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ON LARGE DEVIATIONS IN ESTIMATION

PROBLEM WITH DEPENDENT OBSERVATIONS

The paper is devoted to the stochastic optimization problem with a stationary ergodic
random sequence satisfying the hypermixing condition. It is assumed that we have
the finite number of observed elements in the sequence, and instead of solving the
former problem we investigate the empirical function, find its points of minimum,
and study their asymptotic properties. More precisely we consider the probabilities
of large deviations of minimizers and the minimal value of the empirical criterion
function from the corresponding characteristics of the main problem. The conditions
under which the probabilities of the large deviations decrease exponentially are found.

We investigate the stochastic optimization problem: minimize

(1) Ef(x) = Ef(x, ξ0), x ∈ X,

where {ξi, i ∈ Z} is a stationary in a strict sense ergodic random sequence defined on
a probability space (Ω, F, P ) and with values in some measurable space (Y,�), X is a
compact subset of some Banach space S with the norm ‖ · ‖, f : X ∗ Y → R is some
known function continuous in the first argument and measurable in the second one.

Instead of (1) we will minimize the empirical function

(2) Fn(x) =
1
n

n∑
k=1

f(x, ξk), x ∈ X,

with {ξk, k = 1, . . . , n} observed elements of the sequence {ξi}.
If we have

E {max(|f(x, ξ0)| , x ∈ X)} < ∞.

then there exists a solution x∗ to the problem (1), and we suppose that it is unique.
It is known that there exists a minimum point xn(ω) of the function (2). Under some

sufficiently simple conditions (see [1]) xn(ω) tends to x∗ with probability 1 as n → ∞.
The aim of the paper is to estimate the large deviations of xn and Fn(xn) .
Let us recollect some facts from functional analysis. For any y ∈ Y the function f(◦, y)

belongs to the space C(X) of continuous real functions on X . We assume that for all
y ∈ Y we have f(◦, y) − Ef(◦) ∈ K, where K is some convex compact set from C(X).
Therefore for any n Fn(◦)−Ef(◦) is a random element defined on the probability space
(Ω, F, P ) and with values in K.

Definition 1. [2]. Let (V, ‖◦‖) be a normed linear space, B(x, ρ) - a closed ball in V
with the radius ρ and the center x, f : V → [−∞, +∞] -some function, and f(xf ) =
min{f(x), x ∈ V }. A condition function ψ for f at xf is a monotone increasing function
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ψ : [0, +∞) → [0, +∞] with ψ(0) = 0 such that for some ρ > 0 and for all x ∈ B(xf , ρ)
we have

f(x) ≥ f(xf ) + ψ (‖x − xf‖) .

Assume that V0 ⊂ V , and denote by δV0 the indicator function of V0:

δV0(x) = 0, x ∈ V0; δV0(x) = +∞, x /∈ V0.

Theorem 1. [2]. Let (V, ‖◦‖) be a normed linear space, V0 ⊂ V closed, and f0, g0 : V →
R be continuous functions on V . Suppose that

ε = sup {|f0(x) − g0(x)| , x ∈ V0} .

Define the functions f, g : V → (−∞, +∞] in the following way: f = f0 + δV0 , g =
g0 + δV0 . Then

|inf{f(x), x ∈ V } − inf{g(x), x ∈ V }| ≤ ε.

Next, let xf be a minimum point of f :

f(xf ) = inf{f(x), x ∈ V }.

Assume that ψ is a condition function for f at xf with some coefficient ρ > 0. If ε is
sufficiently small so that for all x when ψ (‖x − xf‖) ≤ 2ε we have ‖x − xf‖ ≤ ρ, then
for any xg ∈ arg min{g(x), x ∈ B(xf , ρ)} the following inequality is fulfilled:

ψ (‖xf − xg‖) ≤ 2ε.

When ψ is convex and strictly increasing on [0, ρ], the preceding inequality can also be
expressed in the following way: if ε is small enough so that ψ−1(2ε) ≤ ρ, then for any
xg ∈ argmin{g(x), x ∈ B(xf , ρ)} one has

‖xf − xg‖ ≤ ψ−1(2ε).

Theorem 2. [3, p.53]. Let {με : ε > 0} be a family of probability measures on G, where
G is a closed convex subset of a separable Banach space S. Assume that

Λ(λ) ≡ lim
ε→0

εΛμε(λ/ε)

exists for every λ ∈ S∗, where S∗ is the dual space of S, and

Λμ(λ) = ln
(∫

E

exp [〈λ, x〉] μ(dx)
)

for an arbitrary probability measure μ on S , where 〈λ, x〉 is the corresponding duality
relation. Denote

Λ∗(q) = sup {〈λ, q〉 − Λ(λ), λ ∈ S∗} , q ∈ G.

Then the function Λ∗ is nonnegative, lower semicontinuous and convex, and for any
compact set A ⊂ G

lim sup
ε→0

ε ln (με(A)) ≤ − inf{Λ∗(q), q ∈ A}

holds.
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Definition 2. [3]. Let Σ be a separable Banach space, {ξi, i ∈ Z} –a stationary in a strict
sense random sequence defined on a probability space (Ω, F, P ) with values in Σ. Let
Bmk denote the σ -algebra over Ω generated by the random elements {ξi, m ≤ i ≤ k}.
For given l ∈ N the real random variables η1, . . . , ηp , p ≥ 2 are called l -measurably
separated if −∞ ≤ m1 ≤ k1 < m2 ≤ k2 < . . . < mp ≤ kp ≤ +∞ ;

mj − kj−1 ≥ l, j = 2, . . . , p

and for each j ∈ {1, . . . , p} the random variable ηj is Bmjkj -measurable.

Definition 3. [3]. A random sequence {ξi} from Definition 2 is called a sequence with
hypermixing if there exist a number l0 ∈ N

⋃{0} and non-increasing functions

α, β : {l > l0} → [1, +∞)

and γ : {l > l0} → [0, 1] which satisfy

lim
l→∞

α(l) = 1, lim sup
l→∞

l(β(l) − 1) < ∞, lim
l→∞

γ(l) = 0,

and for which

(H-1) ‖η1 . . . ηp‖L1(P ) ≤
p∏

j=1

‖ηj‖Lα(l)(P )

whenever p ≥ 2, l > l0 and η1, . . . , ηp are l -measurably separated functions. Here

‖η‖Lr(P ) =
(∫

Ω

|η(ω)|r dP

)1/r

,

and

(H-2)
∣∣∣∣
∫

Ω

(
ξ(ω) −

∫
Ω

ξ(ω)dP

)
η(ω)dP

∣∣∣∣ ≤ γ(l) ‖ξ‖Lβ(l)(P ) ‖η‖Lβ(l)(P )

for all l > l0 and ξ, η ∈ L1(P ) l -measurably separated.

It is known (see [4]), that C(X)∗ = M(X) is the set of bounded signed measures on
X , and

〈g, Q〉 =
∫

X

g(x)Q(dx)

for any g ∈ C(X), Q ∈ M(X) .

Theorem 3. Suppose that {ξi, i ∈ Z} is a stationary in a strict sense ergodic ran-
dom sequence satisfying the hypothesis (H-1) of the hypermixing condition, defined on a
probability space (Ω, F, P ) with values in a compact convex set K ⊂ C(X).

Then for any measure Q ∈ M(X) there exists

Λ(Q) = lim
n→∞

1
n

ln

(∫
Ω

exp

{
n∑

i=1

∫
X

ξi(ω)(x)Q(dx)

}
dP

)

and for any closed A ⊂ K

lim sup
n→∞

1
n

ln

(
P

{
1
n

n∑
i=1

ξi ∈ A

})
≤ − inf{Λ∗(g), g ∈ A},
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where Λ∗(g) = sup
{∫

X g(x)Q(dx) − Λ(Q), Q ∈ M(X)
}

is the nonnegative, lower semi-
continuous and convex function.

Proof. Let us consider any Q ∈ M(X) . Assume that l0 is the number from the hypothesis
(H-1). Fix l > l0 and m, n ∈ N , where l < m < n . Then

n = Nnm + rn, Nn ∈ N, rn ∈ N
⋃

{0}, rn < m.

We will use the following notation:

‖g‖ = max{|g(x)| , x ∈ X}, g ∈ C(X),

(3) fn = ln

(∫
Ω

exp

{
n∑

i=1

∫
X

ξi(ω)(x)Q(dx)

}
dP

)
, c = max{‖g‖ , g ∈ K},

v(Q, X) = sup

{
k∑

i=1

|Q(Ei)| , Ei

⋂
Ej = ∅, i �= j, Ei ∈ B(X), k ∈ N

}
< ∞,

where B(X) is the Borel σ–algebra on X , Q ∈ M(X), where the last formula is taken
from [Dunford and Schwartz (1957)]. For all ω we have

n∑
i=1

∫
X

ξi(ω)(x)Q(dx) =
Nn−1∑
j=0

(j+1)m−l∑
i=jm+1

∫
X

ξi(ω)(x)Q(dx)

(4) +
Nn−1∑
j=0

(j+1)m∑
i=(j+1)m−l+1

∫
X

ξi(ω)(x)Q(dx) +
n∑

i=Nnm+1

∫
X

ξi(ω)(x)Q(dx).

Further, in view of (3) for each i, ω

(5)
∣∣∣∣
∫

X

ξi(ω)(x)Q(dx)
∣∣∣∣ ≤ cv(Q, X).

Due to (5) for any ω we have

(6)
Nn−1∑
j=0

(j+1)m∑
i=(j+1)m−l+1

∫
X

ξi(ω)(x)Q(dx) ≤ cv(Q, X)lNn,

(7)
n∑

i=Nnm+1

∫
X

ξi(ω)(x)Q(dx) ≤ cv(Q, X)rn.

For each ω denote

V1 =
Nn−1∑
j=0

(j+1)m−l∑
i=jm+1

∫
X

ξi(ω)(x)Q(dx),

V2 =
Nn−1∑
j=0

(j+1)m∑
i=(j+1)m−l+1

∫
X

ξi(ω)(x)Q(dx),

V3 =
n∑

i=Nnm+1

∫
X

ξi(ω)(x)Q(dx).

The inequalities (6) and (7) imply that

exp {V1 + V2 + V3} ≤
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(8) ≤ exp {V1} exp {cv(Q, X)lNn} exp {cv(Q, X)rn} , ω ∈ Ω.

It follows from (8) that∫
Ω

exp {V1 + V2 + V3} dP ≤ exp {cv(Q, X)lNn} exp {cv(Q, X)rn}
∫

Ω

exp {V1} dP.

Due to the properties of {ξi} we obtain

∫
Ω

Nn−1∏
j=0

exp

⎧⎨
⎩

(j+1)m−l∑
i=jm+1

∫
X

ξi(ω)(x)Q(dx)

⎫⎬
⎭ dP ≤

(9) ≤
Nn−1∏
j=0

⎛
⎜⎝∫

Ω

⎛
⎝exp

⎧⎨
⎩

(j+1)m−l∑
i=jm+1

∫
X

ξi(ω)(x)Q(dx)

⎫⎬
⎭
⎞
⎠

α(l)

dP

⎞
⎟⎠

1/α(l)

,

∫
Ω

exp

⎧⎨
⎩α(l)

(j+1)m−l∑
i=jm+1

∫
X

ξi(ω)(x)Q(dx)

⎫⎬
⎭ dP =

(10) =
∫

Ω

exp

{
α(l)

m−l∑
i=1

∫
X

ξi(ω)(x)Q(dx)

}
dP, j = 1, . . . , Nn − 1.

In view of (9) and (10) we get

∫
Ω

exp {V1} dP ≤
(∫

Ω

exp

{
α(l)

m−l∑
i=1

∫
X

ξi(ω)(x)Q(dx)

}
dP

)Nn/α(l)

.

¿From (4) we get

fn = ln
(∫

Ω

exp {V1 + V2 + V3} dP

)
≤ cv(Q, X)lNn + cv(Q, X)rn+

+ ln

⎡
⎣
(∫

Ω

exp

{
α(l)

m−l∑
i=1

∫
X

ξi(ω)(x)Q(dx)

}
dP

)Nn/α(l)
⎤
⎦

= cv(Q, X)lNn + cv(Q, X)rn+

+
Nn

α(l)
ln

(∫
Ω

exp

{
(α(l) − 1)

m−l∑
i=1

∫
X

ξi(ω)(x)Q(dx) +
m−l∑
i=1

∫
X

ξi(ω)(x)Q(dx)

}
dP

)
≤

≤ cv(Q, X)lNn + cv(Q, X)rn +
Nn

α(l)
(α(l) − 1) (m − l) cv(Q, X)+

+
Nn

α(l)
ln

(∫
Ω

exp

{
m−l∑
i=1

∫
X

ξi(ω)(x)Q(dx)

}
dP

)
≤

≤ cv(Q, X)lNn + cv(Q, X)rn + (α(l) − 1) (m − l) cv(Q, X)Nn+

+
Nn

α(l)
ln

(∫
Ω

exp

{
m∑

i=1

∫
X

ξi(ω)(x)Q(dx) −
m∑

i=m−l+1

∫
X

ξi(ω)(x)Q(dx)

}
dP

)
≤
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≤ cv(Q, X)lNn + cv(Q, X)rn + (α(l) − 1) cv(Q, X)mNn +
Nn

α(l)
cv(Q, X)l+

+
Nn

α(l)
ln

(∫
Ω

exp

{
m∑

i=1

∫
X

ξi(ω)(x)Q(dx)

}
dP

)
≤

≤ 2cv(Q, X)lNn + cv(Q, X)rn + (α(l) − 1) cv(Q, X)mNn +
Nn

α(l)
fm . (11)

The inequality (11) implies that

fn

n
≤ 2Nncv(Q, X)l

Nnm
+

cv(Q, X)rn

n
+ (α(l) − 1) cv(Q, X) +

Nnfm

α(l) (Nnm + rn)
=

=
2cv(Q, X)l

m
+

cv(Q, X)rn

n
+ (α(l) − 1) cv(Q, X) +

fm

α(l) (m + rn/Nn)
.

Therefore

lim sup
n→∞

fn

n
≤ 2cv(Q, X)l

m
+ (α(l) − 1) cv(Q, X) +

1
α(l)

fm

m
.

Passing to the lim inf as m → ∞, we obtain

lim sup
n→∞

fn

n
≤ (α(l) − 1) cv(Q, X) +

1
α(l)

lim inf
m→∞

fm

m
,

and letting l → ∞, we have

lim sup
n→∞

fn

n
≤ lim inf

m→∞
fm

m
.

Consequently, there exists

lim
n→∞

fn

n
= Λ(Q).

Now we can see that the theorem follows from Theorem 2. Indeed, for

G = K, S = C(X), S∗ = M(X), 〈Q, g〉 =
∫

X

g(x)Q(dx), ε =
1
n

,

and for με = μ1/n the probability measure on K, defined by the distribution of a random
element 1

n

∑n
i=1 ξi , we have

lim
ε→0

εΛμε(Q/ε) = lim
n→∞

1
n

ln
(∫

K

exp
{∫

X

g(x)nQ(dx)
}

μ1/n(dg)
)

=

(12) = lim
n→∞

1
n

ln

(∫
Ω

exp

{∫
X

1
n

n∑
i=1

ξi(ω)(x)nQ(dx)

}
dP

)
= lim

n→∞
fn

n
= Λ(Q).

The proof is complete.
Now let us consider the problems (1) and (2). Suppose that the given sequence {ξi, i ∈

Z} satisfies the hypothesis (H-1) of the hypermixing condition. Then the sequence

ζi = f(◦, ξi) − Ef(◦), i ∈ Z,

satisfies (H-1) too.
Denote

Aε = {z ∈ K : ‖z‖ ≥ ε} ,
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I(z) = Λ∗(z) = sup
{∫

X

z(x)Q(dx) − Λ(Q), Q ∈ M(X)
}

.

Theorem 4. Under the hypothesis (H-1) of the hypermixing condition we have

lim sup
n→∞

1
n

lnP {|min {Ef(x), x ∈ X} − min {Fn(x), x ∈ X}| ≥ ε}

(13) ≤ − inf {I(z), z ∈ Aε} .

Assume that there exists a condition function ψ for Ef at x∗ with some constant
ρ. Let xn be a point of the minimum of the function (2) on the set B(x∗, ρ). If ε is
sufficiently small so that the condition

ψ (‖x − x∗‖) ≤ 2ε ⇒ ‖x − x∗‖ ≤ ρ,

is fulfilled, then

(14) lim sup
n→∞

1
n

lnP {ψ (‖xn − x∗‖) ≥ 2ε} ≤ − inf {I(z), z ∈ Aε} .

Moreover, if ψ is convex and strictly increasing on [0, ρ], then

(15) lim sup
n→∞

1
n

lnP
{‖xn − x∗‖ ≥ ψ−1(2ε)

} ≤ − inf {I(z), z ∈ Aε} .

Proof. Theorem 1 implies that for each ω

(16) |min {Ef(x), x ∈ X} − min {Fn(x), x ∈ X}| ≤ ‖Fn − Ef‖ .

Then, the conditions of Theorem 3 are fulfilled for the sequence {ςi} . Therefore for any
ε > 0

(17) lim sup
n→∞

1
n

lnP {‖Fn − Ef‖ ≥ ε} ≤ − inf {I(z), z ∈ Aε} .

The inequality (13) follows from (16) and (17). For the proof of the second part of the
theorem we also use Theorem 1. Under the conditions of the theorem we have for all ω

(18) ψ (‖x∗ − xn‖) ≤ 2 ‖Fn − Ef‖ ,

or

(19) ‖xn − x∗‖ ≤ ψ−1 (2 ‖Fn − Ef‖) .

Taking into account (17), the inequalities (18) and (19) imply (14) and (15) respectively.
The theorem is proved.
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