УДК 544.47:544.344 ВЛИЯНИЕ СОДЕРЖАНИЯ МЕДИ НА ТЕКСТУРНЫЕ И ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА МЕДЬЦИРКОНИЙОКСИДНЫХ НАНОФАЗНЫХ КАТАЛИЗАТОРОВ

И.В. Дейнега¹, Л.Ю. Долгих¹, Л.А. Старая¹, В.П. Пахарукова², Э.М. Мороз², П.Е. Стрижак¹

¹Інститут физической химии им. Л. В. Писаржевского НАН Украины, проспект Науки 31, Киев-28, 03028, Украина e-mail: admini@inphyschem-nas.kiev.ua ²Институт катализа им. Г. К. Борескова СО РАН, проспект академика Лаврентьева 5, Новосибирск, 630090, Россия

Установлена зависимость размера частиц и характера восстановления медьоксидного прекурсора, дисперсности и удельной поверхности активной фазы металла медьсодержащих нанофазных катализаторов на основе промышленного ZrO_2 моноклинной модификации от содержания меди. Исследованы каталитические свойства Cu/ZrO_2 в реакции дегидрирования этанола и показано, что в диапазоне концентраций меди $C_{\rm Cu}=5-40$ % мас. возрастание скорости образования ацетальдегида (моль c⁻¹ · $c_{\rm Cu}^{-1}$) при уменьшении $C_{\rm Cu}$ обусловлено ростом удельной поверхности активной фазы меди.

Введение

Оксид циркония, благодаря высоким термомеханическим свойствам и возможности регулирования текстурных, структурных, размерных характеристик, а также кислотно-основных свойств поверхности, является перспективным материалом для создания эффективных каталитических систем [1]. Диспергирование оксидов переходных металлов (CuO, Cr₂O₃, Fe₂O₃, MnO₂), нанесенных на ZrO₂, в ряде случаев приводит К повышению их каталитической активности в окислительновосстановительных процессах [2]. В частности, медьцирконийоксидные катализаторы привлекают значительное внимание исследователей в связи с высокой активностью в ряде промышленно важных реакций: синтеза метанола из смеси водорода и оксидов углерода [3, 4], низкотемпературного водяного сдвига [5], парового риформинга метанола [6, 7], селективного каталитического восстановления оксидов азота углеводородами [8] и др. Медь входит в состав катализаторов процесса парового риформинга биоэтанола, который интенсивно изучается в последнее время с целью разработки эффективных способов получения водорода на основе возобновляемого сырья [9, 10].

Понимание взаимосвязи между структурой поверхности носителя, структурой и размером кристаллитов активного компонента на всех этапах приготовления катализаторов является важным для дизайна активных и селективных каталитических систем.

Целью данной работы является изучение влияния содержания меди на текстурные характеристики (размер частиц, дисперсность, удельную поверхность медьоксидного прекурсора и активной фазы металла), характеристики восстановления и функциональные свойства медьцирконийоксидных катализаторов.

Катализаторы охарактеризованы методами рентгенофазового анализа (РФА), тепловой десорбции азота, температурно-программированного восстановления (ТПВ). Текстурные характеристики активной фазы меди определяли с использованием реакции разложения N₂O. Каталитические свойства образцов изучены в процессе дегидрирования этанола до ацетальдегида в реакционной смеси, содержащей 16 % мас. C₂H₅OH в воде, моделирующей биоэтанол, получаемого в процессе ферментации без последующей дистилляции.

Экпериментальная часть

Приготовление образцов медьцирконийоксидных катализаторов. В качестве носителя были использованы образцы диоксида циркония ZrO_2 промышленного производства (ГНПП "Цирконий", марка "ч", ТУ-05.20.144-92). Медьцирконийоксидные катализаторы получали методом пропитки по влагоемкости носителей рассчитанным количеством водного раствора нитрата меди Cu(NO₃)₂·3H₂O. После пропитки образец высушивали при 80 °C и прокаливали на воздухе при 300 °C в течение 6 ч. Образовавшиеся в результате прокаливания медьоксидные частицы на поверхности носителя в данной статье рассматривали как прекурсоры активной фазы, формирование которой осуществляли путем последующей восстановительной обработки. Для проведения исследований были приготовлены образцы с содержанием 40, 20, 10, 5 и 3 % мас. Си, в дальнейшем обозначенные как n Cu/ZrO₂, где n – содержание меди.

Рентгенографические исследования проведены на аппарате HZG-4C в медном излучении, монохроматизированном плоским графитовым монохроматором, установленном в дифракционном пучке. Фазовый анализ проводили сопоставлением положений и интенсивностей дифракционных пиков с данными международной дифракционной картотеки JCPDS. Определение размеров областей когерентного рассеяния (ОКР) проведено по уширению соответствующих дифракционных пиков с учетом инструментальной ширины линии по формуле Шеррера.

Температурно-программированное восстановление предварительно прокаленных на воздухе образцов проводили в потоке 10 % Ar – H₂ смеси, подаваемой со скоростью 50 мл/мин, в температурном интервале от 20 до 500°С со скоростью подъема температуры 10 град/мин. Навеска составляла 250 мг в случае катализатора 40 Cu/ZrO₂, для остальных образцов – 500 мг. Количественные расчеты расхода водорода осуществляли путем интегрирования экспериментальных ТПВ-профилей с калибровки использованием предварительной по известному количеству порошкообразного СиО.

В основе метода определения текстурных характеристик активной фазы меди с использованием реакции разложения закиси азота лежит предположение, что N₂O разлагается на поверхности меди, окисляя два атома Cu до Cu₂O. Методика заключалась в проведении полного температурно-программированного восстановления водородом частиц нанесенного CuO в условиях, аналогичных описанным выше, последующего поверхностного окисления восстановленной меди закисью азота в изотермическом режиме (60 °C, 45 мин) и температурно-программированного восстановления образовавшегося поверхностного Cu₂O с последующим количественным анализом поглощенного водорода [11].

Средний размер частиц (d_{av} , нм) и удельную поверхность меди (S_{Cu} , м²/г_{Cu}) рассчитывали по формулам:

$$d_{av} = \frac{10^7 SKC_M W_{Cu}}{SFM_{H_2} N_A \rho_{Cu}}$$

$$S_{\rm Cu} = \frac{M_{\rm H_2} SFN_{\rm A}}{10^4 C_{\rm M} W_{\rm Cu}}$$

где $M_{\rm H2}$ – экспериментально определенное количество поглощенного водорода на грамм катализатора (мкмоль H₂·г_{кат.}⁻¹); *SF* – стехиометрический фактор, равный 2; N_A – число Авогадро, C_M – число поверхностных атомов Cu на единицу поверхности, равное 1,47·10¹⁹ атом/м²; $W_{\rm Cu}$ – весовой процент Cu, *SK* – константа, зависящая от формы частиц Cu (для кубических и сферических частиц *SK* = 6); $\rho_{\rm Cu}$ – плотность меди (8,92 г/см³). Расчеты проводили в предположении, что после окисления N₂O при температурах до 120 °C поверхностные частицы меди находятся в степени окисления Cu¹⁺ и кристаллиты с гранями (100), (110) та (111) присутствуют на поверхности в равных пропорциях [11, 12]. Дисперсность меди ($D_{\rm Cu}$) определяли как отношение количества поверхностных атомов Cu, рассчитанных по профилям TПВ поверхностно-окисленных частиц, к общему количеству меди в образце.

Каталитические свойства образцов изучали при атмосферном давлении в проточной установке с кварцевым реактором и хроматографическим контролем исходной и конвертированной реакционной смеси при T = 300 °C. Скорость подачи жидких реагентов (F₁) составляла $8,9\cdot10^{-2}$ моль/ч, скорость подачи газа-носителя (азот высокой чистоты) F_g = $8,0\cdot10^{-2}$ моль/ч. Перед проведением опытов катализатор восстанавливали при T = 250 °C в потоке смеси 50 % H₂ + N₂ (30 мл/мин) в течение 2 ч.

Результаты и обсуждение

На рис. 1 представлены дифрактограммы носителя – промышленного ZrO₂ и образцов медьцирконийоксидных катализаторов на его основе, содержащих 5 и 10 % мас. Си, полученных после стадии прокаливания нанесенной соли меди с образованием медьоксидного прекурсора. Аналогичные дифракционные картины получены и для других образцов серии Cu/ZrO₂.

Анализ дифракционной картины промышленного ZrO₂ (рис. 1 а, кривая 1) показывает, что он содержит моноклинную фазу с параметрами, в пределах точности определения (0,003Å) не отличающимися от стандартных, приведенных в международной дифракционной картотеке ICDD (a = 5, 147 Å, b = 5, 205 Å, c = 5, 317 Å, $\beta = 99,18^{\circ}$). Размеры OKP этой фазы составляют 46 нм. Кроме моноклинной фазы диоксида циркония носитель содержит примесь (2 – 3%) тетрагональной фазы с параметрами ячейки, совпадающими с данными картотеки (a = 3, 597 Å, c = 5, 15 Å), с размерами OKP около 30 нм. Удельная поверхность образца ZrO₂ по данным тепловой десорбции азота составляет 16 м²/г.

Рис. 1. Дифрактограммы образцов: а – промышленного диоксида циркония (1), 5Cu/ZrO₂ (2), 10Cu/ZrO₂ (3); б – разностная кривая между дифракционными картинами катализаторов 5Cu/ZrO₂(4), 10Cu/ZrO₂(5) и носителя, иллюстрирующая наличие дифракционных пиков от фазы CuO.

Перекрывание дифракционных пиков фаз m-ZrO₂ и CuO осложняет количественное определение содержания оксида меди в катализаторах. Отдельные дифракционные пики от фазы CuO наблюдаются только на разностной кривой между рентгенограммами катализатора и носителя. Размеры ОКР хорошо окристаллизованной фазы CuO составляют 23, 26, 31 и 43 нм для образцов, содержащих 5, 10, 20 и 40 % мас. меди, соответственно. Величины удельной поверхности образцов Cu/ZrO₂, рассчитанные по данным тепловой десорбции азота, приведены в табл. 1.

Характеристики процесса восстановления нанесенных медь-оксидных прекурсоров получены с помощью метода ТПВ. Согласно [13], восстановление оксидных катализаторов водородом служит тестовой реакцией для определения реакционной способности кислорода активного компонента в окислительновосстановительных процессах. При этом начальная скорость (или энергия активации) поверхностного восстановления оксидов служит относительной характеристикой прочности связи кислород-металл.

На рис. 2 приведены профили ТПВ изученных в работе медьцирконийоксидных катализаторов. Значения температур максимумов пиков ТПВ, а также величины расхода H₂ на восстановление катализаторов приведены в табл. 1.

Анализ данных рис.2 и табл. 1 позволяет заключить следующее. Для исследуемых образцов профили ТПВ существенно изменяются в зависимости от количества нанесенной меди: при $C_{Cu} \ge 20$ % мас. наблюдается один пик восстановления T_{M2} (рис. 2a), а при C_{Cu} ≤10 % мас. - два пика с различными температурами максимума, Т_{M1} и Т_{M2} (рис.2б). При уменьшении содержания Cu от 40 до 20 % мас. величина T_{M2} снижается от 343 °С (значения, близкого к Т_м порошка СиО в условиях ТПВ, используемых в данной работе) до 315 °C, что свидетельствует об уменьшении размера кристаллитов оксида меди. температуры максимума температурно-Следует отметить, что программированного восстановления для массивного CuO, сообщаемые в исследованиях разных авторов, изменяются от 185 до 352 °C [14, 15], что, как известно, зависит от скорости нагревания, концентрации H₂ в восстановительной смеси, а также рабочих параметров реактора и проточной системы. При дальнейшем уменьшении содержания меди от 10 до 3 % мас. наблюдается снижение температуры максимума первого пика (T_{M1}) от 219 до 202 °С и второго пика (T_{M2}) от 326 до 278 °С. При этом с уменьшением C_{си} относительное количество поглощенного водорода в первом пике увеличивается, а во втором закономерно снижается (табл. 1).

Можно предположить, что наличие двух пиков в профилях ТПВ Cu/ZrO₂ связано с наличием двух разновидностей частиц оксида меди на поверхности катализатора.

Рис. 2. Профили ТПВ образцов Cu/ZrO₂ с различным содержанием меди: a – 40 % (1), 20 % (2); б – 10 % (3), 5 % (4), 3 % (5).

Учитывая установленное в ряде работ влияние размера кристаллитов нанесенного CuO на характеристики его восстановления [16-19], можно предположить, что низкотемпературный пик TIIB характеризует восстановление высокодисперсных частиц CuO, обладающих относительно "слабосвязанным" кислородом. Высокотемпературный пик – восстановление частиц объемного CuO с различной степенью кристалличности, характеризующихся относительно "прочносвязанным" кислородом.

Таблица 1. Удельная поверхность и характеристики температурно-программированно	эго
восстановления образцов Cu/ZrO ₂ с различным содержанием меди.	

Катализатор	Удельная поверхность образцов, <i>S</i> _{уд} , м ² /г	T _{M1,} °C	Количество поглощенного H ₂ , мкмоль/г	T _{M2,} °C	Количество поглощенного H ₂ , мкмоль/г
40 Cu/ZrO ₂	22	-	-	343	7309,5
20 Cu/ZrO ₂	28	-	-	312	3320,6
10 Cu/ZrO ₂	15	219	42,9	326	1558,9
5 Cu/ZrO ₂	15	207	52,3	295	744,5
3 Cu/ZrO ₂	14	202	47,5	278	268,8

Из данных табл. 1 также видно, что удельная поверхность образцов Cu/ZrO₂ изменяется при варьировании содержания меди. Наблюдается возрастание S_{yg} при увеличении C_{Cu} до 20%, что может быть связано с генерацией дополнительной поверхности за счет частиц CuO. Дальнейшее снижение S_{yg} для образца 40 Cu/ZrO₂ может быть объяснено формированием больших по размеру кристаллитов CuO.

Таким образом, наличие низкотемпературного максимума на кривых ТПВ в области 202 - 219 °C свидетельствует о том, что в образцах с содержанием меди от 3 до 10 % мас. присутствуют высокодисперсные частицы оксида меди, не обнаруживаемые методом РФА. При этом доля высокодисперсных медьоксидных частиц, оцененная по вкладу низкотемпературного пика в общий профиль ТПВ, уменьшается от 15 до 2% при увеличении содержания меди в образцах от 3 до 10 % мас.

Смещение второго максимума в высокотемпературную область от 295 до 343 °C при увеличении количества меди в образцах согласуется с полученными методом РФА данными о возрастании размера частиц фазы CuO.

В табл. 2 представлены данные о среднем размере частиц, d_{av} , удельной поверхности, S_{Cu} , и дисперсности, D_{Cu} , восстановленной активной фазы меди.

Катализатор	Количество поглощенного H ₂ , мкмоль/г	D _{Cu (%)}	$S_{Cu}, M^2 \cdot \Gamma_{Cu}^{-1}$	<i>d_{av},</i> нм
40 Cu/ZrO ₂	97,7	3,1	20	33
20 Cu/ZrO ₂	92,8	5,9	38	17
10 Cu/ZrO ₂	71,5	9,1	59	11
5 Cu/ZrO ₂	73,3	18,7	120	6
3 Cu/ZrO_2	73,3	31,2	200	3

Таблица 2. Поверхностные характеристики медьцирконийоксидных катализаторов.

Видно, что при снижении содержания Cu от 40 до 3 % мас. средний размер частиц меди уменьшается от 33 до 3 нм. Однако значения среднего размера частиц восстановленной меди по данным N₂O–H₂-титрования меньше значений размеров ОКР для тех же образцов по данным РФА, что связано с учетом вклада высокодисперсных частиц меди.

Исследования каталитических свойств медьцирконийоксидных нанофазных катализаторов показали, что при T = 300 °C превращение этанола селективно протекает по пути его дегидрирования с образованием ацетальдегида и водорода. Высокая скорость осуществления указанной реакции является важным фактором для разработки эффективных низкотемпературных катализаторов парового риформинга биоэтанола с целью получения водорода.

Опыты, проведенные на чистом носителе, показали, что конверсия этанола, $X(C_2H_5OH)$, не превышала 2%. Значения $X(C_2H_5OH)$ для катализаторов Cu/ZrO₂ изменялись в пределах 29,1 – 44,4% при варьировании содержания меди.

На рис. За представлена зависимость скорости образования ацетальдегида, R(CH₃CHO), отнесенной к грамму активного компонента (Cu), от содержания меди в катализаторе. Видно, что с уменьшением C_{Cu} имеет место возрастание R(CH₃CHO). Полученные в работе данные о влиянии содержания меди на текстурные свойства активной фазы медьцирконийоксидных катализаторов (табл. 2) позволяют заключить, что указанное возрастание R(CH₃CHO) обусловлено происходящим при снижении содержания меди уменьшением размера (увеличением дисперсности) частиц Cu на поверхности носителя и осуществляется прямо пропорционально росту удельной поверхности активной фазы меди (рис. 3б).

Рис. 3. Зависимость скорости образования ацетальдегида в процессе дегидрирования этанола на Cu/ZrO₂ от содержания меди (а) и удельной поверхности активной фазы Cu в катализаторе (б).

Можно предположить, что снижение концентрации меди до значений, соответствующих монослойному покрытию и ниже (С_{Cu} ≤ 1,5 % мас.), позволит увеличить содержание наночастиц активной фазы меди с повышенной реакционной способностью на поверхности моноклинного ZrO₂.

Выводы

Выяснено влияние содержания меди на текстурные характеристики (размер частиц, дисперсность и удельную поверхность медьоксидного прекурсора и активной фазы металла), медьсодержащих нанофазных катализаторов на основе промышленного ZrO₂ моноклинной модификации.

Показано, что уменьшение содержания меди до $C_{Cu} \leq 10$ % мас. приводит к формированию двух видов наночастиц медьоксидного прекурсора (преимущественно микрокристаллитов моноклинной фазы CuO и высокодисперсных медьоксидных кластеров), на основании которых осуществляется формирование восстановленной активной фазы меди.

Смещение температур максимума пиков температурно-программированного восстановления медьцирконийоксидных катализаторов в область низких температур, наблюдаемое при уменьшении содержания меди в катализаторах, свидетельствует о формировании наночастиц, обладающих повышенной реакционной способностью в окислительно-восстановительных процессах. Доля высокодисперсных частиц активной фазы возрастает до 15 % при снижении содержания меди до 3 % мас.

Результаты тестирования каталитических свойств медьцирконийоксидных катализаторов в процессе дегидрирования этанола показали, что скорость образования ацетальдегида возрастает при снижении содержания меди в катализаторе, что обусловлено уменьшением размера (увеличением дисперсности) частиц Си на поверхности носителя и пропорциональным ростом удельной поверхности активной фазы меди.

Литература

- Yamaguchi T. Application of ZrO₂ as a catalyst and a catalyst support // Catal.Today. 1994. – V. 20. – P. 199 – 218.
- Kung H.H. Transition Metal Oxides: Surface Chemistry and Catalysis. Elsevier: N. Y., 1989 – 345 p.
- 3. Klier K. Methanol synthesis // Adv.Catal. 1982. V. 31. P. 243 313.
- 4. Jung K.T., Bell A.T. Effect of zirconia phase on the synthesis of methanol over zirconia supported copper // Catal. Lett. 2002. V. 80. P. 63 68.
- 5. Cu-ZrO₂ catalyst for water-gas-shift reaction at low temperatures / Ko J.B., Bac Ch.M., Jung Yu.Sh., Kim D.H // Catal. Lett. 2005. V. 105. P.157-161.
- 6. Breen J.P., Ross J.R.H. Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts // Catal. Today. 1999. V. 51. P. 521–533.
- CO formation/selectivity for steam reforming of methanol with commercial CuO/ZnO/Al₂O₃ catalysts / Purnama H., Ressler T., Jentoft R.E., Soerijanto H., Shlögl R., Schmacker R // Appl.Catal. A. – 2004. – V. 259. – P. 83 – 94.
- 8. Shelef M. Selective catalytic reduction of NO_x with N-free reductants // Chem. Rev. 1995. V. 95. P. 209 225.
- 9. Frusteri F., Freni S. Bio-ethanol, a suitable fuel to produce hydrogen for molten carbonate fuel cell // J.Power Sources. 2007. V. 173. P. 200 209.
- Ni M., Leung Y.C., Leung M.K.H. A review on reforming bio-ethanol for hydrogen production // Int. J. Hydrogen Energy. – 2007. – V. 32. – P. 3238 – 3247.
- Gervasini A., Bennici S. Dispersion and surface states of copper catalysts by temperature-programmed reduction of oxidized surfaces (s-TPR) // Appl. Catal. A. – 2005. – V. 281. – P. 199-205.
- Characterization of Cu/SiO₂ catalysts prepared by ion exchange for methanol dehydrogenation / Guerreiro E.D., Gorriz O.F., Rivavola J.B., Arrua L.A. // Appl. Catal. A: General. – 1997. – V. 165. – P. 259 – 271.
- 13. Golodets G.I. Heterogeneous catalytic reactions involving molecular oxygen. Elsevier, 1983. 683 p.
- The reduction behaviour of silica-supported copper catalysts prepared by depositionprecipitation / Van Der Grift C. J. G., Wielers A. F. H., Mulder A., Geus J. W.// Thermochim. Acta. - 1990. - V. 171. - P. 95 - 113.

- 15. Thermal analysis of catalyst precursors : Part 2. Influence of support and metal precursor on the reducibility of copper catalysts / Bond G.C., Namijo S.N., Wakeman J.S. // J. Mol. Catal. 1991. V. 64. P. 305 319.
- Hydrogen from steam reforming of ethanol. Characterization and performance of copper-nickel supported catalysts / Marino F.J., Cerrella E.G., Duhalde S., Jobagy M., Laborde M.A. // Int. J. Hydrogen Energy. – 1998. – V. 23. – P. 1095 – 1101.
- Temperature-programmed reduction and temperature-programmed desorption studies of CuO/ZrO₂ catalysts / Zhou R.X., Yu T.M., Jiang X.Y., Chen F., Zheng X.M. // Appl. Surf. Sci. – 1999. – V. 148. – P. 263 – 270.
- Reduction kinetics of CuO in CuO/ZnO/ZrO₂ system / Stoczynski J., Grabowski R., Kozlowska A., Olszewski P.k., Stoch J. // Phys. Chem. Chem. Phys. – 2003. – V. 5. – P. 4631 – 4640.
- Chang F.-W., Kuo W.-Y., Lee K.-Ch. Dehydrogenation of ethanol over copper catalysts on rice husk ash prepared by incipient wetness impregnation // Appl. Catal. A. - 2003. - V. 246. - P. 253 - 264.

EFFECT OF COPPER LOADING ON THE TEXTURAL AND FUNCTIONAL PROPERTIES OF COPPER-ZIRCONIA NANOPHASE CATALYSTS

I.V. Deinega¹, L.Yu. Dolgykh¹, L.A. Staraya¹, V.P. Pakharukova², E.M. Moroz², P.E.Strizhak¹

¹L.V.Pisarzhevskii Institute of Physical Chemistry,National Academy of Sciences of the Ukraine, prospekt Nauki 31, 03028, Kyiv-28, Ukraine e-mail: admini@inphyschem-nas.kiev.ua ²Boreskov Institute of Catalysis SB RAS prospekt Lavrentieva 5, 630090, Novosibirsk, Russia

The dependence of particle size and reduction behaviour of copper oxide precursors, dispersion and specific surface area of active metal phase of copper catalysts supported on commercial zirconia of monoclinic modification on the copper loading was established. The catalytic properties of Cu/ZrO₂ in the ethanol dehydrogenation have been investigated. It was shown that at copper loadings within 5 - 40 % wt. the increase of the rate of acetaldehyde formation (mol·s⁻¹·g_{Cu}⁻¹) is conditioned by increasing of specific surface area of the active metallic copper phase.

ВПЛИВ ВМІСТУ МІДІ НА ТЕКСТУРНІ ТА ФУНКЦІОНАЛЬНІ ВЛАСТИВОСТІ МІДЬЦИРКОНІЙОКСИДНИХ НАНОФАЗНИХ КАТАЛІЗАТОРІВ

І.В. Дейнега¹, Л.Ю. Долгіх¹, Л.О. Стара¹, В.П. Пахарукова², Е.М. Мороз², П.Є. Стрижак¹

¹Інститут фізичної хімії ім. Л. В. Писаржевського Національної академії наук України, пр. Науки 31, 03028, Київ-28, Україна e-mail: admini@inphyschem-nas.kiev.ua ²Інститут каталіза ім. Г. К. Борескова СВ РАН пр. академіка Лаврентієва 5, 630090, Новосибірськ, Росія Установлено залежність розміру частинок і характеру відновлення мідьоксидного прекурсору, дисперсності і питомої поверхні активної фази металу мідьвмісних нанофазних каталізаторів на основі промислового ZrO_2 моноклинної модифікації від вмісту міді. Досліджені каталітичні властивості Cu/ZrO у реакції дегідрування етанолу і показано, що у діапазоні концентрацій міді $C_{\rm Cu}=5-40$ % мас. зростання швидкості утворення ацетальдегіду (моль с⁻¹ $r_{\rm Cu}$ ⁻¹) при зменшенні $C_{\rm Cu}$ обумовлено ростом питомої поверхні активної фази міді.