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POISSON ESTIMATES OF THE DISTRIBUTION OF THE
RANK OF A RANDOM MATRIX OVER THE FIELD GF(2)

The estimates of the rate of convergence of the distribution of the rank of a ran-
dom matrix over the field GF(2) and the Poisson distribution with the parameter
depending on both the matrix sizes and distributions of its elements are found.

INTRODUCTON

A matrix A over the field GF(2) consisting of two elements is called a sparse Boolean
matrix if the probability of the occurrence of 1 in its positions (4, j) equals % (Inn + x45),
where |z;;| < ¢, ¢ = const, i =1, T, j =1, n, T/n/ is the number of rows/columns/ of
the matrix A.

In works [1], [2], using different methods, the limit Poisson distribution of the rank
r(A) of a random sparse Boolean matrix A was established when T'=T'(n) and n — oo.
For finite values of the parameters T and n, the distribution of the rank r(A) can be
presented in terms of the factorial moments of the random variable r(A), as stated in [3].
The asymptotics of these moments under certain conditions, in particular, if z;; = z;,

i=1,T,j=1,nasn— oo, is given in ([4], Theorem 4).

The question on the rate of convergence of the distribution of the rank of a matrix
A to the Poisson distribution with a properly chosen parameter has not been examined
yet. The suggested paper is devoted to the investigation of the mentioned issue.

The proof of our main result (Theorem 1) is based on the theorem on the rate of con-
vergence in a Poisson scheme given in [5, p.67]. It should also be noted that, in contrast
with works [1], [2], the present paper considers a random matrix A, the distributions of
elements in which can depend on their (elements) positions.

THE MAIN RESULT

Let the elements of a 7' x n matrix A = ||a;;|, i =1, T, j = 1, n be the independent
random variables that take values in the field GF(2) and have the distribution

Inn + 2,

(1) P{a; =1} =1 - Pfay =0} = — 724,
n

where

(2) |zij| <e¢, c=const, i=1,T, j=1,n.

Let us assume that the matrix A has at least ng columns so that it is correct to
determine a distribution by formula (1) for n > ng. We denote, by r (A), the rank of the
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matrix A and put A equal

1 1
(3) )\:E;exp _ﬁ;xij

Theorem 1. Let conditions (1) and (2) be satisfied, and
T <1- logy Inn

4 — —=— q= t 0 1

(4) —< ()’ ,q = const <gqg<1,
T

5 lim — > 0.

®) o

Then, for k, k=0, 1, 2 ...,

Y In
Pir(A) =Tk — 2 <2(1+8)e(n, k)———,
k! n(lnlnn)
where 1 < lim, . c(n, k) <Tim, .o c(n, k) < e, § >0, §= const.

Remark. The explicit form of the coefficient c(n, k) is given by equality (30).

AUXILIARY STATEMENTS
By &1, we denote the number of zero rows of the matrix A.

Lemma 1. When conditions (1) and (2) hold, the distribution of the random variable
&1 satisfies the inequality
—A K

k!

e

(6) P{fn,T = k} - < Q(TL, k‘),

where Q(n, k) = 1“2"cl(n, k) and 0 < lim c1(n, k) < lim, oocr (n, k) < e b if
ck

k=0,0<lim 1 (n, k) < limyoo €1 (n, k) < £ max (k, €9)  if k> 1.

N — 00

Proof. The probability pgf ) that the row i of the matrix A consists of zeros exclusively
is, obviously, equal to

. - Inn + x;;
(1) — _ Ty -
Dy, H (1 - ), i=1,T.
j=1
Let us put a = pl) +pi& + ... + pit).
According to the Poisson theorem [5, p. 67], we get the inequality for arbitrary
k=0,1,2,...

) PW@jzk}—€2ﬁWs§i@wf.

Applying the inequality p,(f ) < Lexp {—l Z;’L:I xij} to the right-hand side of (7), we

n
obtain

—a

e~ ak
k!

) Pleur =1} -

1 & 2 &
< EZGXP - EZPU
i=1 j=1

Since
Al =) <a <A,
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2n 1-(Inn—c)n—17 we get

—c(lnn)~?t 2
where vy, = (@) (1—c(nn) ')

_)\k+167)\ <1+ >\’2}/n >\’)’n> < )\kef)\ _ akefa < )\keikk’yn.

Hence,
k,—X k, —a k,—X An
9) [Nem™ —aPe™?| < Ae My, max <k, A 1+T€% .
Combining ratios (8) and (9) leads to
e~ Ak
Pl =1 - | < @,
where
In®n
(10) Q (TL, k) = n Cl(”? k)a
n, k) e - — i
al n In’n Z P ij
2
~1
Nee—2 (1 —c(Inn) ) Ay
By A1+ =2etm
+ 2 k! 1—(lnn—c)n1max{ ’ ( * 2 ¢ )}7
0 < lim, . c1(n, k) < lim,ooc1(n, k) < et for k=0, 0 < lim, . c1(n, k) <

< 2,:, max (k, e°) for k > 1.

Lemma 1 is proved.

lim,, o0 €1 (n, k) <

By S1 (A4), we denote the maximum number of independent critical sets of the matrix
A (see [2, p. 147]), each containing at least one non-zero row.

Lemma 2. If condition (1) is satisfied, the expectation of the random variable Sy (A)
equals

Msl(A):XT: 3 %ﬁ(u]j[(pM))_

k=01<iy <--<ip<T = j=1

—XT: 5 ﬁﬁ(l_lnnzxm)'

k=0 1<iy < <ip <T s=1 j=1

Proof. Let us take into account that the probability that the number of successes in a
series of k independent trails, with the probability of a success p;, i = 1, k being an even
number, equals

+

k
[T -2p).

i=1

N —
[\:JI)—l

(It is not difficult to verify it using induction on the parameter k > 1).
Hence, the probability that k rows constitute a critical set can be presented by the

expression
1 <1+H<1__1n”+%)>>.
j=1
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Note that the probability that there is no single 1 in k£ rows equals

n

ﬁl—[ (1_ lnn—|—xij>
1=17=1

Now it is not difficult to complete the proof of Lemma 2.
Let us put

fln) = [(lnlnn)71 (1 —|—51)lnn} , 01 =-const, 01 >0,

f k Inn+dx;_;
p(n) = Z (n)21<11< <zk<TeXp{ 23:1 Z?:l %}

Lemma 3. If conditions (1), (2), and (4) are satisfied, and

(11) T <n,
then
(12) 1< lim p(n) < Tim p(n) < e

Proof. Let us estimate p (n) from above. The sum p (n) can be presented as
(13) p(n) = 01(n) — 62(n),
o T k n Inn+dx;_;
where 61(n) =3, _ Zl§i1<---<ik§T exp {_ PR Zj:l T}v
T k n Inn+tx;_;
02(n) = Zk:f(n) +1 Zl§i1<~~<ik§T exp {— 25:1 Zj:l n } :

Then 61 (n) can be estimated in such a way:

(14) fi(n) <e
Since 2(n) > 0, relations (13) and (14) imply
(15) i) < e
Let us estimate p (n) from below. Since
1 2 &
01(n) > e*exp —WZGXP —5 2T )
i=1 j=1
we get
\ 1 & 2 &
w(n) > e’ exp _WZQXP —Einj — 62(n).
i=1 j=1
From the last inequality and (15), it follows that
1 I n
(16) e exp ~53 Z ——inj —Ba(n) < p(n) < e

i=1 j=1
To analyze 63(n), it is necessary to take into account conditions (2) and (11), that is
(17) f2(n) = 0 as n — oo.
Letting n — oo in inequality (16) and taking into account (17) and conditions (2),

(5), and (11), we obtain (12).
Lemma 3 is proved.

Let us set the following I'(n) = (1 + (1+51) “(1+51)> w= —n'n

n(lnlnn)?"
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Lemma 4. If conditions (1) and (2) are satisfied, then we have
f(n)

w2 X (eI <

k=0 1<i1<...<ix<T = j=1
<p(n)+p(n) (L+0) (n).
Proof. The left-hand side of relation (18) can be estimated as
f(n)

DS %ﬁ(”ﬂ( lnn—|—xlsj)>>§

k=0 1<is<---<ix<T = j=1

A - k (Inn + x; u (Inn+ z;_;) ’
[ j is]
S S S [ S e
k=0 1<iy <+<ip <T j=1 s=1 s=1
By (2), the last inequality leads to
1 (Inn + z;,;)
S Y A <1+H(1—7)) <
(19) k=0 1<i1 <<, <T j=1 =
f2(n)(Inn+c
Su(n)-eXp{ ()(n ! :

Further, we obtain

n

(20) exp{fz(”)(m”“)?} <1+u(l+0) (1+§(1+5)eXp{u(1+5)}).

Relations (19) and (20) give, obviously, (18). Lemma 4 is proved.

Lemma 5. If conditions (1), (2), (5), and (11) are satisfied, then
f(n)

SIED DD 1§ 1 { () AR

n-lnlnn’
k=0 1<i1 < <ip <T s=1 j=1
where 1) < Jim 2 (n) < lim. c()<£ 1446
2 A o 62 =~ n—oo €2 (N) = 2( 1)-

Proof. With the help of relation (2), we find the following inequalities:
f(n)

>y qI( )

k=0 1<i1<---<ip <T s=1j=1

1— Inn+c

> p(n) -exp{—% (Inn+c)”- ¥}

Therefore, using the notations introduced earlier, we come to
f(n)

D HH(l—m>>u()—c2(> tu

n-Inlnn’
k=0 1<i1 <<, <T s=1 j=1

where

p(n) c\2 1
S (1+51)(1+m) —

Taking into account (12), we get (H D < lim, . ca(n) < iy o ca(n) < se€ (1+61)
as n — 0o.

co(n) =
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Lemma 5 is proved.

Lemma 6. If conditions (1), (2), (5), and (11) are satisfied, then

= DR E 00227

kg (1 ) <k<3 (14 5l) I=F(n

k—integer
f(n)
< (cs(n)> o1 ealn),
f(n) f(n)
S 1
where 0 < lim c3(n) < limy, oo c3(n) < €27¢, lim, oo ca(n) = (27)~ 2.

—n—00

Proof. For (") (1 - 1/111 n) <k < (") (1 + 1/ln n), we find

k
<1 _ 2 (lnn — C)) < 6—2k(ln n—c)n~* <

n =

€C+1 - lncn .

1
n
Using the obtained estimation, we establish that
T K\ ¢
n\ 1 T 2(Inn—c¢)
- i S <
> o e () <

k(11— )<<z (1+ ) I=f(n
k—integer

N AESOICERU B O RS

k2 (1- 2 )<k<2(1+ &) I=f(n
k—integer

Applying the Stirling formula, we get

lg(:n) (%)l (eCHZ!ﬁ)l - <?((:)))j(n> fl(n) - ca(n),

—1
where c3(n) = L .2t mn, ¢y(n) = \/%—ﬂ . (1 - c;,((:))) ; taking into account (5)
and (11), we find the following expressions: 0 < lim,
e2re. lim, .o ca(n) = (271')71/2

Lemma 6 is proved.

Lemma 7. If conditions (1), (2), (4), and (5) are satisfied, then

k n-cg(n)
2 1 1] - nn)q
(1L (- 20 ) oo om0

=1

c3(n) < limp oo cs(n) <

> Y 1

k=f(n)+1 1<i1<--<ix<T =~ j=

+(CJ?((Z)))]'(”)- —aln) + exln)exp { L |

T n
1

7(n) 21n’n
where lim,_, s C5(TL) = (271')71/2; limy, o0 CG(TL) =1- q, limy,— o0 Cg(n) = 1’ \/g <
lim, . c7(n) < lim, o c7(n) < %

T n k 2(Inn+4x; 4
Proof. Denote S =3 () 241 1<y <o <ip<T 11— (1 + 1= (1 - %))
With the help of condition (2), we find that, for n > ng,

0< S5 <o,
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k n
where o = Z;‘::f(n) (2) + (1 + (1 — W) ) :

Using elementary transformations, we can obtain the following presentation for the
sum o:

o =3 Au(f (n)),
k=0

where A (f(n)) = (}) 5= ZIT:f(n) (?) (1 _ 2(1n:—c))kl'

Using this presentation, we obtain the inequality
0 < S1+ 8524 S3+ 5S4,

where 51 = Zogkg/cl Ar(0), S2 = Zk1<k§k2 Ar(0), S5 = Zk2<k§k3 Ar(f(n)), Sa =
= Zk3<k§n A (0),

o[ (- -]

Let us proceed to the estimations of the sum S;. We have

nk

kit
With the help of the Stirling formula and (4), we come to the relation

Sp < (1+k) -2,

_ necg(n)
(21) S < es(n) - (Inn) et
where cg(n) =1—q— (1 —1In (1 - %) + 5 (Inn)' 9 — W) cs(n) =

\/%7 (1 +&7") and limy, o c5(n) = (2#)_1/2, lim, o cg(n) =1—q.

Let us proceed to the estimation of the sum Sy. Taking into consideration that A (0)
is a non-decreasing function with the parameter k to be in the scope k1 < k < ko, we get

S, < gAkQ(O) =2 <n> i93(n),

5 ko) 2™
2(1 R\ T
where 03(n) = (1 + (1 — %) )

It is obvious that 03(n) satisfies the inequality

2k (Inn — T 1 e omn—c\"
(22) %(n)ﬁ(l—l—exp{—w}) S<1+EBC+11H"+QIT) < co(n),

n

where cg(n) = exp {%BC“* ﬁ+2m+c}.
Then
1 1 1 In’
(23) szg—).exp{ " (1 -2 )

27(-(1_111%71 " 2In?n " 2Inn 2In%n n

Using condition (5) and relation (11) [it follows directly from (4)], we have

1 < lim co(n) < lim co(n) < e'te.

n—oo

To estimate the sum Sy, we use the following expression:

Sy < g _nfn\ 1 2(ln-¢) K\ 7
S22 )
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Hence,

1 1 1 In?
(24) Si £ —F—— -eXp{— 4 (1 - S n)} - c10(n),
oI (1_1_%_) 2In“n 2lnn  2In°n n

where c19(n) = exp {Le¢~!*m7 }. From condition (5) and relation (11), it follows that

1< lim cp(n) < Tim ejp(n) <ett.
n—oo

n—oo

Inequalities (23) and (24) result in

1 1 1 In?
s2+s4g—-exp{_ n (1_ S _”)}
27'((1_ 1) 21nn 211171, 21nn n

(25) In?n
) + cn)) < exln)-exp { L) |
where cs(n) = (1 — ﬁ — ﬁ — 1“;”), cr(n) = ﬁ - (co(n) + c10(n),)

\/g <lim, , c7(n) <lim, o cr(n) < %,andlimnﬁm cs(n) = 1.

Combining estimates (21), (25), and the estimate for the sum Ss found in Lemma 6,
we obtain Lemma 7.

We now denote the maximum number of independent critical sets of the matrix A by
S (A).
Lemma 8. If conditions (1) and (2) are satisfied, then, for k, k=0,1,2,...,
-, )\lc

‘P{S(A)_k}—e <2MS, (A) +Q(n, k),

where M Sy (A)is found in Lemma 2, while @Q (n, k) in Lemma 1.

Proof. Taking into account Lemma 1, we get the following relation:
—)\ )\k
s =k -

=|P{S1 (A) + & (A) =k} = P{&r (A) =k} + Q(n, k).
Applying the relations

<[P{S(A) =k} = P{&r (A) =k} +Q(n, k) =

k
P{S1(A)+ &, r=k} =Y P{Si(A) =1, & r=k-1},

=0

|P{S1(A) =0, & r =k} — P{& r =k} < P{S1(4) = 1}
together with Chebyshev inequality, we find

PIS(A) =k} — Ak

Lemma 8 is proved.

<2P{S1(A) > 1} +Q (n, k) < 2MS1(A) +Q (n, k).

THE PROOF OF THEOREM 1

To estimate M S1(A), we introduce the notation

A= S %ﬁ(uf[l( w»

1<y <<, <T Jj=1
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ISTCRD SN 101 (Rt

1<i1 <<, <T s=1 j=1

for k > 0. With the help of Lemma 2, MS;(A) can be presented as

f(n) T f(n) T
MSi(A)=> A () + >, MR —[D d®E+ >, As(k)].
k=0 k=f(n)+1 k=0 k=f(n)+1
This leads to
f(n) T f(n)
MS(A) <Y Ar(k)+ Y Ar(k)— > Mg (k).
k=0 k=f(n)+1 k=0

From Lemmas 4 and 5, it follows that

f(n) f(n)
STALK) = Y Ag(k)<
k=0 k=0

3
29) <)+ ) (1400 () = (1) = ex () ) =
n3n
= 1(0) (1 +0)T (n) + €3 () —o

Combining (26) with the estimate for the sum Z;‘::f(n)ﬂ A; (k) obtained in Lemma
7, we establish the inequality

(27) MS1(A) < p(n) (1+8) T (n) + F(n),
where
n®n el
F(n) =ca3(n) PR +c5(n) - (Inn)
(28) F(n)
cs(n) ! exp {4 —— ca(n
+ (%) TR o gt |
According to (27) and Lemma 8,
e \k
P () = k) = S| <2000 0L+ 9T (1) + F) + Qo ).

Using the explicit expression for I'(n), we can write

‘P{S(A) — k) — 6_; *| <201+ 8)era(myu + 2F () + Q (n, B,
where
(29) en(n) = u(n) + p(n) 5 (1+8) exp {u (1+6)}
The last inequality and the relation r(A) 4+ s(A) =T (see [2, p. 148]) imply
‘P{T (A) =T —k} - 6_;; <201+ 8)en, k)%,
where
(30) e(n, k) = ens(n) + W Q. )

1+0u  2u(l+4)’
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c11(n), F(n), and Q(n, k) are determined in equalities (29), (28), and (10).

LIMITED DISTRIBUTION OF THE RANK OF A SPARSE RANDOM BOOLEAN MATRIX
Theorem 2. I. Let the conditions of Theorem 1 hold and
(31) A— Ao if n— oo

Then 0 < Ag < o0, and, for a fited k, k=0,1,2,...
k
(32) P{r(A)=T -k} — efko%, n — oo.
II. If conditions (1), (2), (4), and (31) are satisfied, and Ao > 0, then Ao < o0, and
relation (32) holds true.

Theorem 1 makes it not difficult to prove Theorem 2.

Corollary. If condition (1) holds for z;j = z, i = 1, T, j = 1, n, where x is a fized

number, and % — a asn — o0, where 0 < « < 1, then relation (32) holds for \g = ae™*.

To prove the corollary, it is enough to note that the conditions of the corollary imply
immediately the conditions of the first (or the second) part of Theorem 2.

Remark 2. The result of the above-mentioned corollary was obtained, in particular, in

([1], Theorem 1) and in (2], Theorem 3.5.1).

CONCLUSIONS

In the paper, the rate of convergence of the distribution of the rank of a sparse Boolean
matrix to the Poisson distribution (Theorem 1) has been found. Theorem 1 implies
Theorem 2 that generalizes the known result on the limit distribution of the rank of
the mentioned matrix in case where the distributions of its elements depend on their
positions, and the ratio of the number of rows to the number of columns does not exceed
1 —7(n), where vy(n) tends slowly to zero and takes only positive values.
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