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ALEXEY RUDENKO

EXISTENCE OF GENERALIZED LOCAL
TIMES FOR GAUSSIAN RANDOM FIELDS

We consider a Gaussian centered random field that has values in the Euclidean space.
We investigate the existence of local time for the random field as a generalized func-
tional, an element of the Sobolev space constructed for our random field. We give the
sufficient condition for such an existence in terms of the field covariation and apply it
in a few examples: the Brownian motion with additional weight and the intersection
local time of two Brownian motions.

INTRODUCTION

This article was motivated by the following problem. Let W, W5 be two Brownian
motions in the d-dimensional Euclidean space. Suppose that they are jointly Gaussian,
and their covariation is as follows: EWy(s)Wa(t)T = min(s,t)Q (Q is a d x d matrix).
Consider the intersection local time on the time interval [0,1] of these two processes
as a limit of the approximations L. = fol fol fe(Wi(s) — Wa(t))dsdt, where f. is an
approximation of the measure with unit mass at zero: f.(z) = & f(%), f € C;°(R?), f >
0, Jga f(z)dz = 1 (C;°(R?) is the space of bounded infinitely differentiable functions
on R? ). Find the conditions on d and @ such that these approximations converge in
the Sobolev spaces D ,, constructed over an abstract Wiener space associated with the
processes (for the exact definition, see below).

To answer this question, we derive the sufficient condition in a more general statement.
The main problem here is how to deal with approximations in order to find the index
of the Sobolev space, where we have the convergence. In work [1], this was done for the
self-intersection local time of the Brownian motion by finding the explicit form for the
[t6—Wiener expansion kernels of approximations. But it is enough, in fact, to find the
scalar product of those kernels in the space of square integrable functions. Moreover, it
is enough to find the asymptotic behavior of this product, as the kernel index tends to
infinity. The latter can be done using a certain integral representation of kernel scalar
products. We are able to generalize this approach and implement it for an arbitrary
Gaussian random field. In our generalization, we use the fact that the intersection local
time of two Brownian motions may be thought as the local time of a Gaussian random
field on the two-dimensional parameter space.

Let (T,B) be a measurable space with finite measure v on it. Consider a centered
Gaussian random field £ on (7,%B), where each £(t) is a centered Gaussian random
vector in R%. Denote K;j(s,t) = E&(s)&;(t). We suppose that K;; are measurable
functions, and det K(¢,t) > 0 v-a.s. Additionally, we suppose that £ is separable. In
other words, it is determined by its values in a countable set of points. Then there
exists an abstract Wiener space (B, H, 11) (see [6]) such that £ can be constructed on the
probability space (B, §, 1) (§ is the o-algebra of Borel sets in B) as a linear functional on
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it: €*(t)(w) = IFf(w),w € B,IF € Hik=1,...,d,t € T. Here, B is a separable Banach
space, and p is the centered Gaussian probability measure on it. Using the structure of
an abstract Wiener space, we can introduce Sobolev spaces as in [5]. The space of square
integrable functions can be represented as a direct sum of eigenspaces of the Ornstein—
Uhlenbeck operator L: Lo(B, 1) = ®22y M, where Ly = —nz,x € M,,. Consequently,
we can represent each square integrable function f € Lo(B, 1) as a sum of eigenvectors
F=>."0fn, fn € M,. Such a decomposition is called the It6—Wiener decomposition.
Now we have L2(Q2) = Lo(B, i), so every square integrable {&-measurable random variable
has this decomposition. Counsider P (B, u) C L2(B, i), being a subspace of the space of
square integrable functions which consists of the functions that have only finite non-zero
members in the associated It6—Wiener decomposition. Introduce the norm indexed by
a on the subspace P(B, p):

N

1150 =T =D)% fll; = > (1 + 1) [l fal,,

n=0

where N is the maximum of indices corresponding to non-zero decomposition members,
and |||, is norm in Lo (B, ). We denote the completion of P(B, ;1) equipped with this
norm as D, , and call it the Sobolev space with index 2, a.

We want to have the convergence of approximations for the local time in these spaces.
We consider the local time at z = 0 of £ with regard to some finite measure v on (T, B)
and approximations having form L. = [, f-(£(t))v(dt), where f. is the same as above.

We have to note that this approach to the local time generalization is not unique.
There exists an approach which makes use of the white noise theory (see, e.g., [2]). An-
other approach introduces generalized homogeneous functionals for the Brownian motion
[3].

In the first part, we give the sufficient condition for the existence of a square inte-
grable local time (as a limit of approximations). In the second one, we get the integral
representation for the scalar products of It6—Wiener expansion members. In the third
part, we study the asymptotic behavior of this representation and use it to prove the
convergence of approximations in the appropriate Sobolev space. In examples, we show
how our conditions for the local time existence can be used in some cases including the
problems on the intersection and the self-intersection local time for the Brownian motion.

EXISTENCE OF SQUARE INTEGRABLE LOCAL TIME

At first, we give the sufficient condition for the existence in Ly (€2). The same condition
for the processes mentioned in work [4]. By B(s, t), we denote a symmetric matrix 2d x 2d
such that

Bij S, ) = Kl‘j(S,S),i = 1d7] =1.d

(s,t
Bij(S,t) = Kl‘_dJ‘(S,f)?Z' =d+1.2d,5=1.d
Bij(S,t) = Ki,d’j,d(t,t),i =d + 12d,j =d + 1..2d.
t

Theorem 1. Suppose that

t) < 400,

/ / ;V(ds)u(d
TJT «/detB(S,t)
then the limit of L. exists in Lo(£2).

Proof. Tt is sufficient to prove that FL., L., — C < 400,e1,e2 — 0+. Note that the
condition of Theorem 1 gives: det B(s,t) > 0 a.e. with regard to the measure v X v.



144 ALEXEY RUDENKO

Using the Fubini theorem and performing the change of variables e1u = x,eqw = y, we
get

EL. L,
B /T/T/Rd /Rdfal(x)faz (y)(2m)~%(det B(s, t)) "2

X exp (—% (Z)TB_l(s,t) (‘;)) dadyv(ds)v(dt)

B /T/T/Rd Rdf(“)f(W)(%)‘d(det B(s, 1))
1 (ffw )TB—l(s,t) <ilz>)dudwv(ds)y(dt).

X —_—
exp( 2 \ e2w 2

The function inside all integrals is monotonously converging to
f () f () (2m) =% (det B(s, 1)) "2

when 1,9 — 0+. So, by applying the theorem on monotonous convergence, we conclude
that EL., L., — [, [ (27)~%(det B(s,t))~2v(ds)v(dt), and Theorem 1 is proved.

COVARIATION FORMULA

As we stated in Introduction, we can write an [t6—Wiener expansion for the following
expression, because it is a bounded and therefore square integrable random variable:

| #e@nutan = Y- anln). € CR @Y. au(h) € M,
n=0

Note that this is the expression appeared in our local time approximations. We want to
obtain a representation for Ea,(f)an(9), f,g € C°(R?).

Theorem 2. For any functions f,g € C°(R9),

Eay(f)an(g) =
= [ L L L f@atmete 00 oo 0 ey asyu(a),

where

_1 n
qn(s7 tx, y) _ (271_)—2d ( n') (K(S, t)LL', y)ne—%(K(s,s)x,x)e—%(K(t,t)y,y)

Proof. Consider the Ornstein—Uhlenbeck semigroup {T), A > 0} on our abstract Wiener
space. By definition (see [5]), it acts on any function h € La(B, i) in the following way:
Tah(z) = [5 k(e *z+V1 — e~ y)u(dy). It also has property that its action on the same
function with the It6—Wiener decomposion h = fozo hn,h, € M, may be written as
Thh = ZZO:O e~ " h,,. Using this property, we get

B( /T FE@)dr) - T /T SEO)Ad0) = 32 ¢ Ban( (s
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Here, we used the fact that Fa,(f)am(g) = 0,m # n. On the other hand, by the
definition of the Ornstein—Uhlenbeck semigroup and because &(t)(e Az++/1 — e2My) =
e M) (z) + V1 — e 2 E(t) (y), 2,y € B, we have

B /T FE@)wldr) - Ty /T G(E(t)(dt)) =
= B[ seonmtan B[ g6+ VI BEwwan/9)
= [ [ Bttt e + Vi eéomasa

where §~ is an independent copy of £. We can swap integrals and expectations, because the

K(s,s) BK(t, s)) Th
BK(s,t) K(t,t) )’
distribution of (£(s), e *¢(t) + V1 — e=22E(t)) is centered Gaussian with the covariation
matrix B,-x(s,t). By Lemma 1 and our assumptions on the covariation: if A > 0, then
det B,-x(s,t) > 0 for all (s,t) € T? except a set of the zero measure v x v. This yields

B( /T F(E@)dr) - T /T g(E()(dt)) =
1
B /T/T/Rd Rd f@)9() (2m)y/det Bo-»(s,t) .

exp(—% <x>TBe L (s,t) (y))d;vdyu(ds) (dt) =

/ / /]Rd [Rd /]Rd Rd f 7.(m T +iyr2) )\(57 t7’>/17 VQ)d’Yld’Ydedyy(dS)y(dt)v

where
() peea (T

(K (s, s)a,z) + (K(t, )y, y) + 2 (K (s, t),7)))

expression inside all integrals is bounded. Denote Bg(s,t) = (

(s, t,2,y) = (2m) P exp (—

N~ N~

= (2m) 2 exp (—
Obviously:

Ms, t,x,y) = Ze" (s,t,x,y),s,t € T,z,y € RY

We substitute ¢ in the integral Wlth this sum. By the Lebesgue dominated convergence
theorem, we can exchange this sum with the integral by A1, A2. If we can show that it
can be exchanged with other integrals for all A > 0, we get two different representations
for the starting expression in the form of a power series of e=*. Then we match members
of these series and get the desired integral representation. Fix (s,t) € T? such that
det K(s,s) > 0, det K(¢,t) > 0, and A > 0. Denote:

o) = o e (zf)TBO_l(S’“ ()

 (2m)ty/det K(ls s)det K (4,1) eXp(_%((Kfl(S’S)%x) + (K7t )y ),

1 . .
’f‘n(S,t,.’L',y) = / / el(wwl)-‘”(y”m)qn(sat>ly1772)d’71d’727
p(s:t,2,y) Jra Jpa
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n
Rn(57t7x7y) = Z e_kkrk:(‘s?ta ) ')7
%)
R(s,t,z,y) = Ze Sytyey-)
k=0

= m /d /d ei(wﬁl)-&-i(yﬁz)qz\(s’t771’72)d71d72
3 Yy by R R

det By (s, t) 1 <x)T -1 1 <:E>
=——————""exp|—= B, - B st .
B0 P\ 2\ (Bes =By )(s:1) y
We want to show that the integrals can be exchanged with the sum. Now it can be
formulated as

S /T /T /R ) /R F@)gW)Bas,t 2, y)p(s, b, 2, y)dedyv (ds)v(dt) =
:/T/T/Rd /Rd F(@)g(y)R(s, t,z,y)p(s, t, x, y)dzdyv(ds)v(dt).

Consider the space of functions on R?? which are square integrable by a Gaussian measure
with density p(s,t, z,y) and denote it as Lo(R2%, p(s, t, x,y)dxdy) with the corresponding
scalar product < -,- >. It is easy to check that < rn(s,t, v ), (8, t,,) >=0im#n
(because 7, is a linear combination of multidimensional Hermitian polynomials of degree
2n). Therefore,

Sup<R ( S, 1, 7')7Rn(57t7'7') >=

_Supz <Tk 7t7'7')7rk($7t7'7') ><

<< R(57t7 ) ')7R(57t7 Bl ) >

Using Lemmas 2 and 3 (see below), we obtain
< R(s,t,- ,-),R(s,t,-7-) >=

- [ e s exp(—%(Z)T@Be&—Bolxs,t)(;”))dxdy:

det Bo(s,t)(s,1) det By (s, t) <
det B,-x (s, t) V/det B,-x(s,t)det B_,-x(s,t) ~

_ \/det By'B.x Bl (s,t)

S (1 _ 67A)72d'
Applying the inequalities given above, we get
/ |f(@)g(y) R (s, t, 2, y)|p(s, t, 2z, y)dwdy <
Rd JRd

< \/< f(x)g(y),f(w)g(y) >< Rn(57t7 Bl ')7Rn(37tv K ) > <
)

< sup [f(x)g(y)|(1—e )%
z,y€R?

We can see that the bound is independent of (s,t). So, by the Lebesgue dominated
convergence theorem, we proved the equality and Theorem 2.

Now we prove a few technical results. Let m,n be positive integers, and let A
be an (m + n) x (m + n) symmetric non-negative definite real matrix of the form
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A A . . .
A= ( i 12} where A1y, A1, Ago are matrices with sizes m x m,m X n,n X n,

Al Ag
. I . o A11 O[A12
respectively, and A1, Ao are positive definite. Define A, = T ,a € R.
OéAu A22

Lemma 1. If |a| < 1, then A, is positive definite.

Proof. Take the n + m-vector (1; as a concatenation of the m-vector u and the n-

U u\y _ f Anu+ adipv u\y
vector v. Then we have to prove that (A, (v) , <v>) = (<aAf2u+A22v> , <v>) —

(Arj1u, u) + 2a(A12v,u) + (Ao, v) is always positive. Let u1 = au,v; = v, and let us
use that A = A; is non-negative definite. We have

0< (4 (“1) 7 (”1 )) = ?(Ayu, u) + 20 (Ao, u) + (Aggv,v) =

U1

= (0 = D(Anuu) + (Aq (Z) : (3)) < (Aa (Z) : (3))

So we have that A, is non-negative definite. Moreover, if

o (3) ()=

then the equality holds in the inequality above, and we get (Aj1u,u) = 0. But Aj; is
positive definite, and so u = 0. Similarly using that Ass is positive definite, we get v = 0.
Hence, A, is positive definite.

Lemma 2. If |a| < 1, then 2A;" — Ag' = Ag'A_, ALY, and the matriz on the right-
hand side is positive definite.

Proof. Note that Aj! and Ay ! exist by the previous lemma. Consider the obvious
relation 249 — A, = A_,. Multiplying it by A.! from the right and by Agl from the left,
we get the first part of the assertion. From Lemma 1, we also have that A L A andA_,
are positive definite. Then Ag 1A,aA;1 is positive definite as a product of positive
definite symmetric matrices.

Lemma 3. If |a| < 1, then there exists a constant C(a) > 0 such that, for any matriz
A, det Ag < C(a)det A, with C(a) = (1 — |af)~(m+m),

Proof. We will prove that if B and C are symmetric [ X [ non-negative definite matrices,
then det(B + C) > det B. There exists the basis in R’ such that C' is a diagonal matrix
with diagonal elements {¢; > 0,7 = 1,...,l}. Convert our matrices to this basis. By
C;, we denote the matrix with only one non-zero element ¢; at the place (i,4) such that
C = 22:1 C;. By B;, we denote the matrix obtained from B by removing the row i
and the column i. Then we have det B; > 0, because B is non-negative definite, and
det(B+C1) = det B+c; det By > det B. The matrix B+ is again non-negative definite
and, by the same argument, det(B + C; + C3) > det(B + C1) > det B. Proceeding by
induction, we get det(B + C) = det(B + 22:1 C;) > det B.
Suppose a > 0. From the statement above, we obtain

det A, = det((1 — a)Ag + @A) > det((1 — a)Ag) = (1 — a)™ " det Ay.
The case o < 0 is similar:

det Ay, = det((1 4+ a)Ag — aA_1) > det((1+ a)Ag) = (1 + o)™ ™ det A

(A_; is non-negative definite by the same arguments as in Lemma 1).
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MAIN RESULT

We want to know the asymptotic behavior of Eay,(fe, )an(fs,) as n — oo, where f.
approximates the delta-measure as defined in Introduction. Since

|Ean fa1 Gnp faz

///W/Rd/w y for () foy ()@ FWA2) (5 1 5 o Vdazdydry, dryav(ds)v(dt)
= /T/T/Rd/Rd/Rd o fer (@) fes (W)|an (s, 1,71, v2) [ddydrys dysv (ds)v(dt)

://// lgn (s, t, 71, 72)|dy1dy2v(ds)v(dt),
7Jr)RAJRA

we are interested in the asymptotic behavior of [L, [pa lan(s,t, 2, y)|dzdy. Fix (s,t) € T?
such that det K (s,s) > 0 and det K (¢,¢) > 0. Denote

G(s,t) = K~Y2(t, t)K (s, t) K ~1/%(s, s)

[G(s, )| = sup [|G(s,t)z]|
z€RY |z|=1

In other words, we have the correlation matrix and its operator norm.

Theorem 3. There exists a constant C' > 0 such that, for any (s,t) € T? satisfying
det K (s,s) > 0 and det K (t,t) > 0, the following inequality holds for all integers n > 0:

/ / |n (s, t, 2, y)|ddy < C (det K (s, s) det K (t,£)) /2| G(s, )| (n 4+ 1)%/>7".
R4 JR4

Proof. We have

/ / |gn (s, t, 2, y)|dady =
/ / 2 2d 5 t)'x7 y)|n 67%(K(s,s)z,z)ef%(K(t,t)y,y)dxdy _
Rd Rd 7'(' n:

—1/2 s,t)x,y)[* =i wli?
= )2d (det K (s, s)det K (¢,1)) /Rd/RdTe 2 e 2 dxdy.

Note that if n = 2k + 1,k > 0, then, by the Cauchy inequality,

/ / G(s,t)z,y)|?* 1 1 =iz
& 2 e

Rd JRA 2]€ + 1 (27T)d

ok )[2k j )

[2k + 2 // stxy| 1 e_uu2 dedx

2k+1 Rd JR k)! (2m)d

)[2k+2
/ / (s, t)x,y)]| 1 o lel? HyHdedy
R4 JRA 2k+2 (27T)d

So, it is enough to consider the case n = 2k. Using Lemma 4 (see below), we can
establish a change of variables in the integral associated with the rotation around the
origin in R?? such that (G(s,t)r,y) = Zizo AnlnUy, where u,v are the new variables,
and \2,i = 1,...,n, are the eigenvalues of G(s,t)G7 (s,t). Note that \; can be chosen
non-negative, and max;—1,.. , \i = /[|G(s,t)GT (s,t)|| = ||G(s,t)||. We note that

Z i ulvl = (2n)! Z H (A ulvl ,

S ki=2n =0
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and all members of the sum with one of k; being odd became zero after the integrating
with a Gaussian measure. All other members are non-negative, so we can increase the
sum by replacing all \; by ||G(s,t)|. We get

// st:z:y _ley®
T T2 e
Rd JRd
)\ 2n u2 2
// (im0 Aiwivi)®" 0 uzvl) (i Aiwv)™ Bl eg? dudv <
R4 JRA

2 ulvl hul?  _yo)?
< ||G(s, t)[|™" 10 ~==0  em 2 e 2 dudv.
R4 JR4

The last integral can be calculated premsely and satisfies the inequality

/ / e Ouzvl 6, Hu2u2€, Hv2H2 < ~(2n+1)d/271.
Rd JRd

Hence we proved Theorem 3.
The following lemma was used in Theorem 3.

Lemma 4. For any dxd matriz A, there exists the orthogonal 2d x 2d matriz U (UTU =
1) such that (Az,y) = ZZ:O AnlinUn, where z,y,u,v € R?, <Z> =U <z> and \2,i =

1,...,n, are the eigenvalues of AAT.

0 AT
A 0
2(Az,y), and @ is symmetric. All eigenvalues of @ are the set {\;,—\;,i = 1,... ,n},
where \; are from the statement of Lemma 4. This is true, because if A> > 0, then
the equations Qz = Az and AATy = X2y, Az = ATy are equivalent. So we can find

the orthogonal 2d x 2d matrix U; such that 2(Az,y) = Y%_ A, (@2 — 52) and (Z) =

Proof. Denote z = Z € R 2,y € R? and Q = ) Note that (Qz,z) =

U, <z) This easily yields the statement of Lemma 4.

We are ready to establish the convergence of approximations. Denote
Jn = / / IG(s,£)||" (det K (s, s) det K (£,£)) "/ v(ds)v(dt)
TJT

Theorem 4. 1) If J, < 400, then lim. o4 an(f:) exists in La(2). For odd n, the limit
is equal to zero.
2) If o0 o Jn(n+ 1)*t2-1 < 400, then lim._oy L. exists in Do 4.

Proof. From Theorem 2, we know that

Eay, fa1 Qnp faz
///Rd /Rd /Rd Rd fe (@) feo (y)e i) +Z(UW2) n(8,t,71,v2)dzdydy dyav(ds)v(dt)

=[] @ttt sty o) dadydn dnan s,

From Theorem 3, we have

|Ean fEl 2% faz | <

/// / / / Ylan(s,t, 71, 72)|dedydyr dyav (ds)v(dt) <
Rd JRA JRd JRd

< CJp(n+1)4271
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By the Lebesgue dominated convergence theorem

Ean(fe))an(fey) — / / / / an (8, t, x, x)drdyv(ds)v(dt),e1,69 — 0+ .
Re JRe

We conclude that the limit of a,(f:) as € — 0+ exists in Ls. For odd n, the limit
is obviously zero so we proved the first part of Theorem 4. The second part easily
follows from the first part because each a,(f.) satisfies (as noted above) | ay,( fs)H; <
CJy(n+1)4/271,

EXAMPLES

All conditions we imposed on ¢ in Introduction are obviously satisfied when T C R?
and ¢ is a continuous centered Gaussian random field. So, without a further notice, we
will use our results for such a kind of random fields.

Example 1. Let T = [0, 1], v(dt) = dt,&(t) = "W (¢), where W (t) is the d-dimensional

Brownian motion. In this case, we have
K;i(s,t) = (st)" min(s, t), K;;(s,t) =0,
det K (s, s) = sr+bd
min(s,t)
G(s,b)|| = —==,
6.0 = "
11
I = / / (st)~ 5= (min(s, ¢))"dsdt.
0o Jo

It easy to see that the condition J, < +oo is satisfied for r < é — % for all n > 0 (and
failed for all n in either case), and

4 o).

RO S RS L ) R I ¥ ey

Using Theorem 4, we conclude that the limit of L. exists in Dy o for o <1 — %.

Example 2. Let T = [0, 1], v(dt) = dt, &(t) fo s"dW (s). The integral exists if r > —1.
As in the previous example, we can easily compute J,,:

1 :
Kii(s,t) = m(mm(s,t))2 +1 ,Kij(s,t) =0,

det K (s,5) = (2r + 1)~ 4s(r+1d,
min(s,t)\ > !
Gl = (22E0)

Jno=2r+1)" / / —nCrh) _d@D) (min(s, t))”(%*l)dsdt =
— (@r+ 1) — 0(+)
" (n (2r+1)+2—d(2r+1))(2—d(2r+1))_ n'

As in the previous example, J,, < 400 is satisfied for r < é — %7 and L. converges in Dj o
fora <1— %. This example and the previous one are the generalizations of the classical
result about the existence of a local time for the Brownian motion. The additional
multiplier t",r € (— 2, —5 + 35 ) prevents the explosion of [t6—Wiener expansion kernels.
It is interesting to note that the explosion occurs near ¢ = 0. So if we take 7' = [£, 1] for

this example and the previous one, then we may drop the restriction on r (and we may
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set 7 = 0 to get the usual Brownian motion). The convergence still takes place under
same conditions on «.

Now we consider two special cases of the problem stated in Introduction for @ = 0
and @ = I. The second case can also be found in [1].

Example 3. LetT = [0, 1]2, U(dt) = dtldtQ, f(tl, tg) = Wl (tl)—WQ(tQ), where Wi(t),’L =
1,2, are two independent d-dimensional Brownian motions. We have

Kii(S,t) = min(sl,tl) =+ min(327t2),Kij(s,t) =0,

det K(s,5) = (51 + 82)%,
min(sy, 1) + min(ss, t2
1G5, 0l = ( ) & minies, )
51 + s2)(t1 + t2)

t t
n_/ / / (min(sy,#1) 4+ min(sg, t2))" ds1dsadtidts.
((s1+ 52)(t1 + t2)) 2+5

To find the asymptotic behaviour for J,,, we divide the region of integration T2 = [0, 1]*
into subregions T} = {0 < s1 <t1 < 1;0< s <t <1}, To ={0<s1 <t1 <1;0<
<52 <1, T3={0<t1 <51 < L0<sa <t <1}, Ty ={0<t <51 <1;0< 82 <

S92 < 1}

i t i to))™
le/ (win(s1, ty) £ minss )" )0 dry
T

((s1 4 s2)(t1 +12))2+E

to t1
/ / / / .91 + s2) (tl + t2) d81 dsodtdts

— n—d n—d
= (1 + / / tl + tQ 2 ((tl + t2) 2d+2 — tl 2 +2 - tl 2 +2)dt1dt2

~ * 1 1
<C——— t + to) 2~ 4dt dt gci/ 3=dqy.
<n+1>2/0 / (4 82)" Rty S Oy )

We can see that the sufficient condition for the integral to exist is d < 4 (the special
cases d = 2,n = 0;d = 3,n = 1 behave themselves in a slightly different way: logarithms
appear after the partial integration, but the corresponding integrals are still finite by
same arguments).

J2 _ / (min(sy,t1) + min(sg, t2))"
7 ((s14 s2)(t1 +t2))7l+2

/ / / / s1+t2)"(s1 + 52) (tl + tQ) dSthldSldtQ =

n+d

—m/o/@wtz) (14501 = (51 4+ 1)1 F)

0

dSldSthldtQ =

x ((1 +t2)1’"T+d — (51 + t2) " F )dsydts <

C— t2)2 " ds dt
n+1 //.91+2 s1dts <

< Ci(n—l—l) / ~du.

We assumed above that n +d > 2. In all other cases, d = 1,n =0,1;d = 2,n = 0, we
can check that the integral is finite. Again we have the sufficient condition d < 4. Two
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last subregions can be treated similarly, and we omit them. We conclude: J, < 400 is
satisfied for d < 4 and all n > 0. In this case, J, = O( =) , so the limit exists in Dj

fora < 2— 5 As a consequence, we have the existence of the intersection local time for

two independent d-dimensional Brownian motions for d = 1,2, 3.
Example 4. Let T = [0,1]%,v(dt) = dt1dts, £(t1,t2) = W (t1) — W (ta). We have

Kii(s,t) = min(s1,t1) + min(se, to) — min(se, t1) — min(si, t2), K;;i(s, t) = 0,
det K(s,s) = (s1 4 so — 2min(sy, 52))%,
min(sl, t1) 4+ min(sg,t2) — min(sg, t1) — min(sy, t2)

.91 + 89 — 2min(sy, s2))(t1 + t2 — 2min(ty, ta)) '

. _/ / / (min(s1,t1) + min(sg,t2) — min(se, t1) — min(sy, ¢ ng )d ds1dsadtsdts,
((s1 + s2 — 2min(s1, 82))(t1 + t2 — 2min(t1, t2))) 2t 2

1G(s, )] =

As in the previous example, we have to split the region [0, 1]* into a few subregions. We
consider only three of them, others are similar: 77 = {0 < s1 < s2 < #1 < to < 1},
TQZ{O<31<t1<52<t2<1}7T3:{0<51<t1 <t2\82<1}. In the first
subregion, K;;(s,t) = 0 and J! = 0. Consider the second subregion:

t1
52 — tl) 1
——dtodsydtidsy = —————
/ / / / 52 — 51 2 (tQ - tl) ;rd (1 - nT—Hi)2

n n _ n+d n
x// (s2— )™ (1 —t1) " = (50— t1) ") (55 2 — (s2—t1)' "2 )dtids,
0 0

1 Lo 2—d 1 L oaa

We assumed that n+d > 2. In that case, the sufficient condition for the integral to exist
is d < 3. In the cases d = 1,n = 0,1 and d = 2,n = 0, the integral is also finite.

ta
t —t
/ / / / 2 1 nid dtldt2d81d82
(s2—s81) 2
2—d
= ] dsidss <
(1+"T—d><2+n7-d>/o/o (82 = &1)""derdes

1 ! 2—d

The sufficient conditions for the integral to exist: d < 3 and n > 2 — d. Again we have
to treat the cases d = 1,7 = 0,1 and d = 2,n = 0 separately. But, in the last case, the
integral is infinite:

3 1 S2 S2 tg 1
J5 = dt1dtodsidsy =
0 / / / / (s2 — s1)(t2 — t1) 1dtzas s
t2=s1 1 1
/ / / / —du)idt2d81d52 =+o0
(82— s1)

Finally, J, < +o0 is satisﬁed for d < 3 and all n > 0 except n = 0,d = 2. The
limit exists in Dy o, & <2 — % for d=1. If d = 2, then as our calculations suggest, it is
possible to subtract the first term of the expansion and prove the convergence of the rest.
It is known as the renormalization of the self-intersection local time for the Brownian
motion in two dimensions (see [1]).




EXISTENCE OF GENERALIZED LOCAL TIMES FOR GAUSSIAN RANDOM FIELDS 153

BIBLIOGRAPHY

1. Imkeller P., Perez-Abreu V., Vives J., Chaos expansions of double intersection local time of
Brownian motion in R? and renormalization, Stoch. Proc. and Appl. 56 (1995), 1-34.

2. Hisao Watanabe, The local time of self-intersections of Brownian motions as generalized Bro-
wnian functionals, Lett. in Math. Phys. 23 (1991), 1-9.

3. Dorogovtsev A.A., Bakun V.V., Random mappings and a generalized additive functional of a
Wiener process, Theor. Prob. and Appl. 48 (2003), no. 1.

4. Orey S., Gaussian sample functions and the Hausdorff dimension of level crossings, Wahr-
scheinlichkeitstheorie verw. Geb. 15 (1970), 249-256.

5. Watanabe S., Lectures on Stochastic Differential Equations and Malliavin Calculus, Springer,
Berlin/Heidelberg/New York/Tokyo, 1984.

6. Kuo H.H., Gaussian Measures in Banach Spaces, Springer, 1975.

3, TERESHCHENKIVSKA STR., KYIv 01601, INSTITUTE OF MATHEMATICS, UKRAINIAN NATIONAL
ACADEMY OF SCIENCES
E-mail: arooden@yandex.ru



