ОСОБЛИВОСТІ МУНІЦИПАЛЬНОГО МЕНЕДЖМЕНТУ В КРИМУ

- Першочерговий ремонт доріг району, на території якого розташоване підприємство носій міської символіки.
- Забезпечення чистоти району, в якому розташовано підприємство носій символіки міста, зокрема в курортних районах.
- б. Інформацію про використовування символіки міста і умови дозволу необхідно розмістити в ЗМІ м. Євпаторії.

Джерела та література

- 1. Конституция Украины от 24.08.1991.
- 2. Ведомости Верховной Рады Украины. 1997. № 24. Ст. 170. Закон Украины «О местном самоуправлении» от 21.05. 1997.
- 3. Положение о гербе города Евпатории от 30. 05 1997г.
- 4. Положение о флаге города Евпатория 30. 05 1997г.
- 5. Положение о печати города Евпатория 30. 05 1997г.
- 6. Кизим И. А., Горбатов В.М. Качество жизни населения и конкурентоспособность Украины и стран ЕС. X.:ВД «ИНТЕК», 2005. 164 с.
- 7. Павлюк К.В. Формування доходів місцевих бюджетів //Финанси Украины. №4. 2006. С. 24 37.
- Цветкова Г. Вопросы эффективности местного самоуправления. // Экономист. №9. 2006. С. 53 60.

Ляшенко Г.В.

АГРО- И МИКРОКЛИМАТИЧЕСКАЯ ОЦЕНКА УСЛОВИЙ ФОРМИРОВАНИЯ УРОЖАЙНОСТИ ВИНОГРАДА

Постановка проблемы и связь с важными научными и практическими заданиями. Проблема агроклиматического обеспечения аграрного сектора экономики остается важнейшей задачей агрометеорологов и направлена на оценку агроклиматических ресурсов территорий с целью оптимизации размещения сельскохозяйственных культур как условия повышения продуктивности и стабильности отрасли. Актуальность исследований в этом направлении обусловлена отсутствием информации о реально достижимой урожайности отдельных сельскохозяйственных культур как в региональном разрезе, так и на локальном уровне

Анализ исследований и публикаций по данной проблеме. Традиционно данная задача решалась выполнением агроклиматического районирования территорий. Для выделенных районов рекомендовался набор сельскохозяйственных культур, выращивание которых по ресурсам тепла и влаги в принципе возможно [1–3]. В исследованиях Д.И.Шашко по оценке биоклиматического потенциала [4] наряду с характеристикой агроклиматических ресурсов территорий дается оценка продуктивности климата, выраженная в единицах урожайности. Близок к ним и подход А.Р.Константинова [5], в которой по соотношению температуры и упругости водяного пара рассчитана величина урожая полевых культур. В последние десятилетия прошлого века наметилось новое направление, позволяющее для выделенных районов определять вероятность и величину снижения урожая в связи с неблагоприятными климатическими условиями в разрезе отдельных межфазных периодов [6–8].

Обсуждение проблемы и анализ результатов исследования. Известно, что уровень урожая зависит от биологических свойств культуры или сорта, количества приходящей ФАР и элементов питания в почве, уровня агротехники, а также режима тепла и влаги. Тоомингом [9] для оценки потенциальной продуктивности сельскохозяйственных культур предложен метод эталонных урожаев: потенциальный (ПУ), действительно возможный (ДВУ) и урожай в производстве (УП). Потенциальный урожай (ПУ) — это урожай сорта в идеальных метеорологических условиях. Он определяется приходом ФАР, биологическими свойствами культур и сортов. По последним исследованиям, проведенным у нас и за рубежом, ПУ многих культур, при высоком агрофоне может быть рассчитан по формуле:

$$\Pi Y = \frac{\eta_n K_{xo3} \Sigma Q_{\phi}}{q}, \qquad (1)$$

где ПУ – потенциальный урожай сухой биомассы, в кг/ ${\it M}^2$; ${\it \eta}_{\scriptscriptstyle \Pi}$ - потенциальный КПД посева, %; q – удельная теплота сгорания сухой биомассы растений, кДж /кг; ΣQ_{ϕ} - фотосинтетически активная радиация (ФАР), кДж/ ${\it M}^2$; ${\it K}_{{\it XO}3}$ - коэффициент, определяющий хозяйственно ценную часть урожая.

Входящие в формулу величины определяются экспериментально. Потенциальный КПД зависит от биологических свойств культуры или сорта, от естественного плодородия почвы и уровня минерального питания. Согласно оценке Ничипоровича посевы по их средним значениям КПД подразделяются на следующие группы: а) обычно наблюдаемые -0.5-1.5%; б) хорошие -1.5-3.0%; в) рекордные -3.5-5.0%; г) теоретически возможные -6.0-8.0% и выше. В работе де Вита и других авторов выявлено, что в районах со значительной продолжительностью солнечного сияния урожай может быть с достаточной точностью рассчитан по формуле:

$$Y = mT / E_o, (2)$$

где У- урожай сухой биомассы, кг/ га; Т – суммарная транспирация с открытой поверхности воды, см/день; m – коэффициент пропорциональности, который зависит, главным образом, от вида растения и представляет собой количество урожая, формирующегося в среднем за день, если воды достаточно и транспирация не отличается от максимально возможной.

Расчет действительно возможных урожаев выполняется по формуле:

$$\mathbf{Y}_{_{\Pi \mathbf{B}}} = \mathbf{Y}_{_{\Pi \mathbf{B}}} \cdot \mathbf{f}(\mathbf{x}_{1}) \cdot \mathbf{f}(\mathbf{x}_{2}) \cdot ... \mathbf{f}(\mathbf{x}_{n}),$$
 (3)

где $f(x_1)$ – функция влияния условий увлажнения; $f(x_2)$ – функция влияния опасных заморозков и т.д.

При оптимальном термическом режиме урожай может быть рассчитан по формуле:

$$Y_{\text{AB}} = Y_{\text{IIB}} \frac{E_{\phi}}{E_{o}}, \quad (4)$$

где E_{φ} – фактическое влагопотребление, мм; E_{o} – оптимальное влагопотребление, мм; E_{φ}/E_{o} - относительный коэффициент влагообеспеченности.

Значение Е_о рассчитывается по биофизическому методу, предложенного Алпатьевым А.М.:

$$\mathbf{E}_{0} = \mathbf{K}_{5} \cdot \Sigma \mathbf{d},\tag{5}$$

где K_6 – биологический коэффициент влагопотребления; Σd – суммарный дефицит влажности воздуха. Расчеты E_{φ} выполняются по сокращенному уравнению водного баланса:

$$E_{d} = \Sigma r + (W_{H} - W_{K}) - f, \qquad (6)$$

где Σr – количество осадков; $W_{\scriptscriptstyle H}$ і $W_{\scriptscriptstyle K}$ – запасы продуктивной влаги в метровом слое почвы на начало и конец расчетного периода; f – поверхностный сток.

Разность между потенциальным и действительно возможным урожаями – ΠV - $\Pi B V$, которая характеризует его недобор в связи с отклонением реальных агроклиматических условий от идеальных. Отношение же этих урожаев ($K \delta n = \Pi B V / \Pi V$) характеризует степень благоприятности климатических условий. Она изменяется от 0 до 100% или от 0 до 1. Чем выше значения коэффициента, тем ближе климатические условия к идеальным. Разность между действительно возможным и производственным урожаем ($\Pi B V - V \Pi$) характеризует недобор возможного урожая из-за низкой агротехники возделывания. Отношение этих уровней урожаев ($V \Pi / \Pi B V$) рассматривают как коэффициент эффективности использования агроклиматических ресурсов ($K \circ \phi$). Значения этого коэффициента также изменяются от 0 до 1. Чем выше значения – тем эффективное применяемая агротехника возделывания культур.

Согласно [10–15] калорийность 1 кг винограда 17020 кДж, соотношение веса ягод и вегетативной массы - 1:1 (т.е. коэффициент хозяйственной ценности равен 0,43 для массы сухого вещества и 2,15 – для массы ягод при стандартной влажности (80%). На исследуемой территории выращивают виноград среднепоздних и поздних сортов. Величина поступающей ФАР за период вегетации изменяется в широких пределах – от 154,6 – 168,8 МДж/м². Расчеты различных уровней урожаев винограда выполнены с учетом использования ФАР на уровне 0,75 и 1.25 %, что согласно классификации Ничипоровича А.А., характеризует обычно наблюдаемые урожаи. Выявлено (Табл.1), что в Одесской области при коэффициенте использования ФАР (η) 1,25% потенциальные урожаи винограда могут составлять от 244,1 до 266,5 ц/га, а при η = 0,75 % от 146,5 до 159,9 ц/га, что в 2-5 раз больше производственных урожаев. Различия между максимальными и минимальными значениями потенциальных урожаев достигают 21,6 ц/га при η = 1,25% и 13,4 ц/га при η = 0,75 % (Рис. 1). Средние многолетние значения потенциальных урожаев соответственно при η 1,25 % и 0,75 % равны 251,8 и 151,1 ц/га.

Таблица 1. Расчетные уровни урожаев винограда в Одесской области

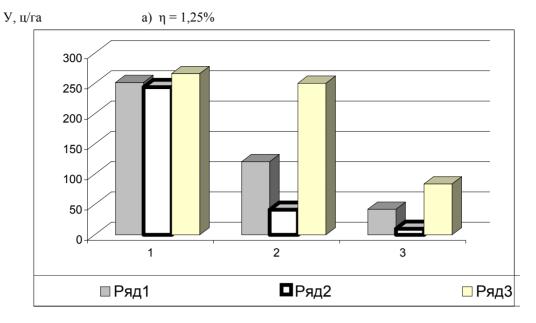
таблица т. тасчетные уровни урожаев винограда в Одесской области									
	ΣQфap,	V,	УП,	$\eta = 1.25 \%$			$\eta = 0.75 \%$		
Показатели	$KДж/м^2$	%	ц/га	ПУ,	ДВУ,	ПУ-ДВУ,	ПУ,	ДВУ,	ПУ-ДВУ,
				ц/га	ц/га	ц/га	ц/га	ц/га	ц/га
		48			120,9	130,9		72,7	78,4
Средние	159,5	17	42,3	251,8	42,8	209,0	151,1	25,7	124,4
•		94			236,7	15,1		142,0	9,1
		58			117,2	126,9		70,3	76,2
Минимальные	154,6	17	10,0	244,1	41,5	202,6	146,5	24,9	121,6
		94			229,4	14,7		137,7	8,8
		48			127,9	138,6		76,8	83,1
Максимальные	168,8	17	84,2	266,5	45,3	221,2	159,9	27,2	132,7
		94			250,5	16,0		150,3	9,6

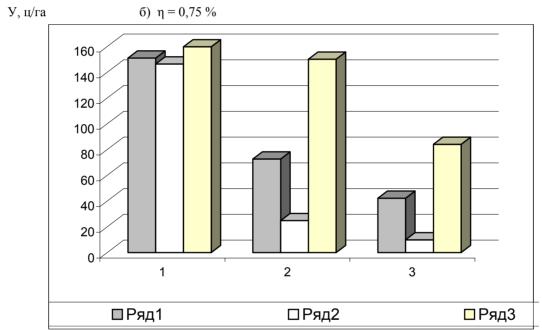
Расчеты климатически или действительно возможных урожаев выполнены по лимитирующему фактору (формула 4), которым для степной зоны Украины являются условия увлажнения. С целью учета возможного комплекса климатических условий расчеты выполнялись с использованием трех значений показателя влагообеспеченности — среднего многолетнего (48%), максимального (94%) и минимального (17 %).

28 Ляшенко Г.В.

АГРО- И МИКРОКЛИМАТИЧЕСКАЯ ОЦЕНКА УСЛОВИЙ ФОРМИРОВАНИЯ УРОЖАЙНОСТИ ВИНОГРАДА

При уровне использования Φ AP (η) 1,25% средние, минимальные и максимальные действительно возможные урожаи соответственно равны 120,9, 42,8 и 236,7 ц/га. При минимальных значениях потенциального урожая действительно возможные урожаи равны 117,2, 41,5 и 229,4 ц/га, а при максимальных значения потенциального урожая они могут достигать 127,9, 45,3 и 250,5 ц/га. Таким образом, значения возможных урожаев по территории изменяются от 41,5 до 250,5 ц/га, диапазон изменчивости составляет 209 ц/га. При коэффициенте использования Φ AP на уровне 0,75% различия уменьшаются до 1125,4 ц/га (24,9 – 150,3 ц/га). Различия между ПУ и ДВУ происходит как результат отклонения реальных агроклиматических условий от идеальных. Величина снижения урожая колеблется от 14,7 до 221,2 и от 8,8 до 132,7 ц/га, соответственно, при η 1,25 и 0,75%. Различия между производственным и действительно возможными урожаями колеблются от 0 до 208 ц/га при η 1,25 и от 0 до 120 ц/га при η 0,75%.


На основе расчетных и фактических урожаев винограда выполнена оценка благоприятности агроклиматических условий и степени их использования на конкретной территории. В среднем, коэффициент благоприятности агроклиматических условий невысокий и составляет 0,40, колеблясь в отдельные годы от 0,25 до 0,68. Коэффициент использования агроклиматических условий варьирует в больших пределах – от от 0,21 до 0,91. В отдельные годы значения этого коэффициента превосходит 1,0, что свидетельствует о более высоком уровне использования ФАР. Таких случаев наблюдалось за исследуемые годы только один раз при взятом значении η 1,25 и в шести случаях - η 0,75. Таким образом, в целом по территории Одесской области при данном уровне земледелия коэффициент использования ФАР не превышает 1,5 %.


Оценка возможной пространственной изменчивости рассчетных уровней урожаев в условиях неоднородной подстилающей поверхности выполняется на основе глубокого геоморфологического анализа территории — определения и выделения элементов рельефа, определяющих микроклиматическую изменчивость агроклиматических ресурсов. В Одесской области наблюдаются такие формы рельефа как водораздельные плато, приводораздельные и припойменные равнины, склоны различной крутизны и экспозиции, речные и суходольные балки. Учитывая, что виноград многолетнее растение и закладываются плантации на несколько десятков лет, возможные ошибки должны быть сведены к минимуму или исключены вовсе. Для принятия оптимального решения при планировании размещения виноградных плантаций необходимо располагать данными о степени соответствия природных ресурсов конкретной территории экологическим свойствам растения.

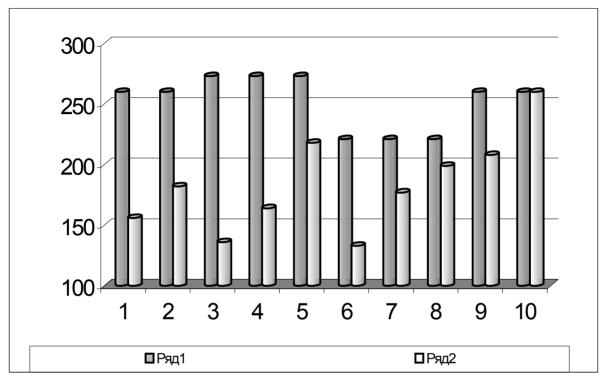
Нами расчеты потенциальных и действительно возможных урожаев выполнялись для всего спектра местоположений, возможных в Одесской области. К ним отнесены такие формы рельефа как равнина, водораздельное плато, пойма рек, дно долин. Потенциальные урожаи определялись для склонов южной и северной экспозиции крутизной 5, 10, 15 и 20 градусов. Действительно возможные урожаи рассчитывались по тем жеместоположениям, а также с делением каждого из склонов на верхнюю, среднюю и нижнюю части склонов и подножие склонов. Таким образом, расчеты потенциальных урожаев проводились для 9 местоположений, а действительно возможных – для 33 местоположений. Все расчеты выполнены при коэффициенте использования ФАР 1,25 и 0,75%. Коэффициенты пересчета величины ФАР на склоны северной и южной экспозиции в среднем за вегетационный период винограда соответственно равны 0,9 и 1,0-1,1 [16]. Коэффициент пересчета увлажнения для разных форм рельефа и местоположения на склоне изменяются от 0,8 для верхней части пологого южного склона до 1,5 – в поймах рек при фоновом значении Е / Ео 0,48 [16].

Наиболее высокие значения потенциальных урожаев (в среднем многолетнем) отмечаются на южных склонах и составляют 152,6 –167,5 ц/га при η 0,75 и 254,2 - 264,5 ц/га при η 1,25 %. Самые низкие урожаи этого уровня формируются на северных склонах – соответственно от 143,2 до 130,0 и от 236,7 до 216,6 ц/га при тех же коэффициентах использования ФАР. Наглядно видно, что различия потенциального урожая для южных склонов крутизной от 5 до 20° составляют 6 и 10 ц/га, а для тех же местоположений северного склона – 13 и 28 ц/га. Причем, если с увеличением крутизны южных склонов потенциальные урожаи возрастают, то на северном склоне наблюдается обратная закономерность (Табл. 2). На водораздельных плато, равнинах, а также в широких долинах и поймах рек уровень потенциальных урожаев занимает промежуточное значение – 151,1 и 251,8 (Рис. 2).

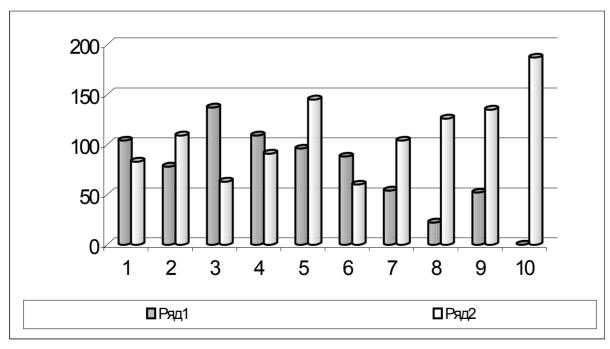
Распределение величины действительно возможных урожаев несколько отличается. Максимальные значения наблюдаются в поймах рек, где коэффициент увлажнения наибольший - 260 ц/га. Несколько ниже отмечаются урожаи в нижней части южных склонов (218 ц/га), на дне широких долин и в нижней части северного склона (208 и 199 ц/га). Минимальные урожаи наблюдаются в верхней части северного и южного склонов (133 и 136 ц/га) и на водораздельном плато (156 ц/га). Известный интерес представляют данные об отклонениях действительно возможных урожаев от потенциальных (ПУ-ДВУ), характеризующих недобор урожаев из-за отличия климатических условий от идеальных и отклонения так называемых фактических урожаев от действительно возможных (ДВУ-УП) из-за несоответствующей агротехники. Максимальные ПУ-ДВУ прослеживаются на верхней и средней частях северного склона, верхней части южного склона – в пределах 109-137 и 88 ц/га. Эта разность минимальна в нижней части северного склона, на дне широкой долины и в пойме реки – 0 –52 ц/га (Рис. 3)

Рис.1 – Расчетные уровни урожаев винограда в Одесской области. Ряд $1 - \Pi Y$, Ряд $2 - \mathcal{L}BY$, ряд $3 - \mathcal{Y}\Pi$

Таблица 2. Пространственная изменчивость расчетных уровней урожаев с учетом микроклиматической изменчивости агроклиматических ресурсов в Одесской области (η 1,25 %)


NN Nn	Местоположение	K _Q	ПУ	Kv	ДВУ	ПУ-ДВУ	Кбл	ДВУ- УП
1	Водораздельное плато	1,0	251,8	0,6	151,1	100,7	0,60	108,8
2	Ровное место	1,0	251,8	0,7	176,3	75,5	0,70	136,0
3 4 5	Южный склон		273	0,5	136	137	0,50	63
	крутизной 5 - 20°			0,6	164	109	0,60	91
	Верхняя часть Средняя часть Нижняя часть	1,05 –1,15		0,8	218	96	0,80	145
	Северный склон		221	0,6	133	88	0,60	60
	крутизной 5 - 20°	0,96-0,80		0,8	177	54	0,80	104
6 7	Верхняя часть Средняя часть	0,70-0,80		0,9	199	22	0,90	126

АГРО- И МИКРОКЛИМАТИЧЕСКАЯ ОЦЕНКА УСЛОВИЙ ФОРМИРОВАНИЯ УРОЖАЙНОСТИ ВИНОГРАДА


;	8	Нижняя часть							
9	9	Дно широких до- лин	1,0	260	0,8	208	52	0,80	135
	10	Поймы рек	1,0	260	1,0	260	0	1,00	187

У, ц / га

Рис. 2 Изменчивость потенциальных (ряд 1) и действительно возможных урожаев винограда

в Одесской области с учетом микроклимата. 1-10 – номер местности (Табл. 2)

Рис.3 Различия между ПУ и ДВУ (ряд 1), ДВУ и УП (ряд 2) на разных формах рельефа. 1-10- местности (как в табл. 2)

Отклонения ДВУ–УП достигают максимальных значений для дна широких долин, нижней части северного склона, а также для пойм рек -104-187 ц/га. Т.е., в таких местностях, где разность ПУ – ДВУ имела минимальные значения. Следует отметить, что на южных склонах различия больше между ПУ и ДВУ, а на северных – между ДВУ и УП.

Коэффициент благоприятности климатических условий для возделывания винограда изменяется от 50 % на вершине южного склона до 100 % - в пойме рек. Изменения этого уровня урожаев возрастает и составляет 77-370 ц/га, а разница между потенциальными и действительно возможными урожаями 0 в нижней части северного склона до 140 ц/га – в верхней части южного склона (табл.2). Более высокий коэффициент благоприятности климата отмечается в нижней части северного и южного склонов, пойме рек – соответственно 1,0, 0,95 и 0,92. Затем идут средняя часть северного склона и дно широких долин – 0,84 и 0,79. Наихудшие условия отмечаются на водораздельном плато и вершине южного склона – 0,51 и 0, 49. Разница между действительно возможными и производственными урожаями (ДВУ - ПУ) равна 51-152 ц/га. Наибольшие различия этих уровней урожаев возможны на равнине, наименьшие - на водораздельном плато и в верхней части южного склона.

Данная схема пространственной изменчивости действительно возможных урожаев является неполной, поскольку в расчетах не принималось во внимание возможное изменение продолжительности вегетационного периода в различных местоположениях, определяющее изменение величины суммарной ФАР, а также возможное снижение (в некоторых местоположениях) урожаев по такому лимитирующему фактору, например - заморозки. При этом следует учитывать, что размещение виноградников в нижних частях склонов и на дне долин исключено на данной территории по условиям перезимовки, а на северных склонах – по условиям теплообеспеченности, что влечет за собой формирование некондиционной продукции. То есть, наиболее высокий и на качественный урожай в Одесской области может быть получен в верхних и средних частях южного склона и на ровном месте.

Выводы. Полученные результаты свидетельствуют о возможности получения по агроклиматическим условиям достаточно высоких уровней урожая. Однако по причине несоответствия технологии возделывания урожай в производстве значительно ниже возможного. Дальнейшие исследования могут быть продолжены в направлении детализации оценок агроклиматических ресурсов территорий на локальном уровне с целью выявления местоположений, обеспечивающих базовый уровень урожаев высокой кондиции.

Источники и литература

- 1. 1. Вопросы агроклиматического районирования СССР //Под. ред. Селянинова Г.Т., Давитая Ф.Ф. М.: Гидрометеоиздат, 1958. 172 с.
- 2. Агроклиматическое районирование пяти основных сельскохозяйственных культур на территории социалистических стран Европы. София: БАМ, 1979. 123 с., 14 карт.
- 3. Агроклиматические ресурсы природных зон СССР и их использование / Под ред. Ф.Ф. Давитая, И.А. Гольцберг. Л.: Гидрометеоиздат, 1970. –160 с; Шашко Д.И. Агроклиматические ресурсы СССР.–Л.: Гидрометеоиздат, 1985. 247 с.
- 4. Константинов А.Р., Зоидзе Е.К., Смирнова С.И. Почвенно-климатические ресурсы и размещение зерновых культур. Л.: Гидрометеоиздат, 1971. 328 с.
- 5. Жуков В.А. К вопросу агроклиматического обоснования специализации в растениеводстве // Труды ВНИИСХМ. 1989. Вып.24. С.51–59.
- 6. Жуков В.А. О некоторых проблемах агроклиматического обеспечения агропромышленного комплекса // Труды ВНИИСХМ. 1989. Вып.24. С.6–17.
- 7. Жуков В.А. Принципы оценки агроклиматических ресурсов в задаче агроэкологического районирования // Труды ВНИИСХМ. 1994. Вып.30. С.23-44.
- 8. Тооминг Х.Г. Экологические принципы максимальной продуктивности посевов. Л.: Гидрометеоиздат, 1984. 264 с.
- 9. Давитая Ф.Ф. Климатические зоны винограда в СССР. М.:Пищепромиздат, 1948. 192 с.
- 10. Негруль А.М. Климатические показатели для культуры винограда // Виноделие и виноградарство СССР. 1946. №3. С.28 32.
- 11. Амирджанов А.Г. Солнечная радиация и продуктивность виноградника. Л.: Гидрометеоиздат, 1980. 208 с.
- 12. Физиология винограда и основы его возделывания /Под ред. Акд. К.Стоева. Т.1 Болгарская Академия наук, 1981. 331 с.
- 13. 14. Фурса Д.И. Погода, орошение и продуктивность винограда. Л.: Гидрометеоиздат, 1986. 199 с.
- 14. Ляшенко Г.В. Структура пространственной изменчивости урожайности сельскохозяйственныъ культур на ограниченной территории. // Метеорология, климатология и гидрология. 1999. Вып. 39. С 161–167
- 15. Романова Е.Н. Микроклиматическая изменчивость основных элементов климата. Л.: Гидрометеоиздат, 1977. 279 с.