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ALEXEY M. KULIK

MARKOV APPROXIMATION OF STABLE

PROCESSES BY RANDOM WALKS

The notion of the Markov approximation is introduced. This notion is illustrated
in the frameworks of the multidimensional functional CLT with a normal domain of
attraction and the functional CLT with a stable domain of attraction.

Introduction

The famous A.V.Skorokhod’ s method of one probability space is based on the following
result: if a sequence of random elements {Xn} in some Polish space X converges in
distribution to an element X , then there exist a probability space (Ω,F , P ) and a two-
component sequence (Y n, Zn) on it such that

(1) Y n d=Xn, Zn d= X, ρX (Y n, Zn) P−→ 0, n → ∞.

If X is some functional space, say, D(�+) or some space of sequences, and the elements
Xn, X are endowed by some Markov structure, it is natural to study the question how
the method of one probability space interferes with this structure. For one possible result
in this direction obtained in the context of the ergodic theorem for Markov chains, see [1].
In this paper, we study the question which is interesting by itself and also has non-trivial
applications: suppose that the elements Xn, X , considered as processes on �+, possess
Markov properties w.r.t. their canonical σ-algebras at some points {tkn} ⊂ �+. Is it then
possible to construct the two-component processes (Y n, Zn) satisfying (1) in such a way
that every of them possesses Markov property w.r.t. their canonical σ-algebras at these
points? If it is so, then it is natural to say that the sequence {Xn} provides the Markov
approximation for the process X .

1. Main results

Let us formulate the main definition. The processes below are defined on �+ and have
the same locally compact phase space (X , ρ).

Definition 1. The sequence of the processes {Xn} provides the Markov approximation
for the Markov process X, if, for every γ > 0, T < +∞, there exist a constant K(γ, T ) ∈
N and a sequence of two-component processes {Ŷn = (X̂n, X̂n)}, defined on another
probability space, such that

(i) X̂n =d Xn, X̂n =d X;
(ii) the process Ŷn and the processes X̂n, X̂n possess the Markov property at the points

iK(γ,T )
n , i ∈ N w.r.t. the filtration {F̂n

t = σ(Ŷn(s), s ≤ t)};

2000 AMS Mathematics Subject Classification. Primary 60F17, 60J25.
Key words and phrases. Markov approximation, functional CLT, domain of attraction.
This article was supported (in part) by the Ministry of Education and Science of Ukraine, project

N 01.01/103.

87



88 ALEXEY M. KULIK

(iii) lim supn→+∞ P
(
supi≤ T n

K(γ,T )
ρ

(
X̂n

(
iK(γ,T )

n

)
, X̂n

(
iK(γ,T )

n

))
> γ

)
< γ.

Remark 1. Condition (ii) implies that, for every i ∈ N, t > iK(γ,T )
n , (x, y) ∈ X 2 the

marginal distributions of P (Ŷn(t) ∈ ·|Ŷn( iK(γ,T )
n ) = (x, y)) coincide with P (Xn(t) ∈

·|Xn( iK(γ,T )
n ) = x) and P (X(t) ∈ ·|X( iK(γ,T )

n ) = y).
The definition given above was initially motivated by the following result. Consider

the sequence of the additive functionals of processes {Xn} of the type

ϕt,n
s =

∑
i:s≤ i

n <t

Fn

(
Xn(

i

n
), . . . , Xn(

i + L

n
)
)
, 0 ≤ s ≤ t.

For such functionals, we define their characteristics fn by f t,n
s (x) = E[ϕt,n

s |Xn(0) = x].

Theorem. Suppose that
1) the sequence of the processes {Xn} provides the Markov approximation for the

Markov process X;
2) the sequence {fn} converges uniformly to a jointly continuous function f which is

the characteristics of some W -functional ϕ of the process X;
3) ‖Fn‖∞ → 0, n → +∞.
Then ϕt,n

s ⇒ ϕt
s, 0 ≤ s ≤ t, n → +∞.

We do not prove this theorem here. The detailed exposition of the proof of this
theorem and its applications is given in the forthcoming paper [2]. Let us only mention
that the scheme of the proof is very close to the one of the famous E.B.Dynkin’s theorem
on a convergence of W -functionals (see [3], Ch. 6.3), and thus the Markov property of
the two-component processes Ŷn is essential there.

This paper has two purposes. On the one hand, we illustrate the reasons why the main
definition is given in such a complicated form. The main feature here is the following:
even if Xn, X possess the Markov property at every point i

n , i ∈ N, one typically can
not take K(γ, T ) = 1. In a ”generic” situation K(γ, T ) should tend to +∞ as γ → 0+.
This means that while the rate of approximation becomes better, the Markov properties
of the pair of the processes should become worse. On the other hand, we show that
Definition 1 is general enough to include the most typical limit theorems such as the
multidimensional functional CLT with a normal domain of attraction and the functional
CLT with a stable domain of attraction.

The main content of the paper is represented by two following theorems. In the first
theorem, {ξk} is a sequence of i.i.d. random vectors in �m with E‖ξk‖2+δ < +∞ for
some δ > 0. We suppose ξk to have zero mean and identity covariation matrix. Define
the processes Xn (”random broken lines”) on �+ by

(2) Xn(t) =
Sk−1√

n
+ (nt − k + 1)

[
Sk√
n
− Sk−1√

n

]
, t ∈ [

k − 1
n

,
k

n
), k ∈ N,

where Sn =
∑n

k=1 ξk. Then the famous Donsker’s invariance principle states that the
distributions of the processes Xn in C(�+,�m) converge to the distribution of the m-
dimensional Wiener process X .

Theorem 1. I. The random broken lines {Xn} provide the Markov approximation for
the process X.

II.Conditions (i)-(iii) hold true with supγ,T K(γ, T ) < +∞ in the only trivial case of
ξk ∼ N (0, I�m) (I�m denotes the identity matrix in �m).

In the second theorem {ξk} is a sequence of i.i.d. random vectors in �1 that belongs
to the normal domain of attraction of an α-stable law L, α ∈ (0, 2). This means, by
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definition, that

n− 1
α [Sn − an] ⇒ L, an =

⎧⎪⎨
⎪⎩

0, α ∈ (0, 1)
nEξ1, α ∈ (1, 2)

n2E sin ξ1
n , α = 1

(see [4], Chapter XVII.5). In order to shorten the notation, we suppose that an ≡ 0 and
consider the processes Xn on �+ defined by

(3) Xn(t) = n− 1
α Sk−1 + (nt − k + 1)

[
n− 1

α Sk − n− 1
α Sk−1

]
, t ∈ [

k − 1
n

,
k

n
), k ∈ N.

Denote, by X , the homogeneous process with independent increments such that X(1)−
X(0)=d L. We call such a process α-stable.

Theorem 2. The random broken lines {Xn} provide the Markov approximation for the
process X. Moreover, conditions (i)-(iii) hold true with K(γ, T ) = 1 for every γ, T .

Remark 2. Theorem 2 and statement II of Theorem 1 show that the approximation of
an α-stable process by the random broken lines is much better (from the point of view
of its Markov properties) than the one of the Wiener process.

2. Proof of Theorem 1

Proof of statement I. Due to CLT, n− 1
2 Sn −→d X(1). Since E‖ξk‖2+δ < +∞, the fam-

ily {S2
n

n } is uniformly integrable (one can verify this, by using the Burkholder and Hölder
inequalities analogously to estimate (4) below). Thus, the Wasserstein–Kantorovich–
Rubinstein distance between Law(n− 1

2 Sn) and Law(X(1)) tends to 0 as n → ∞. There-
fore, for every ε > 0, there exist nε and a random vector (ηε, ζε) such that

E‖ηε − ζε‖2
�m < ε, ηε

d=
Snε√

nε
, ζε

d= X(1).

Now we construct the probability space (Ω1,F1, P 1) in the following way:

Ω1 = (�m)nε × C([0, 1]), F1 = B(Ω1).

Denote the coordinates of the point ω1 ∈ Ω1 by χ = (χ1, . . . , χnε) ∈ (�m)nε , ϕ ∈
C([0, 1]). Define the following measures: Q(du, dv) is the joint distribution of (ηε, ζε),
Uε(dχ, u) is the distribution of {ξ1, . . . , ξnε} conditioned by { Snε√

nε
= u}, and Vε(dϕ, v) is

the distribution of X(·) conditioned by {X(1) = v}. Put

P 1(A) =
∫

(�m)2

[∫
A

Uε(dχ, u)Vε(dϕ, v)
]

Q(du, dv), A ∈ F1.

Now we define the probability space (Ω,F , P ) as the infinite product of the copies of
(Ω1,F1, P 1). For ω = (χ1, ϕ1, χ2, ϕ2, . . . ) ∈ Ω, we define the sequence {ξ̂k(ω), k ≥ 1} by

ξ̂1(ω) = χ1
1, ξ̂2(ω) = χ1

2, . . . , ξ̂nε(ω) = χ1
nε

, ξnε+1(ω) = χ2
1, . . . .

The sequence {ξ̂k} has the same distribution with {ξk}, and therefore the process X̂n,
constructed from {ξ̂k} by formula (2), has the same distribution with Xn. For ω =
(χ1, ϕ1, χ2, ϕ2, . . . ) ∈ Ω, we define

X̂n(t)(ω) =
1√
n

⎡
⎣ [nt]∑

k=1

ϕk(1) + ϕ[nt]+1
( t − [nt]

n

)⎤
⎦ , t ≥ 0,
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and the process X̂n has the same distribution with X .
The processes Ŷn = (X̂n, X̂n) satisfy conditions (i), (ii) of Definition 2 with K(γ, T ) =

nε. On the other hand, the values of the difference X̂n − X̂n at the points iK(γ,T )
n , i ∈ N,

are equal to the sums of i.i.d. random vectors. Thus, it follows from the Kolmogorov’s
maximal inequality that

P
(

sup
i≤ Tn

K(γ,T )

∥∥∥∥X̂n(
iK(γ, T )

n
) − X̂n(

iK(γ, T )
n

)
∥∥∥∥
�m

> γ
)
≤

≤ Cm

γ2
E

∥∥∥∥X̂n

([ Tn

K(γ, T )

]K(γ, T )
n

)
− X̂n

([ Tn

K(γ, T )

]K(γ, T )
n

)∥∥∥∥
2

�m

≤ Cm

γ2
· Tε,

where Cm is some constant depending only on the dimension of the phase space. If ε

was taken less than γ3

CmT at the beginning of the construction, then condition (iii) of
Definition 1 also holds true, which completes the proof.

Proof of statement II. In order to shorten the notation, we consider only the case
m = 1, the general case is completely analogous.

Suppose that conditions (i)-(iii) hold true with supγ,T K(γ, T ) < +∞. Then there
exists such a constant K ∈ N and a sequence γk → 0+ that K(γk, 1) = K. For every k,
consider the corresponding processes X̂n,k, X̂n,k.

The sequence {X̂n,k(iK)−X̂n,k(iK), i ∈ N} is a martingale. Applying the Burkholder
inequality with p = 2 + δ and then the Hölder inequality with p = 1 + δ

2 , we have

E

∣∣∣∣X̂n,k

(
K

n

[ n

K

])
− X̂n,k

(
K

n

[ n

K

])∣∣∣∣
2+δ

≤ B2+δn
−1− δ

2 E

⎧⎨
⎩

[ n
K ]∑

i=1

Δ2
i

⎫⎬
⎭

1+ δ
2

≤ B2+δ

n
E

n∑
k=1

Δ2+δ
k ,

(4)

where Δi =
∣∣∣(ξ̂iK−K+1 + · · · + ξ̂iK) −√

n
(
X̂n,k

(
iK
N

) − X̂n,k
( (i−1)K

N

))∣∣∣. All the vari-

ables ξ̂i have the same finite moment of the order of 2 + δ. The variable

√
n

(
X̂n,k

( iK

N

) − X̂n,k
( (i − 1)K

N

))

has the distribution N (0, K), and its moment of the order of 2 + δ is some constant.
This, together with (4), gives that

(5) E

∣∣∣∣X̂n,k

(
K

n

[ n

K

])
− X̂n,k

(
K

n

[ n

K

])∣∣∣∣
2+δ

≤ C, n, k ∈ N.

On the other hand, if the distribution of ξ̂1 is not equal N (0, 1), then the distribution
of ξ̂1 + . . . ξ̂K is not equal N (0, K). Then the Wasserstein—Kantorovich—Rubinstein
distance between Law(ξ̂1 + · · · + ξ̂K) and N (0, K) is equal to some d > 0, which
means that E(η − ζ)2 ≥ d for every random vector (η, ζ) with η =d ξ̂1 + · · · + ξ̂K ,
ζ =d

√
n

(
X̂n,k

(
iK
N

) − X̂n,k
( (i−1)K

N

)) ∼ N (0, K). Therefore, EΔ2
i ≥ d, i ≥ 1 and

(6) E

(
X̂n,k

(
K

n

[ n

K

])
− X̂n,k

(
K

n

[ n

K

]))2

= n−1

[ n
K ]∑

i=1

EΔ2
i ≥ d

K
· n − K

n
.
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Now condition (iii) and inequalities (5),(6), together with the elementary inequality

Eξ2 ≤ γ2 + Eξ21I|ξ|>γ ≤ γ2 + [Eξ2+δ]
2

2+δ [P (|ξ| > γ)]
δ

2+δ ,

give contradiction. The theorem is proved.

3. Proof of Theorem 2

Denote, by F and U , the distribution functions of ξ1 and X(1), respectively. One has
(see [4], Chapter XVII, §6)

(7) ∃C−, C+ : xα[1 − G(x)] → C+, xαG(−x) → C−, x → +∞,

where G denotes either F or U . Put F−1(z) = sup{y|F (y) ≤ z}, z ∈ [0, 1] and Φ(x) =
F−1(U(x)), x ∈ �. Since U(·) is continuous, U(X(1)) is uniformly distributed on [0, 1]
and Φ(X(1))=d ξ1. We take the stable process {X(t), t ≥ 0} with X(0) = 0, X(1)=d L
on some probability space (Ω,F , P ). We put

ξ̂k = Φ(X(k) − X(k − 1)), k ≥ 1

and construct X̂n from {ξ̂k} by formula (3). We also put X̂n(t) = n− 1
α X(tn), t ≥ 0.

Conditions (i),(ii) of Definition 1 obviously hold true with K(γ, T ) = 1. Now let us
proceed with the condition (iii). We will prove that, for every γ > 0,

(8) lim
n→+∞P

(
sup
i≤T

∣∣∣∣X̂n

(
i

n

)
− X̂n

(
i

n

)∣∣∣∣ > γ
)

= 0.

It follows from (7) that, for every ε > 0, there exists xε > 0 such that

Φ(x) ∈ ((1 − ε)x, (1 + ε)x), x > xε, and Φ(x) ∈ ((1 + ε)x, (1 − ε)x), x < −xε,

and consequently

(9) |x − Φ(x)| ≤ ε|x|, |x| > xε.

Denote, by D, the distribution function of the variables Δk ≡ (X(k) − X(k − 1)) − ξ̂k.
It follows from (7),(9) that

(10) xα[1 − D(x)] → 0, xαD(−x) → 0, x → +∞,

and this is a key point: the tails of the distribution of the ”error” Δk are less valuable
than the tails of the initial or limiting distributions. Therefore, these errors will be
overwhelmed by the normalizing coefficient n− 1

α . This idea is not a new one. It was
used before as a key point in the proofs of an invariance principle (either in its weak
or strong form) for the sums of independent summands with heavy-tailed distributions
(see, for instance, [5]). In our exposition, we adapt this idea to our needs.

Denote Zn(t) = X̂n(t)− X̂n(t), t ∈ [0, T ]. In order to prove (8), it is sufficient to prove
that Zn(·) → 0 weakly in D([0, T ]). Let us show first that Zn(t) ⇒ 0 for every given
t ∈ [0, T ]. We consider only t = 1, the general case is analogous.

Consider the sequence of the canonical measures (see [4], Chapter XVII) μn(dx) =
nx2D(n

1
α dx), and let us show that μn converge to the zero measure properly, i.e. that

(11) μn((x, y]) → 0, x, y ∈ �,

∫ −x

−∞

1
z2

μn(dz) → 0,

∫ +∞

x

1
z2

μn(dz) → 0, x > 0.
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The convergence of two integrals in (11) is just relation (10) written in another form.
The convergence of μn([x, y]) to 0 also follows from (10). Indeed, for x > 0, we have

n

∫
(0,x]

z2D(n
1
α dz) = −n1− 2

α

∫
(0,xn

1
α ]

u2d(1 − D(u))

= n1− 2
α

[
z2(1 − D(z))

]∣∣∣0
xn

1
α

+ 2n1− 2
α

∫ xn
1
α

0

z[1 − D(z)]dz,

(12)

and due to (10)

n1− 2
α

[
z2(1 − D(z))

]∣∣∣0
xn

1
α

= n1− 2
α · O(n

2
α ) · o((n 1

α )−α) = o(1), n → +∞,

n1− 2
α

∫ xn
1
α

0

z[1 − D(z)]dz = n1− 2
α · o((n 1

α )2−α) = o(1), n → +∞.

Here, we used the relation x2−α
∫ x

0
x[1−D(x)] dx → 0, x → +∞, that follows immediately

from (10). Thus, n
∫
(0,x]

z2D(n
1
α dz) → 0, n → +∞ for every x > 0. Analogously,

n
∫
(x,0] z

2D(n
1
α dz) → 0, n → +∞ for every x < 0, which gives the needed convergence

for μn.
Now using Theorem 2 [4], Chapter XVII, §2, we deduce that there exists such a

sequence {bn} ⊂ � that Zn(1)−bn ⇒ 0. Recall that Zn(1) = X̂n(1)−X̂n(1), X̂n(1)=d L,
X̂n(1) ⇒ L. This implies that bn is bounded. Moreover, if we suppose that {bn} has
some partial limit b∗ �= 0, then we obtain that L=d L+ b∗, which is evidently impossible.
This means that bn → 0 and Zn(1) ⇒ 0, n → +∞.

Since all the finite-dimensional distributions of Zn(·) converge to the distributions of
the process that is equal to zero with probability 1, in order to prove (8), it is enough to
show that the distributions of Zn(·) are weakly compact in D([0, T ]). The simplest case
here is α > 1

2 , then the needed compactness follows from the general sufficient conditions
given in [6], Chapter 3. The case of general α is more delicate, we use here the Theorem 2
from [7]. This theorem gives a non-trivial generalization of Theorem 2 [4], Chapter XVII,
§2 and provides the weak convergence in D([0, T ]) of the random broken lines generated
by the triangular array of the independent random variables. The main condition there
is the proper convergence of the sequence of canonical measures defined on �+ ×�. Let
us formulate the statement which we refer to, it is a very partial corollary of Theorem 2
[7] and Lemma 2 [8].

Proposition 1. Let Zn(·) be the random broken lines with the vertices in { k
n , k ∈ N}

and

Zn

(k

n

)
=

k∑
i=1

ηn,i, k ∈ N,

where {ηn,i, i ∈ N} are the i.i.d. random variables with the distribution function Φn.
Define the measures Mn on �+ ×� by

Mn((a, b] × (x, y]) = #
{

i

∣∣∣∣ i

n
∈ (a, b]

}
·
∫

(x,y]

z2Φn(dz).

Suppose that, for every a, b, the measures μ
(a,b]
n (·) ≡ Mn((a, b]×·) converge to the zero

measure properly (see (11)). Then there exists a sequence {cn} ⊂ � such that, for every
T > 0, the processes {Zn(t) − cnt, t ∈ [0, T ]} converge weakly in D([0, T ]) to 0.
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We have already proved that the condition of Proposition 1 holds true. The consid-
erations analogous to those made above show that cn → 0, n → +∞. This implies that
Zn(·) converge weakly in D([0, T ]) to 0, and (8) holds true. Theorem 2 is proved.
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