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NECESSARY CONDITIONS FOR CONTROL OF OBJECTS WITH
DISTRIBUTED CONSTANTS

G. IOVANE, V.M. MIZERNYY

Problems of optimal control over objects with distributed constants described by
nonlinear differential equations with partial derivatives of elliptic, parabolic and hy-
perbolic types have been considered.

INTRODUCTION

The significant progress in the development of non-linear functional analysis
methods [1, 2, 3], which have become widely adopted in different sections of
mathematics, favours the research of applied non-linear tasks, which are in natural
environment and used for many industrial technologies. Bringing them to corre-
sponding operators or differential-operator equations in functional spaces allows
to reveal general regularities and connections for entire tasks classes, which are
different according to their specific content [4].

With the help of some methods given by the non-linear analyses, we can re-
search on the question of extreme of functionals with restrictions, which appear
during solution of great number of important manufacturing and technical tasks.
The restrictions in the kind of functional equations and inequalities allow to form
up mathematical models of objects functioning, considering the physical essence
of the task.

The present work considers the task of optimal controlling for objects with
distributed parameters, which are described by non-linear differential equations
with partial derivatives of elliptical parabolic and hyperbolic types.

TASK SETTING

Let X, Y, U be Banach spaces, the functional J be determined in X xU and

the operator G reflect the space X xU on Y, that is J:XxU >R,
G:XxU->Y.
Let us consider an extremal task:

J(x,u) > inf, (1)

Gx,u)=y, xeX,uelU, yeY, 2)
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where the functional J and the operator G are non-linear.

Let us mark through X YL, U the conjugated spaces to X, Y, U respec-
tively;

L(X;Y), L(U,Y) are spaces of non-linear continuous operators, which act
on X and U on Y respectively;

D.J, D,J, D,G, D,G are partial derivatives according to Gato [1] in the
point (x;u)e X xU of the reflection J and G, that is

aJ (x,u) DJ_aJ(x,u) DJ_GG(x,u) DJ_8G(x,u)

D.J =
X ou ox ou

Theorem. Let us consider
1) the functional J and the operator G have partial derivatives according to
Gato in some interval W, , <X xU of the element (xsuy) € X xU and the

reflection
DxOJ:W(XO;MO) - X, DuOJ:W(XO;uO) U, DxOG3W(x0;u0) - L(X;Y)

and
D,y G Wy gy = L(U;Y) are continuous;

2) the space patterns X', U with the reflections D, G and D, G are

closedin Y.
At the same time, if the element (pair) (x,,u,) is the solution of the tasks
(1), (2), then such correlations occur:

G(xg3t0) =, 3)
A (D J (x0310), %) x +{[Dyy G (xg510)] 315X x =0 V(x,)e X xU , (4)
/12<Dx0J(x0;u0)au>U +<[Du0G(x0;u0)]*y;’u>U :05 (5)

where A,,4, €R, yf,y; eY" and ‘/11 ‘ +‘/12‘ +Hyf

*
Y*+J’2

Proof. According to the conditions of the multitude theorem

L, 720,
Y

A ={DXOG(xO;uO)x; VxeX}g Y, P, :{ o O (X031 )3 VueU}gY

form closed spaces in Y, that is subspaces A and P, hold all their border points.
If A#Y and P, #Y, that is B and P, are proper subspaces of the Banach
space Y, then according to lemma about annihilator [5], non-zero functionals

* *

Vi,yy€Y * can be found; they are equals to zero at F; and P, correspondingly.

For linear continuous functionals yf and y; with Vxe X and VueU we ob-
tain

(104 Gxosu0)T" 37 ,) ¢ = (01, Dy Glxgsttg )x) =0

and
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<[Du0G(x0;u0)]*y;,M>U :<y;,Du0G(x0;u0)u>Y =0

as elements D, G(xg;uq)x and D, G(xq;uq)u belongs correspondingly to sub-
spaces L cY, P, CY.

Let us assume that 4, =0 and A4, =0 if we take into account the last corre-
lations, we obtain equations (4), (5).

Let us now consider the case P, =Y and P, =Y . If we apply to the reflec-
tion G the theorem of Lustenik [5, 6], we will have that VAe X and VueU,
which satisfy the conditions

<Dx0 G(XO N UO ), h>X = O and <Du0 G(XO N UO ), V>U = 0 , (6)
at rather small numbers ¢ and 7 there exist such elements

x(t,h)y=xy +th+n(t) and u(zr,v)=uy + v +r(7r),

that G(x(¢,h),u(zr,v))—y=0, —0 with r—0 and

In®] S0, I @),
t T
7—>0.

Let us consider the function @(¢,7) = L(x(¢, h),u(z,v)). Its partial derivatives
according to Gato become

99 . _o 99| _ ' B
Ot |t=0 :<DX0J(XO’”0)’h>X =Cy, a7 =0 —(DuOJ(xo,uo),V>U =C,
=0 7=0

and should be equal to zero. Indeed, if
(DyyJ (xg5u9), 1) x =Cy #0 and (D, J(xq;ug),v)y =Cy #0,

then the signs of expressions

J(x(t,h),uo)—J(xo;uo)=(Dx0J(x0;u0),x(t,h)—x0>X +o(t)=
=(Dy,J (xg31),th+ 1 (1)) x +0(t) = 1(D, J (xq510), h) x +

+(DyyJ (x0310), 11 (1)) x +0(1) = Cyt + (D J (x50 ),71 (1)) x +0(1)

and
J(xg,u(z,v)) = J(xg3u9) =(D,, J (X3 10),u(r,v) —ug)y +o0(t) =
=Gyt +(Dy J (xp310),72 (7)) y +0(2),
n () r(7)
taking into account that m—) 0, u—) 0 with t—> 0 and 7 >0, are
t T

determined in terms of C;¢ and C,7 and, as a result, they change when substitute
t and 7 for —¢ and — 7 accordingly.
At the same time there should not be an extreme at the point (xg,u,). Ex-

actly this contradiction proves our statement. Consequently, taking into the ac-
count (6), we have
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(DyyJ (xg319),h) xy =0 VheKerD, G(xq;up) (7)
and
(DyyJ (xg5u9),v)y =0 VveKerD, G(xysug). ®)

In other words, D, J(xq;ug) is the element within X *, which is orthogo-

nal to subspace Ker D, G(xg;uy) < X, thatis
D, J(xgsuq) € [Keer0 G(xo;uo)]L NnX"

Similarly, D, J(xg;ug) is the element within V" *, which is orthogonal to
KerD, G(xg;ug)cU, that is D, J(xy3u) € [KerDuO G(xgsug )]L AU". Ac-
cording to the lemma about annihilator [5] we obtain

[Ker D, G(xosug)]* = Im[D,, Glxgsu0)] )
and
[Ker D, G(xo;u0)]* =1m[D,, G(xosu0)] - (10)
Consequently, if
D, J(xg310) € [Ker D, G(xgiup) [ A X",

D,,J(x¢3uq) € [KerDuO G(xqy;uq )]l U,
then it can be found such functionals y;,y, €Y, such that

(DI rosug).x) | =~([Dy, Glrgsug)] w1 ) (11
and

<Du0 J(xo;uo),u>U = —<[Du0 G(xo;uo)]*y; ,x>U . (12)

Assuming A, =4, =1 and taking into consideration that (x,u)e X xU , we
obtain the expressions (4) and (5), which prove the theorem.

This theorem is an infinitely measurable generalization of Lagrangian coef-
ficients rule, which is known from classical analysis and necessary conditions for
extremal tasks with restrictions.

Let us mention, that the system of equations (3)—(5), which presents neces-
sary conditions for functional optimum (1) with restrictions (2), can be written
(for A; =4, =1) in the operator form:

G(xgsup) =y, (13)
D, J(xgsug) + D Glxgiug)] 1 =0, (14)
D, J(xg3ttg) + Dy, Glxgiug)] ¥3 =0, (15)

where

D, Glxgiug)] ¥ > X", D, Glosu)| ¥ >U”.
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Hence, the solution (xo,uo,yr,y;) of system (3)—(5) or (13)—(15) can be
interpreted as a generalized solution.

TASK OF OPTIMAL CONTROL FOR THE OBJECTS WITH DISTRIBUTED
CONSTANTS, WHICH ARE DESCRIBED BY NON-LINEAR DIFFERENTIAL
EQUATIONS — ELLIPTIC TYPE

Let us assume that functions, which determine the state x(@) of an object and the

control parameter u(w) are defined in the restricted area QQ RY with the limit
Q.

We get necessary optimal conditions as solution of functional equation sys-
tem.

Let us consider such optimization task:

I(x,u) = J.J(x(a)),u(a)))da) —inf, (16)
Q
N 2
0“x ox ox
G, X, —— s ——u) =, 17
21 P (o,x 50" 50, uy=f (17)
x|, =0 (18)

We make the following assumptions:
1. Let us assume that

P 2
_X,QGLP(Q), i=L.,N; p=2; uelL, (Q), r>1.
6501' Ga)lz

X,

2. Let function G:Qx R""?— R belong to the class CAR (G € CAR), that
isif VéeR "+2 the function Q>w > G(w;&)m 1s measurable, and for almost all

weQ the function R"*?> & G(w,¢) is continuous.
Let us also assume, that

N+1 p-1 -
G &) <a(@)+e| Y|&|  +nl/ |.
i=1

where a(w) e L, (Q), §=(§1,...,§N+2)GRN+1,77€ R, ¢>0.

3. Functional f allows the representation in the form f = ZDava ,
‘a‘SZ

Ve €L,(Q).
Taking into the boundary conditions (18), we obtain

XeW QAW (Q)=X.
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Marking

N A2
szz 0 )ZC and G(x,u):G(a);x;ﬂ,..., Ox ,u),
i—1 0w 0w, Owy

i
we obtain [1, 4, 7, 8] linear operator L:X — L,(£2), non-linear operator G(X) x
x L, () = L,(€2) and non-linear functional /:L,(€)x L, () - R.
According to the Lagrange principle, if the pair (x(,u,) is the solution of
the task (16), (17), then it gives the inferior extreme to the functional
O(x,u) = 106u) +(y",G(x,u) = )y, where y" €Y, Y=L, (Q), (19)

which is called Langrangian of the task (16), (17).

We obtain necessary conditions of extreme, when calculating functional
variations (19) and partial variations (partial derivatives according to Gato) and
then separately putting them to zero.

Indeed, for Ve X (it could be assumed A=x+ dx —x)

O, =D(x+ahu)=I(x+ahu)+{y ,G(x+ahu)—)y.

Let us find the derivative from ®(x + ah,u) by the parameter « :

oD al . 0G ol oG T .
L=(—%h) +y,—%Fh) =(—%,h) + 2|y h) =
oa ox X ox ¥ ox X Oox P
_[ol, [3G, )
Oox ox
X

Hence, when passing on to the limit under o — 0, we obtain the func-
tional @ variation, that is

ol [oGT .
O D= —+|— ,h) . 20
x o {&J y (20)
X
Similarly we obtain the variation ® by u:
5,0 = or, |96 Yv) L, VYveU=L.(Q). 1)
ou ou U

From the correlations (20) and (21) we get the necessary conditions for the
task (16), (17), which are similar to conditions (4), (5) of extremal task (1), (2). At

the same time there is an element y* €Y’ that satisfies equations (4), (5), that is
Y =yi=y:.
Let us write down appropriate Langrangian similarly to the task (16)—(18).

N A2
T’Za x +G(a)7x7ﬁ9 ax

F(x,y)zl(x,y)+< - ,u)—f> =
= 0w? ow, Owy L©
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N 2
— I(x,u) + (j} ‘{—’(w);j—;&a) ; (j} () G(w; x(w,)aa—;i,...,(;z)—x]v,u(a)))da) _
- jl}f(a)) f(w)do.
Q
Taking into account (16)—(18)
F(x,u)= f J(x,u)do + f Z o0 x(a))da)+

Qi=1

Ox
’ "’8a)N

+ j\y(w)G(w; x(a)),:—x Ju(@))dw— j ¥ (o) f(w)do.
Q

Let us find partial variations of functional F .

5. F = j Sedw +jz$éxdw+jqf(w){a(;&+§: — }a) (22)

Qi=1
where
v, = 123, N,
' Ow;
5uF=ja—J§udw+_[‘I’a—G&1=I£a—J w99 5o (23)
ou ou ou 8u

Taking into that
oox Ox  0Oxy ox

= _ :5
ow;, Ow; Ow, Ow;

2
8G58x‘6(5x):8 5XG _&6G’
x, \Ow; Ow; Ow; 0x,, 0x 4, 0w,

4

and

and using the integration by pats rule, let us write variation (22) in form:

N A2
5XF=j[a—J+ oY Ly aG]é)‘xdaH
X

2
i-1 00; Ox

+ij§‘4 0 (500 |_5_0G |40
o | 0o Ox, axwi&o,-_

N | A2 2
a_J+Z 6_11214_\11 a_G_a—G odw +
ox ‘| dw; Ox  0x,, 0o,

Noo | oG
’ ITZ%[&

@

-

Q

}da) = (24)
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N[ A2 2
:J‘@_J_i_za‘"}’ 8‘1’8G+T5G oG Scda+
ox “ aa) dw,; Ow; Ox 6(01-280)1-

N
+> v G 5
i=l1 Ox 2
@ o0
Then, putting partial variations (23), (24) to zero, we get necessary optimal
conditions:

o/ ‘Pﬁzo, (25)
ou Ou
N | A2 2
6_J+26\P oG G‘I’Jr%_ 0°G ¥=0, 26)
ox = 8(0 0x,, Ow; Ox  0x,, 0w,

=0). 27)

W oG
0x,,

TASK OF OPTIMAL CONTROL FOR THE OBJECTS WITH DISTRIBUTED
CONSTANTS, WHICH ARE DESCRIBED BY NON-LINEAR DIFFERENTIAL
EQUATIONS - PARABOLIC TYPE

0Q

Let us assume, that functions, which determine object’s state x(¢,®) and the con-
trol parameter u(t, ), are determined in the restricted domain Q — RY with the
limit 0Q2 at time interval [0,7]=S .

Time-dependent tasks of optimal control for the objects with distributed con-
stants, which are described by non-linear differential equations with particle de-
rivatives of parabolic type, look like:

T
j j Jlx(t, 0),u(t, w)dwdt = I(x,u) - inf , (28)

T ut,o)=f(tw), (29)

ow,” " dwy

N
& Z—+Q(t o x(t, ), 25
i= 1

x(0,)=0, x(t,0),,=0. (30)

In this case initial boundary conditions are put to zero. Such assumption does
not affect the general task setting, as non-zero conditions can be put to zero [5, 6].
Considering such tasks we have to deal with functions x(¢,w), which are
irrespective of time and position, which associate each a pair (¢,w) € S xQ with
real number or vector x(¢,®). At the same time, variables ¢ and @ are presented
as independent. There had been used time functions for the convenience of
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mathematical description of time dependent processes, associate each a time ¢
with function x(¢,-) of position. Consequently, there had been considered func-

tions, designated on S which have values in some spaces X , thatis x e (S — X)

[4].

Let us introduce

yO)=x(t), v()=u(ty), y(t)——ay(O) x(0,)=0, g®)=f(t.),

2 2
Ly Za (t) Za x(tw)’

Wi i=1

G(yv),v(z»:Q[t,ya),a—y,...,a—y,v(r)j. 61

0w,  Owy

Let us present the tasks (28)—(30) in the operator form, taking into account

31):

I(y,v)— inf (32)
Y(0)-Ly()+ G(¥(e)v(t))= g(), (33)
¥(0)=0. (34)

Here the function [/(#;¢,...,&y ) € CAR, which corresponds to the linear reflec-
tion

N 82
L=y 220
i=1 O00;

satisfies the condition
N
U6 e =16+ &+t E| <8 F 1G]+ HEN| <D )ENP TS P22
i=1

For the function Q(t;&,...,¢y,2) € CAR, which corresponds to the non-
linear reflection

G(y(z),v(z))=Q[z;y(z),;—y,., @ v(t)}

2] 0wy
we demand the fulfilment of condition
N+1

081556 y+2) < a(t) +CZ|§,|p / ae(§—L,(Q), c>0, p=2.
On the assumption of boundary conditions and taking into account, that
X=Wy(@QAW2AQ)cL,(Q) i X cL,(Q), weassume, that
ye(S—X), y'e(S—)X*),

aa_y €(S—L,(Q), ve(S—L, Q) gt)eL, ().
w

i
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Then
I:L,(S;X)x L, (S;L, () >R,

L:L,(S;X)—>L,(0), 0=5xQ,
G:L,(S;X)—>L,(0).

We form appropriate Lagrange function for getting necessary conditions of
optimal task (32)—(34), which is equivalent to the task (28)—(30), by introducing
conjugated function y € (S — L, (€2)). Then,

Frv)=1(p.v)+| <t//(t) % — Ly()) + G(y(0).v (1) - g(r)> dt =
L, (Q)

T T N A2
= 1(y@.ve) + | jw(z)%da)cﬁ -[] y/(t)zl(;)da)dt +
0Q t 0Q i=1 ow;

1

ay(t) oy(t)

* j j VOQOZ s

V(t)dodt - j j w(Og()dodt.  (35)

Using the integration by parts rule about first and second integral and chang-
ing integration sequence in first integral, we obtain:

F(y.v)= 1(%‘”)+I{[V/(0)y(0) v (1) ()]~ j ey '/;t(t) }dm_

Q

SIS SIZ0) W) 00,
_ j {{W(z)zl“ - —jzll oo obdt |+
0 = t 0 QI
: j [ 0005020 T - I T etdon -

0Q

=1+ | {LP(O)y(O) ()] j O dr}d

_ 1 {[V,mz ay({)}

oy (1)
- {Z ow; (t):l
oQ

i=1 [

i=1 l o0 Q i=1 [

+ [y (t)z "’() }dt +

5y(f ) 9@

20, VOt j j v(Og(dedt. (36)

* j j v (OO (1) =

Taking into account that y(t)| o =0 VIS, it follows

Fly.v)= I(ysV)JrI{[l//(O)y(O) w(T)y(T))- j y([)dl/:h(t) }dw_

Q
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f 02 B B
- j jy(t)z Z()da)dt+ [ jt//(t)Q(t (), 20 y(’) ..... ay(t) (t)]da)dt
i= i DN
T
- Jyewdear. (37)
0Q

Under the condition that y(0) =0 and for conjugated task w(7)=0, we ob-
tain

dl//(t)

F(y,v)=1(y,v) - j jy(r) doxt -

T T
1] y(t)Za U ] 0000052 S ot
i= N

T
- [ Jy0gwded. (38)
0Q

Then, we find partial variations of the functional F(y(¢),v(?))

j j I3 Sy (t)daxdt - j j dl//(t)ﬁy(t)dtd j [ Za V) 5 e +
( ) 0Qi=l a)i
deodi =
+Hw(z>{a o 27 (t)} t=

:?J‘ or S(didao j‘[dv/([)ﬁy(t)dtd J‘J‘ZG V/(Z)@/(t)da)dwr
00

() Voo 0w?

T 00
— dod
+I£ (5, FOdodt +

0
2
+ j [ l//(t)Z{%[ 5 e )} @(z)a—Q}dwdr -

Y g ()0,

} j oz ~o(1)dido j j d"”(’) S/ (1) drda j [ Za V/(t)@/(t)da)dt+
0Q

0Qi=l wi

T
+Hw()a—(Qay(r)dwdHHw(t)Zay() ()a i +
0Q i a)

+jjw(>; [ o jdwdr (39)
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Let us mark the first five integrals through X. Using formula of Green, it

follows

5,F = Z+HW)Z [ay ()@(f)dedt_

op(t) a0
dawdt =
”Z o a0

_z+jw(z)26y() w(t)a

0Qi=l

f j—ay(z)dtd - j j V’()ay(z)dtd j jz 8'/’() ()dawdt +

8 0Qi=l1 i

+I i t//(t)a—()éj/(t)da)dt j | y/(t)ia e Sy(t)d eodt +

di - j [ Z aa'/’a)(_t) ayi o=

0Qi=l i

T N
+ { {w( )Z %( % (t)]

O'y(n) , oy 0Q
}J_ ay X oo} oo, o, O
=12 — ’ S)(t)dawdt +
ool PO T L0 @ o+ dl//(t)

Yo (0w Oy(1)

+| [w( DI @(x)} d (40)

Sove 0]
5u(t)da)dt—

5,F = j )@(:)dm”://(t)z

oJ f 00 ~
!1 %éu(t)dtdco + { §£ w(?) %&,@)dm =

=1

Y
j j +-C 0 oundide . (41)
0oL ou)  ou ( )
Having put partial variations (40), (41) to zero, we obtain the necessary op-
timal conditions:

o oy Z{azw(z) dp(r) 00 { 820 8Q] (t)} 0. @)

o 00} 0w v, | vy 00;
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N
(1)=0. {w(t)Z:—Q] 0 =0 @)
i=1 ywi a0
¥ a0
o 00 “

TASK OF OPTIMAL CONTROL FOR THE OBJECTS WITH DISTRIBUTED
CONSTANTS, WHICH ARE DESCRIBED BY NON-LINEAR DIFFERENTIAL
EQUATIONS - HYPERBOLIC TYPE

Let the state of an object x(¢,w) and control parameter u(¢,w) be determined in

the restricted domain Qc RY with the boundary J0Q and time interval
[0,7]1=S.
Such task will take place:

T
j j J[x(t, @), u(t, ®)|dedt = I(x,u)—>inf , (45)
0Q

0’x & o%x

ot o ew? 81

roo Ul )=/ ,0),  (46)
“N

x(0,)=0, X'(t)], _ 5x(t)|,0 X(0,)=0, x(t,®)|a0=0, Vi € S. (47)

Let us introduce the corresponding markings according to the assumption as
for Q and J, as in the task (28)—(30):

2
YO =), ult)=v0), ()= ,y(r)—at,f,y((» x(0,)=0,

2 2
Y= 60)= 0, 10 - Za M)y 2 tto)

awi i=1 a 1'2
GO0 v(1) =0 t,y(t),a%v,...,%,v(r) | 48)
1 N

Then, the expressions (45), (46) will look like:

T

j j J((t),v(t))dadt=1(y,v) —>inf (49)

(1X9)

V') = Ly(®) + G(y(0),v(1)) = g (1), (50)
¥(0)=y'(0)=0. (51)

On the assumption of boundary conditions, we assume that
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ye(S W@ Q)=X

' " * l
y,y'eX ; aa)l. e(S—)Lp(Q)), ve(S—)Lr(Q)), ge(S—)Lp(Q)).
Then

1:Lp(S;X)er(S;L,,(Q))—HR,
L:LP(S;X)—>Lq(Q), 0=SxQ,
G:Lp(S;X)—)Lq(Q).

Let us form appropriate Lagrange function, introducing conjugated function:

T 62 T N 82
Frn) =1+ [ [y yz(z) da;dt—”y/(z)zizf)dwdr—
00 ot 0o i1 00

i
T

B P o
-] jw(r)Q[z, Oy =2, v(t>dedt— [Jvwsvdod. (2
00 0w, oWy, 00
where € X .

Acquired Langrangian differs from (28)—(30) only for second member
T 2
[[wa ) (Z) CX twar.
00

Assumlng that the conditions of Fubini’s theorem are fulfilled [4], and sub-
stituting integration sequence and using the integration by parts rule, we obtain

T 0% y(1) T o2y
dodt= ——dwdt =
!£wa) ~7dwd !iwa)&z wodt
~ oy toy( o)
_JK‘”@@J - { o o dt}d B
ay(z) v ] oy  Jr & %
0 - ~—dtvdow=
g{{ O VO } [ ot y(t)}‘“z[y(t) or* t} !

| {{W) () (O)aya(tm}_ {awm WD) aw() (0)}

o ot

T 521//
Y itde. 53
+ym&2%w (53)

Taking into account the initial conditions y(0)= »'(0)=0 and assuming for
conjugated task y(¢) =w'(t) =0, we obtain
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}jq/ o’ y(t)d dt—jjy(t)?wda)dt (54)
0Q

Then, determining partial variations and putting them to zero, the necessary
optimal conditions are obtained

2 2 2
%y 2 oy (), o0 _5‘/’(’){ Y agj (t)|=0, (55)

ay 5t i=1 8&) ayw a‘//l aya)iaa)z
1
y()=y'(T)=0,y()=y'(1)=0]n V&S, (56)
%2 = (57)
oy Ou

CONCLUSION

In this work, we have considered how to find possible optimal solution of task of
control (16)—(18) for the objects with distributed constants, which are described
by non-linear differential equations (elliptic type): we have the system of 3 equa-
tions (17), (25), (26) with boundary conditions (18), (27) for unknown quantities
(xg,ug,¥y) . The given system of equations is non-linear as for unknown quanti-

ties (x,u) and linear as for i .

First, from (17), (18) we find x, Vu €U . Then x,, which depends on u, is
substituted in (25)—(27); finally we find appropriate value (y,,u,) to x.

Then, finding second variation of functional F(x,u) within the interval of
the element (x,,u,) and checking its sign, we get final answer on optimal ele-
ment (xq,uy)e X xU .

To find possible optimal solution of task (28)—(30) of control for the objects
with distributed constants, which are described by non-linear differential equa-
tions (parabolic type), we have to solve system of 3 functional equations (29),
(42), (44) with boundary conditions (30), (43) for 3 unknown quantities
X0 = Yo, Uo> Vo

For the objects with distributed constants, which are described by non-linear
differential equations (hyperbolic type) we have considered the possibility of us-
ing the operator scheme in the absence of restrictions for phase variables and con-
trol functions.

At the same time at first Vu the non-linear task (45)—(47) is solved, then
(54)—(57). Consequently, a possible optimal solution of task is found by solving a
linear equation system for W, u .

On the other hand, the task of optimal control (45)—(47) with obvious re-
strictions of a kind of integral inequalities generates interest, namely:

let J; :SxQxRxR—>R, i=1...,m the inequalities
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1

S

[7,(t 0,5t 0),u(t, 0)dwdt=1,(x,u) >0, i=1,.,m (58)
Q

takes place.

Let us assume, that the functions J; satisfy the following conditions:

1) the function J,:SxQxRxR—>R is a Borel one for the multitude of
variables;

2) the function (x;u)—J,;(t, w,x,u) of class C'atR? Vv (t,w)eSxQ;
3)3a; € X, ¢;>0,710 | J{(t o, x.u)||Sa; o)+, (x]P +]ul'?),

where J| =(J|,;J},) is a gradient of function J;.

x>

At that conditions the functionals 7, :L,(S;X)xL,(Q) >R, i=1,...,m are

definitely differential and that is why the conditions of the theorem about La-
grange coefficients are satisfied. Then the Lagrange function has the form:

T

F(ﬁ’a v,), V) = /IO J. J.JO (tz w, y(ta a))a V(t, a)))da)dt +
0Q

A

1

M=
S —

+ [J:(t,0, 5t 0), (4, 0)dwdt +
Q

i=l1

2 T N A2
0 yz(t) dwdz—jjy/(t)za—fda)dt—
ot 00 - Ot

T
+[[v
0Q

T T
0
—ffu&ﬂQ(uaayU%E?Lwa;Z—,90{}hwﬁ—ff¢dﬂg0)dwdﬁ (59)
00 @ O 00
It can be found such multitudes /?2, v , for which the conditions of Lagrange
function stationary state will be satisfied

FL (A, y,u)+ F, (A, v, y,u)=0, (60)

as well as the conditions of sign accordance }Atl. >0 and the conditions of com-
pletable slackness

}Atl. [l.(y,u) =0, i=1..,m.

Then, having determined partial variations of function (59), with the help of
(60) an appropriate modification of necessary optimal conditions (55)—(57) can
be obtained.

The obtained results enable to conduct analysis of tasks of optimal control
for the objects with distributed constants, which are described by non-linear dif-
ferential equations of various types, using modern methods of non-linear func-
tional analysis, which imply significant calculations simplification.
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