Г.Н.ПОНОМАРЕНКО, С.И.ФЕДЯЕВА

СОВРЕМЕННЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЛЕЧЕБНЫХ ЭФФЕКТОВ ПИТЬЕВЫХ МИНЕРАЛЬНЫХ ВОД У ПАЦИЕНТОВ С ЗАБОЛЕВАНИЯМИ ВЕРХНИХ ОТДЕЛОВ ЖЕЛУДОЧНО-КИШЕЧНОГО ТРАКТА И ГЕПАТО-БИЛИАРНО-ПАНКРЕАТИЧЕСКОЙ СИСТЕМЫ

Современные тенденции научно-исследовательских процессов в области гастроэнтерологии требуют серьезного и весьма затратного оснащения, использования новейших лабораторных и инструментальных методов. Только актуальные подходы в планировании и организации исследований при патологии желудочно-кишечного тракта позволяют делать действительно реальные научно-исследовательские шаги и получать новые факты, практически необходимые для развития и совершенствования методик питьевого лечения [7].

В настоящее время для планирования и организации научного исследования в рамках патологии желудочно-кишечного тракта на современном уровне необходимо следующее лабораторно-инструментальное оснащение.

I. Методы клинического исследования

В соответствии с планируемыми категориями больных предусмотреть детализацию жалоб пациентов и их синдромологическую систематизацию.

Необходимо обратить внимание на особенности клинических проявлений болевого абдоминального, диспептического, астеновегетативного синдромов, изменений состояния психоэмоциональной сферы. При оценке анамнестических особенностей важно учитывать время начала заболевания, длительность анамнеза и характер рецидивирования. Обязательно учитывать сезонные закономерности течения заболевания, особенности и эффективность лечения предшествующих обострений, стойкость медикаментозно-индуцированной ремиссии.

В зависимости от частоты рецидивирования основных клинических симптомов изучаемых нозологий среди обследуемых необходимо выделять, так называемые редко- или часторецидивирующие формы заболевания. Это позволит осуществить патогенетическую спецификацию заболеваний, определить максимальный вклад в существенное снижение качества жизни при изучаемых болезнях ЖКТ.

Для оценки клинического статуса целесообразно ведение формализованной истории болезни, включающей общие вопросы и опросники качества жизни гастро-энтерологических больных [4].

II. Методы биохимического исследования крови

В целях наиболее полного обследования, верификации сопутствующей патологии, оценки тяжести нарушений метаболизма необходимо осуществлять анализ показателей основных видов обмена веществ (белкового, липидного, углеводного и электролитного). Биохимические исследования крови необходимо выполнять на автоматических анализаторах (например "Техникон" или "Спектрум") [2].

В частности, состояние белкового обмена необходимо оценивать по концентрациям в плазме или в сыворотке периферической крови общего белка, альбуминов, глобулинов, глобулиновых фракций, креатинина, мочевой кислоты. Состояние липидного обмена может быть адекватно определено по концентрациям в крови холестерина, триглицеридов, липопротеидов различной плотности (фракции HDL, LDL, VLDL), а также по соотношению холестерина к липопротеидам высокой плотности (CHOL/HDL). Анализ показателей электролитного обмена должен включать оценку концентраций сывороточного Fe^{++} , ионов K^{+} , ионов Na^{+} , ионов Ca^{++} , Mg^{++} и неорганического фосфора.

Динамику функциональных свойств печени целесообразно оценивать по показателям концентраций в крови общего билирубина и его фракций, ферментов АлТ, АсТ, ЩФ, ГГТП, ЛДГ, протромбинового индекса, фибриногена, холестерина, холинэстеразы, показателям общего анализа крови, уровню тромбоцитов.

Функциональные свойства поджелудочной железы целесообразно анализировать по показателям концентраций в крови амилазы, трипсина, ингибитора трипсина, липазы, кишечной эластазы.

IV. Методы инструментального исследования

Эзофагогастродуоденоскопия с прицельной множественной биопсией

Для оценки динамики состояния слизистой желудка в процессе питьевого лечения целесообразно выполнять эзофагогастродуоденофиброскопию по общепринятой методике, в процессе которой оценивать наличие, выраженность, распространенность и локализацию воспалительной реакции слизистой оболочки пищевода, желудка и 12-перстной кишки, а также наличие эрозивно-язвенных изменений и/или осложнений, таких как стеноз, кровотечения и пищевод Баррета (цилиндроклеточная кишечная метаплазия многослойного плоского эпителия пищевода). Особое внимание уделять функциональному состоянию кардии и привратника, проявлениям гастроэзофагеального и дуоденогастрального рефлюксов, признакам наличия и выраженности скользящих грыж пищеводного отверстия диафрагмы.

Оценку степени выраженности рефлюкс-эзофагита необходимо выполнять в соответствии с Лос-Анжелеской (1997) классификацией, согласно которой выделять эндоскопически-позитивную и -негативную формы заболевания. Эндоскопически позитивной ГЭРБ степени «А» соответствует наличие одной или нескольких эрозий дистального отдела слизистой оболочки пищевода (СОП), общим размером менее 5 мм; степени «В» - эрозий размером более 5 мм, не выходящих за пределы двух складок СОП; степени «С» - эрозий, выходящих за пределы двух складок СОП, но захватывающих не более 75% окружности СОП; степени «D» - эрозий, захватывающих 75% и более окружности СОП. К осложнениям гастро-эзофагеальной рефлюксной болезни относить: язвы, стриктуры и пищевод Баррета.

При эндоскопическом исследовании особое внимание следует уделять функциональному состоянию привратника и определению дуодено-гастрального рефлюкса (ДГР). Одновременно оценивать цвет (светлый, темный) и консистенцию (жидкая, густая) рефлюксной желчи.

Признаки ДГР верифицируют при наличии в озерце с желудочным секретом желчи. При этом необходимо выделять "истинный" ДГР, когда желчь уже была в озерце при начале исследования, и "спровоцированный" исследованием - при появлении желчи в желудке в процессе гастродуоденофиброскопии.

Для обнаружения в пищеводе или желудке участков цилиндроклеточной метаплазии в процессе исследования использовать орошение СОП 5% раствором фенолового красного или метиленовой сини.

Морфологические исследования из материалов прицельной множественной биопсии.

Во время гастродуоденофиброскопии у больных и здоровых (контрольной группы) следует осуществлять биопсию гастродуоденальной слизистой оболочки из следующих отделов: для гистологического исследования - из средней трети фундального, антрального отделов, препилорической зоны желудка (2-3 см от привратника) и луковицы двенадцатиперстной кишки; у больных перенесших резекцию желудка из культи желудка в средней трети и зоны гастроэнтероанастомоза; для диагностики HP - из средней трети фундального и антрального отделов желудка [1].

Методы однократного исследования кислотообразующей функции желудка и внутриполостного pH

Изучение желудочной секреции необходимо проводить путем непрерывной аспирации желудочного секрета в базальных условиях и после стимуляции максимальными дозами пентагастрина (в дозе 6 мкг на 1 кг массы тела) с помощью <u>pH-метра или автономного индикатора кислотности желудка (например "ЭЛТЕС-903", г.Винница).</u> Одновременно целесообразно определять интенсивность дуодено-гастрального рефлюкса по концентрации билирубина в желудочном секрете.

Кислотообразующую функцию желудка следует также определять методом трансэндоскопической топографической рН-метрии [5]. Исследование можно проводить автономным индикатором кислотности желудка. Перед работой необходимо обязательно производить калибровку микрозонда ПЭ-рН-2 в стандартных буферных растворах (рН=1,68 и 6,86).

Mетоды мониторного исследования кислотообразующей функции желудка и внутриполостного pH

Суточное (24-часовое) рН-мониторирование следует проводить с использованием компьютерной системы, имеющей в своем составе носимый автономный ацидогастрометр. Оптимальной считается мониторная система для рН-метрии (например «Гастроскан-24», имеющей

в своем составе носимый автономный ацидогастрометр (ГНПП «Исток-Система» г. Фрязино Московской обл.).

Перед работой необходимо проводить калибровку зонда в стандартных буферных растворах (рН = 1.68, 4.01 и 9.18). Обследуемому утром, натощак трансназально вводить трехэлектродный зонд под контролем показателей рН таким образом, что нижний электрод находился в полости желудка, средний – в области НПС, а верхний – в средней трети пищевода. Электрод сравнения помещается на груди пациента. В течение суток обследуемый самостоятельно с клавиатуры ацидогастрометра выставляет временные метки, которые разделяются на точечные и интервальные. Отмечаются: положение тела, приемы пищи и лекарств, курение, сон, а также ощущения изжоги, боли, голода, тошноты. Запись результатов измерений и меток в память данных происходит каждые 20 секунд. Связь жалоб с возникновением желудочно-пищеводного рефлюкса оценивается по индексу симптома: Индекс симптома = (число симптомов, связанных с рефлюксами/общее число симптомов)х100%. Наличие связи жалоб с рефлюксами считают доказанной при значении индекса симптома от 75 до 100%.

Методы исследования моторики верхних отделов пищеварительного тракта

1. Исследование моторики методом манометрии

Исследования двигательной функции пищевода и желудка можно осуществлять при помощи эзофагогастроманометрии. В работе может быть использована одна из разновидностей манометрии – баллонно-кимографический метод.

Запись моторики осуществляется с помощью зонда с укрепленным на конце небольшим тонкостенным резиновым баллоном. Зонд вводится в пищевод или желудок на необходимую глубину. При сокращении стенок происходит сдавливание баллона. Давление передается на регистрирующую систему, записывающую его колебания в виде характерной кривой.

2. Исследование моторики верхних отделов ЖКТ методом электрогастроинтестинографии

Электрическая активность пищеварительного тракта может также определяться методом электрогастроинтестинографии.

Запись биопотенциалов проводится с поверхности тела человека с помощью 2-х активных электродов наложенных на фланки живота на уровне пупка и электрода сравнения находящегося на правой голени. Используются стандартные электроды, предназначенные для электрокардиографии. Для уменьшения сопротивления между электродами и кожей пациента применяяется специальная электропроводная паста.

Устройство для записи электроэнтерограммы состоит из блока питания и усилителя подключенного к персональному компьютеру. Для регистрации и анализа полученной информации используется компьютерная программа (например "ГАСТРО"). Перед исследованием проводится калибровка прибора для установления порога чувствительности 1 мВ. После регистрации биопотенциалов проводится оценка гастроэнтерограммы с помощью спектрального анализа Фурье. В результате выделяют 4 типа волн: **1 тип** с частотой 0,033-0,067 Гц, соответствующий миоэлектрической активности (МЭА) желудка; **2 тип** - 0,15-0,20 Гц – проксимальным отделам тонкой кишки; **3 тип** – 0,083-0,133 Гц – дистальным отделам тонкой кишки и **4 тип** – 0,012-0,032 Гц, связанный с электрической активностью толстой кишки.

Запись биопотенциалов проводится у всех пациентов в базальных условиях натощак утром в течение 30 минут и непосредственно сразу после стандартного завтрака в течение 1 часа. В качестве пищевой нагрузки используется унифицированный стандартный завтрак по диете №15 по Певзнеру. Результаты записи первых 10 минут исследования в расчет не принимают из-за вариабельности показателей, обусловленной предыдущей двигательной активностью пациента.

3. Исследование моторики верхних отделов ЖКТ методом внутриполостной импедансометрии

Для оценки двигательной функции верхних отделов пищеварительного тракта пациентам необходимо проводить внутриполостную импедансометрию. Метод может быть реализован на <u>аппарате импедансометрии (например "Реогастрограф РГГ9-01", «Завод "Радиоприбор"»,</u> г. Санкт-Петербург).

Исследование проводится на частоте 10 Гц в динамическом режиме. Прибор позволяет регистрировать колебания импеданса, возникающие вследствие изменения площади

соприкосновения металлических электродов зонда со слизистой оболочкой органа при сокращении его стенок. Импедансометрия проводится не менее, чем через 6 часов после приёма пищи. За 3-4 часа до начала исследования исключается курение, прием жидкостей, употребление жевательной резинки. Непосредственно перед исследованием зонд помещается в теплую воду для сведения к минимуму температурных изменений зонда и повышения его эластичности. При исследовании моторики пищевода нижний активный электрод зонда устанавливается на 5 см выше нижне-пищеводного сфинктера. Для оценки моторики желудка активные электроды зонда располагаются в средней трети антрального отдела желудка. Расположение электродов зонда подтверждается данными ультразвукового исследования или по скачкообразному изменению импеданса в области гастроэзофагеального или дуоденогастрального перехода. исследования зонд закрепляется пластырем на щеке и за ухом. Перед началом исследования в течение 5-15 минут пациенту предоставляется возможность привыкнуть к зонду, до полного прекращения рвотных движений. В процессе исследования слюна сплевывается. В процессе импедансометрического исследования пищевода отмечают эпизоды гастро-эзофагеального руфлюкса. При забросе желудочного содержимого в пищевод отмечается резкое снижение импеданса. По мере очищения пищевода, значения импеданса возвращаются к исходному уровню. Важно, что в отличие от внутрипищеводного рН-мониторирования, при котором регистрируется только кислый рефлюкс, данный метод позволяет фиксировать как кислые, так и щелочные забросы в пищевод [3,6].

4. Метод исследования клиренса пищевода

В процессе исследований используется методика исследования клиренса пищевода: для этого пациенту в пищевод вводится импедансометрический зонд, предварительно соединенный с полихлорвиниловой или резиновой трубкой (диаметром 1 мм). Зонд устанавливается таким образом, чтобы дистальное отверстие трубки находилось на 4-5 см выше нижне-пищеводного сфинктера. Для оценки двигательной активности пищевода пациентам проводится фоновая импедансография в ручном режиме на частоте 10 Гц в течение 10 минут. Частота и амплитуда сокращений пищевода оценивается по количеству и высоте зубцов импедансограммы. Затем по трубке в нижнюю треть пищевода одномоментно вводится 5 мл 0,1н раствора хлористоводородной кислоты, подогретой до 37°С и вновь регистрируется импедансограмма в течение 10 минут. Тем самым в искусственных условиях моделировался гастроэзофагеальный рефлюкс. У здоровых лиц на фоне введения хлористоводородной кислоты происходт усиление моторики пищевода, что проявляется учащением или увеличением амплитуды зубцов импедансограммы. Под диагностически значимым увеличением амплитуды зубцов подразумевается их рост в среднем более чем на 25%, по сравнению с исходной. Диагностически значимым учащением зубцов импедансограммы считают увеличение их частоты на 50% и более, по сравнению с исходной записью. При этом число перистальтических волн должно быть не менее 75% от общего число сокращений пищевода. Для сведения к минимуму погрешностей квазиэкспериментального плана, всем пациентам исследование проводится в одно и тоже время и в одинаковых унифицированных условиях.

5. Метод исследования эвакуаторной функции желудка с использованием внутриполостной импедансометрии

Исследование эвакуаторной функции желудка проводится по оригинальной методике с использованием внутрижелудочной импедансометрии на аппарате импедансометрии (например "Реогастрограф РГТ9-01", «Завод "Радиоприбор"», г.Санкт-Петербург). Способ основан на динамической оценке суммарного внутриполостного импеданса желудка, величина которого обратно зависит от степени наполненности органа. Установлено, что в ходе наполнения желудка суммарный и средний импеданс закономерно снижаются, а по мере опорожнения – возвращаются к исходному. Зависимость между введенным объемом изотонического раствора и суммарной величиной импеданса носит линейный характер и описывается уравнением. Исследование проводится в утренние часы натощак. Предварительно, за 12 часов до исследования обследуемый принимает 40 мг омепразола для блокады кислой желудочной секреции. Пациенту в желудок вводится импедансометрический зонд, предварительно соединенный с полихлорвиниловой или резиновой трубкой (диаметром 1 мм). Зонд вводится таким образом, чтобы все его активные электроды располагались в желудке. После контроля правильности расположения электродов зонда, он фиксируется лейкопластырем на щеке, исследуемый укладывается на правый бок. Через

15 минут снимается исходная импедансограмма, а затем через тонкий зонд дважды медленно вводится по 150 мл подогретого до 37 °C изотонический раствор хлорида натрия. После каждой введенной порции регистрируется суммарный импеданс по 8 зонам желудка. В дальнейшем производится измерение импеданса через каждую минуту до момента возвращения его суммарного значения к исходному уровню. В качестве пробных завтраков используются — 150 мл 10% манной каши (углеводный характер), 60 г сырого яичного белка (белковый характер) в 150 мл воды, 40 г сливочного масла (жировой характер) в 150 мл воды.

6. Оценка моторики гепато-билиарной системы и биохимических свойств желчи

А) Пероральная ультразвуковая динамическая холецистография

Пероральную динамическую холецистографию лучше проводить с использованием ультразвукового аппарата последних поколений, работающих в масштабе реального времени (например: Lodgik-400 или -500, Aloka SSD-630 или SSD-1000).

Больным измеряют исходные размеры (максимальное продольное и поперечное сечение акустической тени желчного пузыря), высчитывают объем желчного пузыря до и после приёма двух яичных желтков (50 мл), с интервалом 10-15 минут, в течение 1-3 часов. Первые 10-15 минут исследования измерения объема желчного пузыря можно проводить ежеминутно. В процессе исследования определяют основные периоды цикла двигательной активности желчного пузыря, оценивая тем самым степень моторно-эвакуаторных нарушений желчного пузыря и сфинктеров желчевыводящей системы.

Для дифференциальной диагностики различных вариантов нарушения функционирования желчевыводящей системы используют следующие показатели: латентный период, мин - время от момента введения желчегонного средства до начала сокращения желчного пузыря; начало сокращения желчного пузыря, мин - момент времени, в который происходит уменьшение объема желчного пузыря, более чем при физиологических колебаниях объема желчного пузыря; длительность фазы сокращения желчного пузыря, мин - время от начала сокращения до максимального сокращения желчного пузыря; время наступления максимума сокращения желчного пузыря, - момент времени, в который регистрируется максимальное сокращение (уменьшение объема) желчного пузыря; максимальная степень сокращения желчного пузыря, % максимально регистрируемое уменьшение объема желчного пузыря за весь период фазы сокращения; длительность фазы наполнения желчного пузыря, мин - время от наступления максимального сокращения до первоначального объема желчного пузыря; скорость опорожнения желчного пузыря, % в мин – отношение степени максимального сокращения к длительности фазы сокращения желчного пузыря; скорость наполнения желчного пузыря, % в мин - отношение степени максимального сокращения к длительности фазы наполнения желчного пузыря. Вышеперечисленные показатели оценки функционального состояния желчевыводящей системы позволяют определить функцию как желчного пузыря, так и сфинктерного аппарата желчевыводящей системы.

Б) Дуоденальное зондирование

После 5-фракционного дуоденального зондирования проводят биохимическое исследование желчи с определением содержания свободного и связанного холестерина, билирубина, общих желчных кислот. Перекисное окисление липидов желчи определяют по содержанию в желчи малонового диальдегида и антиоксидантной активности. Протеолитическую активность желчи определяют по методике, основанной на выделении окрашенного паранитроанилина при инкубации желчи, содержащей активный трипсин, с N-бензоил-L-аргинил-паранитроанилином.

8. Гистологические методы

Оценку выраженности атрофии, кишечной метаплазии и клеточной инфильтрации стромы слизистой оболочки проводят в соответствии с дополнениями к Сиднейской классификации.

Для клинико- и функционально-морфологических сопоставлений в процессе исследования осуществляется подробная морфологическая оценка структурных элементов слизистой оболочки.

При гистологическом и гистохимическом исследовании биоптатов слизистой оболочки желудка материал фиксируется в течение 24 часов в 10% нейтральном формалине, забуференном по Лилли, обезвоживается в спиртах возрастающей концентрации, инкубируется в хлороформе, хлороформ-парафине, заливается в парафин, срезы толщиной 5 мкм наклеивают на предметные стекла сериями по 4-6 штук. Для гистологической оценки слизистой оболочки желудка и двенадцатиперстной кишки срезы окрашивают гематоксилином Караци-водным эозином.

9. Гистохимические методы

Инвазию НР в слизистой оболочке желудка сегодня определяют стандартным уреазным и бактериоскопическим методами. Реактив для уреазного теста можно готовить ех tempora: к 1 мл 10% раствора мочевины в деионизированной дистиллированной воде добавить 2 капли 1% раствора фенол-рот. В реактив помещают биоптат слизистой оболочки желудка; степень обсеменения слизистой оболочки НР оценивают по скорости появления розовой окраски реактива: в течение одной минуты - 3 степень; пятнадцати минут - 2 степень; - одного часа -1 степень.

Бактериоскопически наличие НР в слизистой оболочке определяют в мазках-отпечатках биоптатов фундального и антрального отделов желудка после окраски по Граму.

УЛЬТРАЗВУКОВАЯ МОРФОМЕТРИЯ ГЕПАТО-БИЛИАРНО-ПАНКРЕАТИЧЕСКОЙ ЗОНЫ

Ультразвуковая допплерография сосудистого кровотока

При ультразвуковом исследовании печени и желчного пузыря оценивают и фиксируют 3 размера правой доли печени, 2 размера левой доли печени, плотность наиболее плотного и наименее плотного участка ткани печени. Необходимо также измерять диаметр воротной вены, холедоха, печеночных вен 1-ого порядка.

При ультразвуковом исследовании поджелудочной железы следует оценивать и фиксировать размеры головки, шейки, тела, хвоста, ширину Вирсунгова протока, плотность наиболее плотного и наименее плотного участка ткани железы.

Для уточнения причин и ведущих патогенетических путей формирования и развития заболеваний пищевода, желудка, 12-п-кишки, печени, поджелудочной железы целесообразно измерять размеры и скорости кровотока основных артериальных и венозных сосудов верхних отделов ЖКТ (чревный ствол, верхняя брыжеечная артерия, воротная вена, селезеночная вена, печеночные вены 1 порядка).

Указанные методические приемы и методы позволят адекватно верифицировать основные лечебные эффекты питьевых минеральных вод и с высоким уровнем доказательности сделать заключение об эффективности питьевого лечения у пациентов гастроэнтерологического профиля.

ЛИТЕРАТУРА

- 1. Аруин Л.И., Капуллер Л.Л., Исаков В.А. Морфологическая диагностика болезней желудка и кишечника. М.: Триада-Х, 1998. 483 с. 2. Гаранина Е.Н. Качество лабораторного анализа: факторы, критерии и методы оценки. - М.: Лабинформ, 1997. - 192 с.
- 3. Гончар Н.В., Петляков С.И., Думова Н.Б. и др. Импедансометрический метод диагностики гастроэзофагеального рефлюкса: Метод. рекомендации. - СПб.: Береста, 2001. - 35 с.
- 4. Ивашкин В.Т., Шептулин А.А., Баранская Е.К. и др. Рекомендации по обследованию и лечению больных с синдромом диспепсии. -М.: МЗ РФ, 2001а. - 30 с.
- 5. Лея Ю.Я. рН-метрия желудка. Л.: Медицина, 1987. 144 с.
- 6 Рябчук Ф.Н., Гончар Н.В., Александрова В.А. и др. Импедансометрия в детской гастроэнтерологии : Метод. рекомендации. СПб:
- 7. Шептулин А.А., Колмакова О.З. Алгоритм диагностики и лечения при синдроме неязвенной диспепсии // Рус. мед. журн. 2000. Т. 8, № 7. - C. 291-295.

Военно-медицинская академия им. С.М. Кирова, г. Санкт-Петербург, РФ; ЗАО СГК "Днепр-Бескид", г.Трускавец, Украина

Дата поступлення: 15. 07.2006 р.