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OLENA GONTAR AND ANDRII MALENKO

SIMEX ESTIMATOR FOR POLYNOMIAL
ERRORS-IN-VARIABLES MODEL

For polynomial errors-in-variables model, the Simex estimator is con-
structed in such way that it is consistent, as the samples size grows
and the size of auxiliary sample is fixed. Then the estimator is modi-
fied in such a way that it shows good results for small samples without
losing its asymptotic properties for large samples. Simulation studies
corroborate the theoretical findings.

1. Introduction

We consider polynomial measurement error model⎧⎨⎩ yi =
m∑

j=0

βjξ
j
i + εi,

xi = ξi + δi,
(1)

where yi, xi are observed and ξi are unobservable independent random vari-
ables, i = 1, n. Suppose that δi are i.i.d. normal random variables and their
variance σ2

δ is known.
It is well known that the naive estimator of regression parameters β0,

β1, . . . , βm, which ignores measurement errors is inconsistent. Cheng and
Schneeweiss (1998) proposed the adjusted least squares β̂ALS estimator in
the model (1) which is consistent. This estimator can be viewed as resulting
from the principle of corrected score due to Stefanski (1989) and Nakamura
(1990). A small sample modification of β̂ALS estimator was proposed in
Cheng et al. (2000), such that it shows good results for small samples
without losing its asymptotic properties for large samples.

Another estimator was introduced by Cook and Stefanski (1994) and is
called Simex. The key idea underlying Simex is the fact that the effect of
measurement error on an estimator can be determined experimentally via
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simulation. This is achieved by studying the naive regression estimator as
a function f of measurement error variance in the regressors.

The purpose of this paper is to construct the consistent Simex estima-
tor of the regression parameter. The observed variables are used for mod-
eling the function f . This idea is close to the idea of Polzehl and Zwanzig
(2005). Simulation studies show that for finite sample the Simex estimator
in polynomial regression can sometimes produce extremely large estimat-
ing errors as well as the ALS estimator. It is proposed how to modify this
estimator for small samples still preserving its asymptotic properties.

The paper is organized as follows. In the next section the polynomial
errors-in-variables model is introduced and auxiliary lemmas are proved.
Section 3 is devoted to construction of Simex estimator and the proof of its
consistency. The small sample modification is proposed in Section 4. Section
5 gives some simulation results and shows the effect of modification, and
Section 6 concludes. In the paper expectation is denoted as E, the almost

sure convergence as
P1→, and the convergence in probability as

P→.

2. Model and additional lemmas

We consider the polynomial errors-in-variables model of order m ≥ 1,{
yi = β0 + β1ξi + . . . + βmξm

i + εi,
xi = ξi + δi,

i = 1, n.

Here {ξi, i ≥ 1}, {εi, i ≥ 1}, {δi, i ≥ 1} are i.i.d. and mutually independent
sequences. We assume that E|ξ1|m < ∞, δ1 ∼ N(0, σ2

δ ), σ2
δ is known,

Eε1 = 0, Eε2
1 < ∞. The variances of ξ1, ε1, and δ1 are supposed to be

positive.
Denote Xi = (1, xi, . . . , x

m
i )t. The naive, or ordinary least squares esti-

mator of β is β̂naive = M−1
XXMXY , where MXX := XX t, MXY := Xy. Here

the bar means averaging over n.
To introduce β̂ALS estimator consider the Hermite polynomials hk(x, t)

of x which possess the following properties:

h−1(x, t) = h0(x, t) = 1, hk+1(x, t) = xhk(x, t) + tkhk−1(x, t), k ≥ 1,

and let H(x, t) be the matrix of the following structure: Hrs(x, t) = hr+s(x, t),

r, s = 0, . . . , m. Denote the matrix 1
n

n∑
i=1

H(xi,−σ2
δ ) as MH and the vector

{h0(xi,−σ2
δ ), h1(xi,−σ2

δ ), . . . , hm(xi,−σ2
δ )}t as hi. Then β̂ALS is defined as

a solution to a linear equation:

MH β̂ALS =
1

n

n∑
i=1

hi. (2)
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To construct the simex estimator fix a number B. Consider standard
normal i.i.d. sequence {ηib, i ≥ 1, b = 1, B}, which is independent of other
random variables in the model. Denote xib(λ) = xi +ηib

√
λ, i ≥ 1, b = 1, B,

and Xib(λ) = {1, xib(λ), . . . , xm
ib (λ)}t.

Introduce MXX(λ) = X(λ)X t(λ), MXY (λ) = X(λ)y. Hereafter the

bar means averaging over n and b, e.g., X(λ)y = 1
nB

n∑
i=1

B∑
b=1

Xib(λ)yi. The

corresponding naive estimate of β is β̂naive(λ) = M−1
XX(λ)MXY (λ). For each

λ introduce the matrix MH(λ) = 1
n

n∑
i=1

H(xi, λ). From Lemma1 below it

follows that

MXX(λ) = MH(λ) + o(1), as n → ∞, a.s. (3)

Lemma 1. Let ξ and δ be independent random variables with δ ∼ N(0, σ2
δ ).

Then
E((ξ + δ)n|ξ) = hn(ξ, σ2

δ).

Proof. To prove the next equality one should use partial integration

E((ξ + δ)n+1|ξ) = ξE((ξ + δ)n|ξ) + E(δ(ξ + δ)n|ξ) =

= ξE((ξ + δ)n|ξ) + (n − 1)σ2
δE(δ(ξ + δ)n−1|ξ).

Then induction is used. �

Lemma 2. Let X = (1, x, . . . , xm)t and h(x, t) = (h0(x, t), . . . , hm(x, t))t,
and T be a transition matrix: h(x, t) = T (t)X. Then T (t + s) = T (t)T (s)
and T (−t) = T−1(t), t, s ∈ R.

Proof. Assume that s and t are positive real numbers. Let x = ξ + δ + γ,
where δ ∼ N(0, s), γ ∼ N(0, t), s > 0, t > 0, and ξ, δ, γ are mutually
independent. Let

ρ = (1, ξ, . . . , ξm)t, ψ = (1, ξ + δ, . . . , (ξ + δ)m)t.

By Lemma 1 we can write E(X|ξ) = h(ξ, s + t) = T (s + t)ρ. But

E(X|ξ) = E(E(X|ξ, δ), ξ) = E(h(ξ + δ, t)|ξ) =

= E(T (t)ψ|ξ) = T (t)h(ξ, s) = T (t)T (s)ρ.

Thus for positive real numbers we proved that T (t + s) = T (t)T (s). This
equality is extended for arbitrary real numbers, because the Hermite poly-
nomials can be constructed for any real parameter t and entries of T (t) are
polynomials on t. Then T (−t)T (t) = T (0) = I. �
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Now using Lemmas 1 and 2 we get that E(MXY (λ)|X, y) = T (λ)MXY ,
therefore a.s.

MXY (λ) = T (λ)MXY + o(1), as n → ∞. (4)

3. Simex estimator

The following model is proposed for fitting the naive estimators:

β̂(λ, θ) = M−1
H (λ)T (λ)θ.

Let K ≥ 1, 0 = λ1 < λ2 < . . . < λK . The parameter θ is estimated by least

squares method as θ̂ = argmin
θ

K∑
k=1

||β̂naive(λk) − β̂(θ, λk)||2. Thus θ̂ equals

θ̂t =

(
K∑

k=1

M t
XY (λk)M

−1
XX(λk)M

−1
H (λk)T (λk)

)(
K∑

k=1

T t(λk)M
−2
H (λ)T (λk)

)−1

Using (3) and (4) it is easy to see that a.s.

θ̂ = MXY + o(1), as n → ∞. (5)

We define the Simex estimator as

β̂Simex := β̂(−σ2
δ , θ̂) = M−1

H (−σ2
δ )T (−σ2

δ )θ̂.

Theorem 1. Under the model assumptions, the Simex estimator is strongly
consistent:

β̂Simex
P1→ β, as n → ∞.

Proof. Using Lemmas 1 and 2 we can prove that

1

n

n∑
i=1

hk(xi, λ)
P1→ Ehk(x, λ) = EE((x +

√
λε)k| x) =

= E(x+
√

λε)k = E(ξ+δ+
√

λε)k = EE((ξ+δ+
√

λε)k| ξ) = Ehk(ξ, λ+σ2
δ ).

Thus substituting (−σ2
δ ) for λ we obtain

1

n

n∑
i=1

hk(xi,−σ2
δ ) → Ehk(ξ,−σ2

δ + σ2
δ ) = Ehk(ξ, 0) = Eξt.

Hence MH(−σ2
δ )

P1→ Eρρt, where ρ := (1, ξ, . . . , ξm)t. Using (5) and Lemma1
again, we obtain

θ̂
P1→ EMXY = EE(MXY | ξ) = ET (σ2

δ )ρρtβ = T (σ2
δ )Eρρtβ.
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The consistency of Simex estimator is obvious from Lemma 2:

β̂Simex = β̂(−σ2
δ , θ̂)

P1→ (Eρρt)−1T (−σ2
δ )T (σ2

δ )Eρρtβ = β. �

Remark. In the special case K = 1 we have λ1 = 0 and transition ma-
trix T (λ1) = T (0) = Im (the identity matrix). The matrix MH(λ1) =
MH(0) = = MXX . We notice that MXX(λ1) = MXX(0) = MXX , and

MXY (λ1) = = MXY (0) = MXY . Hence we obtain that θ̂ = MXY , β̂Simex =
M−1

H (−σ2
δ )T (−σ2

δ )MXY . Therefore

MH(−σ2
δ )β̂Simex = T (−σ2

δ )MXY . (6)

Thus β̂Simex is the solution to the equation (6). But this equation (in current
notations) is the same as the equation (2) for the ALS estimator of β. So
in the case K = 1 the Simex estimator coincides with the ALS estimator.

4. Small sample modification

From β̂Simex = M−1
H (−σ2

δ )T (−σ2
δ )θ̂ we can write that β̂Simex is the solution

to the following equation:

MH(−σ2
δ )β̂Simex = T (−σ2

δ )θ̂. (7)

We have MH(−σ2
δ )

P1→ Eρρt, as n → ∞, and therefore it is positive defi-
nite for n ≥ n0(w) a.s. But for small samples, however, MH(−σ2

δ ) can be
indefinite and this can cause significant bias for the Simex estimator. Intro-
duce Vi = h(xi,−σ2

δ )h
t(xi,−σ2

δ )−H(xi,−σ2
δ ). Taking average over n we can

write V = h(−σ2
δ )h

t(−σ2
δ ) − MH(−σ2

δ ). Using this relation, the estimation
equation (7) can be rewritten as(

h(−σ2
δ )h

t(−σ2
δ ) − V

)
β̂Simex = T (−σ2

δ )θ̂. (8)

Define λ as the smallest positive root of the equation det(A − λB) = 0,
where

A =

(
y2 yht(−σ2

δ )

h(−σ2
δ )y h(−σ2

δ )h
t(−σ2

δ )

)
, B =

(
0 0

0 V

)
.

We assume that A is positive definite.
To construct small sample modification of Simex estimator we use the

same approach as in Cheng et al. (2000) is used. Proofs of the next two
theorems are similar to that paper.

The modified Simex estimator can be found as a solution to the equation:(
h(−σ2

δ )h
t(−σ2

δ ) − aV
)

β̂MSimex = T (−σ2
δ )θ̂. (9)
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Here a is defined as{
a = (n − α)/n, if λ > 1 + 1

n
,

a = λ(n − α)/(n + 1), if λ ≤ 1 + 1
n
,

(10)

with some α < n to be chosen so that the resulting estimator possesses
better small sample properties. The number α = m+1 is the lowest α that
one should choose, see the discussion in Cheng et al.(2000).

Theorem 2. The following inequality holds a.s.:

h(−σ2
δ )h

t(−σ2
δ ) − aV ≥ α + 1

n + 1
h(−σ2

δ )h
t(−σ2

δ ) > 0. (11)

(Hereafter inequalities for matrices are understood in Lowener order.)

Proof. As A is positive definite it can be decomposed as A = CCt with a
nonsingular matrix C. Define B̃ = C−1BC−t. Let d be the largest eigenvalue
of B̃. As the second diagonal element of V , h2

1(−σ2
δ ) − h2(−σ2

δ ) = σ2
δ , is

positive, B̃ has at least one positive eigenvalue, and therefore d > 0. It
follows that λ = 1

d
. Let D be the diagonal matrix of eigenvalues of B̃

and E be a matrix, the columns of which are the corresponding normalized
eigenvectors. Then B̃ = EDEt, EEt = I. It follows that B = CEDEtCt,
with T = CE we have A = TT t, and B = TDT t. Hence for any scalar c,

A − cB = T (I − cD)T t, (12)

with a nonsingular matrix T.
In the first case, when λ > 1+ 1

n
, we see that d < n(n+1) and therefore

D < n(n + 1)I. Hence

I − aD = I − n − α

n
D >

α + 1

n + 1
I.

In the second case λ ≤ 1 + 1
n
. In general d−1D ≤ I. This implies that

I − aD = I − λ(n − α)

n + 1
D = I − (n − α)

n + 1
d−1D ≥ α + 1

n + 1
I.

Thus in both cases we obtain A − aB ≥ α+1
n+1

A > 0. Deleting the first row
and column of these matrices results in (11). �

Theorem 3. The modified estimator β̂MSimex is asymptotically equivalent
to unmodified one β̂Simex:

√
n(β̂MSimex − β̂Simex)

P→ 0, as n → ∞.
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Proof. First, prove that P (λ > 1) converges to 1, as n → ∞. Condition
λ > 1 is equivalent to d < 1 or D < I. According to (12) this is equivalent
to A > B. As in the proof of Theorem 2, it can be shown that A > B is
equivalent to h(−σ2

δ )h
t(−σ2

δ ) − V > 0.

Since h(−σ2
δ )h

t(−σ2
δ ) − V = MH(−σ2

δ ) converges to the matrix E(ρρt),
which is positive definite with probability 1, one can state that P (A > B) =
= P (λ > 1) which converges to 1, as n → ∞. Now for λ > 1 we have, by
the definition of a, that

n − α

n + 1
< a ≤ n − α

n
,

and after some algebra

α + 1√
n

> (1 − a)
√

n ≥ α√
n

.

This inequality holds with probability tending to 1, as n → ∞. Since outer

parts of this inequality converge to 0, we have (1− a)
√

n
P→ 0, as n → ∞.

By subtracting equation (9) from (8) we derive after some algebra

(h(−σ2
δ )h

t(−σ2
δ ) − aV )(β̂Simex − β̂MSimex)

√
n = (1 − a)

√
n V β̂Simex.

The right-hand side converges to 0, whereas h(−σ2
δ )h

t(−σ2
δ ) − aV > 0,

therefore
√

n(β̂MSimex − β̂Simex)
P→ 0, as n → ∞. �

5. Simulation results

Simulation was made in R-package. We studied the quadratic model

yi = b0 + b1ξi + b2ξ
2
i + εi, xi = ξi + δi.

We specified εi and δi as normally distributed variables with Eεiδi = 0 and
σ2

δ = σ2
ε = 0.25 and σ2

ξ = 1. The sample size n equals 20. For Simex
estimator the following values were used: B = 100, K = 11, λk = kσ2

δ ,
k = 0, 10. True values were b0 = 5, b1 = 6, b2 = 3.

The simulation results are plotted below for the parameter b2. The naive
estimator is denoted by solid circle, the ALS by square, the Simex by star,
and the modified Simex by triangle. Circles correspond to naive estimators
with larger variance. Solid line describes the behavior of fitted model and
dashed line denotes the true value of the parameter.

In the first picture MH(−σ2
δ ) is not positive definite, and as a result the

Simex estimator has extremely large estimating error (β̂Simex=35.03, while

β̂MSimex=2.91).
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In the second picture MH(−σ2
δ ) is positive definite, and the Simex estimator

is a good one (β̂Simex=3.19 and β̂MSimex=3.04).
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6. Conclusion

In the article the Simex estimator for polynomial errors-in-variables model
is constructed. It differs from the classical Simex estimator proposed by
Cook and Stefanski(1995) due to the fact that the observed variables are
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used to model the naive estimator as a function of extra variance. The
consistency of constructed Simex estimator is proved. Then this estimator
is modified such that it shows good results for small samples without losing
its asymptotic properties for large samples. Simulation studies made in
statistical package R corroborate the theoretical result.
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