 <

(
2eλ

β

)β (
1 + 2β+1B(n) + 6Θ1 + Θ2

(
1 + 2β+1B(n)

))
. (60)

Further, taking into account (51), it is easy to check that

sup
q≤k≤q+2ν−1

Cq
k

∣∣∣∣∣Bkn − λk

k!

∣∣∣∣∣ ≤
(

2eλ

q

)q

e2λB(n) +

(
eλ

q

)q

eλ
(
Θ2

(
1 + 2β+1B(n)

)
+ 6Θ1

)
. (61)

Now, using inequality (61), it is easy to verify that

R2 <
q+2ν−1∑

k=q

Cq
k

∣∣∣∣∣Bkn − λk

k!

∣∣∣∣∣ ≤
(

2eλ

q

)q

e2λβB(n)+

+

(
eλ

q

)q

eλβ
(
Θ2

(
1 + 2β+1B(n)

)
+ 6Θ1

)
. (62)

Thus, with the help (52), (55), (60), and (62) we obtain (7). The theorem
is proved.
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