А. В. Дуров*

ПАЙКА ZrO₂-КЕРАМИКИ К НИОБИЮ КОНТАКТНО-РЕАКТИВНЫМ СПОСОБОМ ЧЕРЕЗ НИКЕЛЬ

Исследовано смачивание ZrO_2 -керамики никель-ниобиевой эвтектикой (Ni—40,5% (ат.) Nb, образуется при 1175 °C)) с варьированием температуры. Краевой угол смачивания составляет 80° . Опробован для пайки ZrO_2 -керамики к ниобию контактно-реактивный способ с использованием никелевой прослойки между ниобием и керамикой. Подобрана оптимальная температура пайки — 1400 °C. Прочность соединения — 117—138 МПа.

Введение

В последнее время возрастает интерес к получению соединений керамических материалов с металлическими деталями, способных выдерживать высокие температуры. Также предпринимаются попытки отказаться от использования титана в качестве активной добавки к припоям, поскольку титан слишком агрессивен и, во-первых, разрушает части паяного соединения, во-вторых, вследствие образования большого количества продуктов реакции титана с соединяемым материалом на межфазной поверхности появляются развитые переходные слои, которые могут снижать прочность спая. Перспективным для замены титана является ниобий, он был опробован в работах [1—9]. В работах [1—3] исследовалась пайка Al₂O₃-керамики к ниобию с прослойкой из тонкого слоя меди, в работах [4—6] — диффузионная сварка Al₂O₃-керамики к ниобию, в работе [7] — С—SiC-композита к ниобию, в работе [8] пропитка С—SiC-композита расплавом Ni—40,5% (ат.) Nb (эвтектика [10]), хотя паяного соединения С—SiC-композита получить не удалось, в [9] — диффузионная сварка ZrO₂-монокристаллов и ниобия. В данной работе была исследована возможность получения паяного соединения ZrO₂-керамики и металла с использованием в качестве припоя системы никель—ниобий.

Эксперимент и обсуждение результатов

В работе использовали ниобий (пластина толщиной 2 мм), никель (слиток) высокой чистоты, керамику (пластинки размером $10\times10\times4$ мм), а также монокристаллы на основе ZrO_2 , стабилизированного 3,5% (ат.) Y_2O_3 . Монокристаллы диоксида циркония были разрезаны на пластинки толщиной 2 мм. Поверхность керамики и монокристаллов была отполирована алмазной пастой дисперсностью 0,7—0,3 мкм. Опыты проводили в вакууме 10^{-3} Па.

Как уже отмечалось, в системе никель—ниобий присутствует эвтектика при 1175 °C (40,5% (ат.) Nb) [10]. Были проведены опыты по

_

^{*} А. В. Дуров — кандидат химических наук, научный сотрудник, Институт проблем материаловедения им. И. Н. Францевича НАН Украины.

[©] А. В. Дуров, 2008

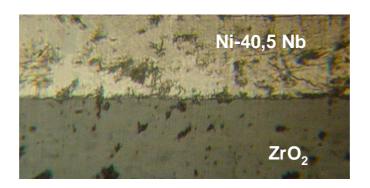


Рис. 1. Микрофотография переходной области ZrO_2 —Ni—40,5% (ат.) Nb, $\times 1000$

Fig. 1. The microphotography of ZrO₂—Ni—40,5% (at.) Nb transient zone, ×1000

смачиванию монокристаллического ZrO_2 этим эвтектическим расплавом при температурах от образования эвтектики (1175 °C) до 1700 °C, краевой угол смачивания составил около 80° . На рис. 1 представлена микрофотография шлифа капли Ni-40,5% (ат.) Nb, застывшей на подложке из монокристаллического ZrO_2 в области контакта ZrO_2 —металл. Формирования развитых переходных слоев не наблюдается. Очевидно, реакция на межфазной границе проходит со значительно меньшей интенсивностью, чем для припоев, содержащих титан.

Поскольку для достижения смачивания оксидов расплавами с ниобием необходимо использовать составы с высоким содержанием ниобия, логично применять контактно-реактивный метод пайки. В этом случае между соединяемыми тугоплавкими материалами располагается тонкая прослойка, которая образует с одним из материалов легкоплавкую жидкую фазу, чем и обеспечивается пайка.

В нашем случае никель был прокатан до толщины 0,25 мм, из ниобия и прокатанного никеля вырезали пластинки размером 5×5 мм. Никелевую пластинку располагали на поверхности керамики, сверху укладывали ниобиевый образец, сборку нагружали вольфрамовым грузом и проводили нагревание в вакууме. При 1175 °C образуется эвтектика между никелем и ниобием, то есть активный элемент (ниобий) поставляется в припойный расплав за счет растворения ниобиевой части соединения.

После пайки испытывали прочность соединений при сдвиге. Самые прочные соединения были получены при 1400 °C, прочность составила 117—138 МПа, разрушение происходило по слою припоя (очевидно, вследствие формирования хрупких интерметаллидов). График Вейбулла для полученных значений прочности приведен на рис. 2.

Для других температур (1200, 1300, 1500 и 1600 °C) прочность соединений составила около 50 МПа. На рис. 3 представлена фотография макета натурной детали — трубка из ZrO_2 -керамики, припаянная к ниобию контактно-реактивным способом через никель.

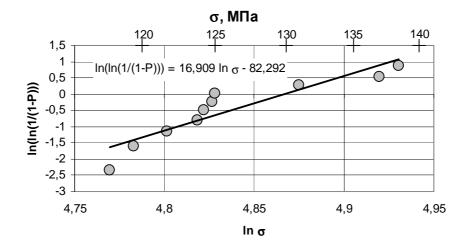


Рис. 2. График Вейбулла для прочности при сдвиге соединений ниобия и ZrO_2 -керамики, паянных контактно-реактивным способом через никель, температура пайки — $1400\,^{\circ}\mathrm{C}$

Fig. 2. The Weibull plot for shear strength of columbium and $\rm ZrO_2$ -ceramic brazed joints brazed by contact-reactive method through the nickel — 1400 °C

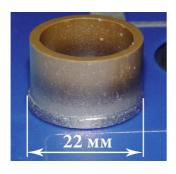


Рис. 3. Макет натурного соединения ZrO₂керамики с ниобием, полученного контактнореактивным способом через никель

Fig. 3. The model of mockup ZrO₂-ceramic to columbium joint obtained by contact-reactive method through the nickel

Выводы

В результате проведенных исследований разработан метод пайки ZrO_2 -керамики к ниобию, который позволяет получать достаточно прочные паяные соединения.

РЕЗЮМЕ. Досліджено змочування ZrO_2 -кераміки нікель-ніобиевой евтектикой (Ni—40,5% (ат.) Nb, утвориться при 1175 °C)) з варіюванням температури. Крайовий кут змочування складає 80°. Випробуваний для пайки ZrO_2 -кераміки до ніобію контактно-реактивний спосіб з використанням нікелевого прошарку між ніобієм і керамікою. Підібрано оптимальну температуру пайки — 1400 °C. Міцність з'єднання — 117—138 МПа.

- 1. Shalz M. L., Dalgleish B. J., Tomsia A. P. et al. Ceramic joining. III. Bonding of alumina via Cu/Nb/Cu interlayers // J. Mater. Sci. 1994. 29 (14). P. 3678—3690.
- 2. *Marks R. A., Sugar J. D. and Glaeser A. M.* Ceramic joining. IV. Effects of processing conditions on the properties of alumina joined via Cu/Nb/Cu interlayers // Ibid. 2001. **36** (23). P. 5609—5624.
- 3. *Marks R. A., Chapman D. R., Danielson D. T. and Glaeser A. M.* Joining of alumina via copper/niobium/copper interlayers // Acta Mater. 2000. **48** (18—19). P. 4425—4438.
- 4. *Габ И. И., Журавлев В.С., Куркова Д. И. и др.* Контактное взаимодействие оксидных материалов с тугоплавкими металлами при высокотемпературной твердофазной сварке давлением // Порошковая металлургия. 1997. —
- 5. *Morozumi S., Kikuchi M., Nishino T.* Bonding mechanism between alumina and niobium / J. Mater. Science. 1981. No. 16. P. 2137—2144.
- 6. *Каракозов* Э. С., *Котелкин И. С., Матвеев Г. Н. и др.* О механизме образования соединения при сварке в твердом состоянии керамики из окиси алюминия с ниобием // Физика и химия обраб. материалов. 1968. № 3. С. 123—128.
- 7. *Naka Masaaki, Saito Tohru, Okamoto Ikuo*. Bonding behavior between niobium and reaction-sintered sic // Transactions of JWRI. 1988. 17(2). P. 67—71
- 8. *TONG Qiao-ying, CHENG Lai-fei, ZHANG Li-tong.* Infiltration bonding C/SiC composite and niobium [J] // J. of Aviation Mater. 2004. **24** (1). P. 53—56 (in Chinese).
- 9. *Morozumi Shotaro, Kikuchi Michiko, Saito Kazuya, Mukayama Shin-ichi*. Diffusion bonding of niobium and Y₂O₃-stabilized ZrO₂ or HfO₂ // ISIJ Internat. 1990. **30**, No. 12. P. 1066—1070.
- 10. *Хансен М., Андерко О.* Структуры двойных сплавов. М.: Металлургия, 1962. 1488 с.

Поступила 12.01.08

Durov O. V.

Brazing of ZrO₂-ceramic to columbium by contact-reactive method through the nickel

The wetting of ZrO₂-ceramic by nickel-columbium eutectic (Ni—40,5% (at.) Nb, forms at 1175 °C) was investigated, contact angle is 80°. The contact-reactive method using nickel interlayer between ceramic and columbium was tested for brazing of ZrO₂-ceramic to columbium, the optimum brazing temperature was fit, it is 1400 °C. Joint strength is 117—138 MPa.