Гидроизомеризация н-гексана на палладий- и цирконилсодержащих модифицированных морденит-клиноптилолитовых породах К. И. Патриля κ^{1} , Ф. М. Бобонич², Л. К. Патриля κ^{1} , Ю. Г. Волошина²,

Н. Н. Левчук¹, В Н. Соломаха², И. Н. Цуприк¹

¹Институт биоорганической химии и нефтехимии НАН Украины, Украина, 02094, Киев, ул. Мурманская, 1; факс: (044) 573-25-52 ²Институт физической химии им. Л. В. Писаржевского НАН Украины, Украина, 04039, Киев, просп. Науки, 31; факс: (044) 265-62-16

На основе модифицированных морденж-клжотилолитовых пород украинских месторождений синтезирован ряд Pd-содержащих (0,5 % (мас.)) катализаторов, промотированных хлористым цирконилом. Образцы испытаны в изомеризации н-гексана: проточные условия; 523-573 К; 3 МПа. Изменение содержания морденитовой компоненты исходных пород в пределах 49-72 % (мас.) практически не влияет на каталитические свойства промотированных образцов; кроме того, промотирование позволяет снизить температуру изомеризации. Распределение продуктов реакции трактовано с позиций протекания изомеризации через щдридный и карбанионный переносы на центрах Бренстеда и Льюиса с участием дегидрогенизационно-гидрогенизационных центров.

Гидроизомеризация пентан-гексановой фракции нефти с целью получения высокооктанового компонента бензина в промышленный: условиях осуществляется, в частности, с применением катализаторов на основе деалюминированного синтетического морденита [1]. Вместе с тем соответствующим сочетанием операций и условий декатионирования, термообработки и деалюминирования морденит-клиноптилолитовых пород украинских месторождений (Закарпатье) можно получить катализаторы, эффективность которых находится на уровне таковой образцов, полученных из синтетического морденита [2-5].

В данной работе предпринята попытка дальнейшего повышения активности и селективности Рс1-содержащих катализаторов [6], промотированных катионами цирконила. В опытах использовали измельченные (0,5-1,0 мм) породы месторождения Липча различного состава (табл. 1).

Таблі	ица	1.	Ми	нера л	огич	ески	йи	ХИ	МИЧ	еский	состав	(%
мас.)	исхо	одн	ых і	морд	енит	-ипп	опт	гил	оли	товьгх	пород	

	Фазо сос	овый тав	Химический состав										
Порода	Морденит	Клиноптилолит	S1Ü2	AI2Ü3	CaÜ	Na2Ü		H2O					
Α	49	49	64,95	12,23	3,22	0,70	2,35	12,33					
Б	72	22	65,90	11,85	2,91	1,12	2,07	10,92					

Модифицирование исходной и водородной форм пород, как и в работе [4], проводили раствором 5М НС1 в течение 3 ч при температуре кипения водяной бани и соотношении твердой и жидкой фаз Т:Ж = 1:10. Водородную форму пород получали прокаливанием их аммониевых форм при 873 К на воздухе в течение 2 ч. В результате кислотной обработки исходной и водородной форм породы А были получены ее деалюминированные формы 1 и 2 соответственно. Аналогично получены деалюминированные формы 3 и 4 породы Б. По величине адсорбции бензола [4] определяли объем микропор модифицированных пород. В образцы деалюминированных пород методом ионного обмена вводили сперва палладий из аммиаката [4] в количестве 0,5 % (мас.), а затем цирконил из раствора ZrÜCl₂ в количестве 0,6 и 2,05 % (мас.) (в обоих случаях в рас чете на чистые металлы), в результате чего был получен ряд образцов катализаторов. Физико-химические свойства модифицированных пород и синтезированных катализаторов представлены в табл. 2, причем шифр образцов катализаторов состоит из номера деалюминированной формы породы с присовокуплением через точку порядкового номера катализатора, полученного на основе данной породы.

Кислотные свойства образцов изучали методом термопрограммированной десорбции (ТПД) аммиака, их каталитические свойства - в реакции изомеризации нормального гексана (523-573 К; 3,0 МПа) в проточных условиях [4].

На рисунке представлена зависимость ТПД аммиа ка для образца 3 деалюминированной породы Б, а также катализатора 3.2 на ее основе с нанесенными палладием и цирконилом в количествах 0,5 и 0,6 % (мас.)

Таблица 2. Физико-химическая характеристика модифицированных пород и синтезированных катализаторов

	Ν	Іодифицирова	Катализатор					
орода	зца	Форма по-		кропор см ³ /г		Модифи¬ цирующий агент		
Исходная п	Номер обра	роды, под- вергнутая деалюми- нированию	Si/Al	Объем мин по бензолу,	Образец	Паллаий, % (мас.)	Циркоил, % (мас.)	
Α	1	Исходная	11,5	0,059	1.1	0,5	-	
					1.2	0,5	0,60	
	2	Водородная	5,6	0,054	2.1	0,5	-	
					2.2	0,5	0,60	
Б	3	Исходная	11,7*	0,087	3.1	0,5	-	
					3.2	0,5	0,60	
					3.3	0,5	2,05	
	4	Водородная	7,6	0,058	4.2	0,5	0,60	

* Образец подвергался двухкратной кислотной обработке.

Зависимость ТПД аммиака образца 3 деалюминированной породы Б (1) и палладий-цирконилсодержащего катализатора 3.2 (2) на ее основе

соответственно. Из этого следует, что катализатор характеризуется существенно более высоким содержанием сильных кислотных центров, чем деалюминированная порода.

Наряду с величиной превращения исходного гексана за проход, а также селективностью по сумме (${}_{b}C^{5} + {}_{b}C^{6}$) и отдельно по сумме ${}_{b}C^{6}$ весьма важным показа телем изомеризации является содержание 2,2диметилбутана (2,2-ДМБ) в продуктах превращения как наиболее ценного компонента реакционной смеси с точки зрения повышения ее антидетонационн^гх свойств.

Из результатов исследования (573 К) каталити ческих свойств образцов, не содержащих добавок цирконила (табл. 3, 4, образцы 1.1, 2.1 и 3.1), видно, что фазовый и катионный составы пород, подвергшихся кислотной обработке, оказывают значительное влияние на выходы и составы продуктов реакции. Каждый из указанных образцов имеет явные недостатки: низкую селективность по 2,2-ДМБ (образец 1.1) или по сумме изогексанов (образцы 2.1, 3.1) - 9,4: 88,4 и 75,2 % соответственно.

Модифицирование катализаторов катионами цирконила в количестве 0,6 % (мас.) (образцы 1.2, 2.2 и 3.2) практически не изменяет их суммарную селектив ность по разветвленным гексанам при 573 К, однако в двух случаях из трех заметно повышает суммарный выход разветвленных гексанов, в том числе 2,2-ДМБ. Интересно, что при 573 К содержание 2,2-ДМБ в сме сях разветвленных изомеров гексана в целом несколь ко ниже, а метилпентанов - наоборот, несколько выше их соответствующих равновесных концентраций.

Таблица 3. Каталитические свойства палладий- и палладий-цирконилсодержащих образцов на основе деалюминированной породы А

Состав катализата, % (мас.)							Соотношение				Содерж	<u>ание, % (мас.)</u>		
Образец	Температура, К	C1-C5	2,2-ДМБ	2-МП	3-МП	н-Гексан	3-МП/2,2 ДМБ	2-МП/2,2 ДМБ	3-МП/2-МП	Конверсия, %	S1-C6	X1-C ⁵ + 1-C ⁶	Селективность по 1-С ⁶ , %	2,2-WMffi/i-C ^{fo} % (мас.)
1.1	573	3,17	6,50	35,77	26,51	27,96	4,08	5,50	0,74	72,04	68,77	70,17	95,4	9,4
1.2	523	0,17	1,54	18,72	11,52	68,05	7,48	12,16	0,62	31,95	31,78	31,78	99,4	4,8
	548	0,39	7,60	38,43	21,19	32,48	2,79	5,06	0,55	67,52	67,22	67,35	99,5	11,3
	553	0,37	8,60	45,50	20,90	24,58	2,43	5,29	0,46	75,42	75,00	75,15	99,4	11,5
	573	3,49	13,79	40,04	21,80	20,78	1,58	2,90	0,54	79,22	75,63	76,76	95,4	18,2
2.1	523	Следы	3,22	23,13	11,12	62,53	3,45	7,18	0,48	37,47	37,47	37,47	100,0	8,6
	548	1,76	8,88	38,09	19,97	31,20	2,25	4,29	0,52	68,80	66,94	67,53	97,3	13,3
	573	8,99	12,60	37,20	20,74	20,20	1,65	2,95	0,56	79,80	70,54	74,01	88,4	17,9
2.2	523	0,40	4,57	28,57	16,38	49,94	3,58	6,25	0,57	50,24	49,61	49,70	98,7	9,2
	548	1,84	10,81	40,39	22,60	24,31	2,09	3,74	0,56	75,69	73,80	74,56	97,5	14,6
	573	9,89	13,18	36,83	20,04	19,93	1,52	2,79	0,54	80,07	70,06	73,47	87,4	18,8

* На превращенный н-гексан.

Состав катализата, % (мае.)							Coo	Соотношение				ание, % (мае.)		
	K			1	1	1		-	1	26		1		
Образец	Температура,	C1-C5	2,2-ДМБ	2-МП	3-МП	н-Гексан	3-МП/2,2 ДМЕ	2-МП/2,2 ДМЕ	3-МП/2-МП	Конверсия,	XI-C6	Xi-C ⁵ + I-C ⁶	Селективность по i-C ⁶ , %	2,2-ДМБ/І-С6, % (мас.)
3.1	^v 573	19,82	9,51	30,99	19,51	20,19	2,05	3,25	0,63	79,81	60,00	67,84	75,2	15,9
3.2	* 523	0,16	3,60	25,79	13,69	56,71	3,80	7,16	0,53	43,29	43,08	43,14	99,5	8,4
	548	1,43	8,84	39,34	20,69	29,72	2,34	4,45	0,53	70,28	68,80	69,27	97,9	12,8
	573	12,87	12,04	35,94	19,84	19,69	1,64	2,98	0,55	80,31	67,82	74,10	84,4	17,8
3.3	* 523	0,21	5,28	27,90	16,14	50,33	3,06	5,28	0,58	49,67	49,33	49,43	99,3	10,7
	548	0,25	6,27	36,69	23,04	33,53	3,67	6,33	0,63	66,47	66,26	66,36	99,7	9,5
	573	8,26	12,34	34,60	20,94	23,33	1,70	2,80	0,61	76,67	67,88	71,42	88,5	18,2
4.2	523	0,41	6,13	29,83	16,19	47,31	2,64	4,87	0,54	52,69	52,16	52,30	99,0	11,8
	548	3,35	13,17	39,52	21,81	22,38	1,66	3,00	0,55	77,62	74,08	75,22	95,4	17,8
	573	10,79	12,50	35,31	19,74	21,68	1,58	2,82	0,56	78,32	67,55	71,23	86,2	18,5

Таблица 4. Каталитические свойства палладий- и палладий-цирконилсодержащих образцов на основе деалюминированной породы Б

* Образец подвергался двухкратной кислотной обработке.

** На превращенный н-гексан.

В смесях бутанов и пентанов - продуктах гидрокрекинга исходного гексана - содержание изобутана выше, чем в равновесной смеси изомеров бутана, а содержание изопентана близко к таковому равновесной смеси изомеров пентана [7].

Величина объема микропор модифицированных пород 1-4 (табл. 2) показывает, что наблюдаемые раз личия каталитических свойств исследованных образ цов не определяются различиями их текстуры.В частности, уменьшение объема доступный: бензолу микропор при переходе от катализаторов 1.1 и 3.1 к катализаторам 2.1 и 4.2 соответственно приводит не к сниже нию выхода разветвленных изомеров гексана (в том числе 2,2-ДМБ), как можно было ожидать [1], а к его повышению (табл. 3, 4), в чем можно усмотреть суще ственный вклад внешней поверхности микрокристал лов, средний размер которых оценивается в 0,1 мкм [4], в реализацию реакции изомеризации.

Показательно изменяются соотношения 3-МП/2-МП, 2-МП/2,2-ДМБ и 3-МП/2,2-ДМБ при переходе от палладийсодержащих образцов 1.1 и 3.1 к палладий цирконилсодержащим 1.2 и 3.2: во всех случаях при 573 К они уменьшаются. Уменьшение особенно значи тельно для образца 1.2 на основе деалюминированной породы А. Измерение хемосорбции аммиака при тем пературе 573 К адсорбционно-весовым методом, опи санное в [4], показало, что по содержанию сильных кислотных центров деалюминированная порода А ус тупает деалюминированной Н-форме данной породы. Очевидно, дополнительное введение цирконила в пер вую из них особенно благоприятствует усилению кищения 2-МП в 3-МП, а последнего - в 2,2-ДМБ. Вместе с тем вполне естественным представляется более слабый синергетический эффект от введения цирконила в образец 2 на основе Н-формы породы А (больше исходных сильных кислотных центров), а также в образец 3 на основе деалюминированной породы Б (большее содержание сильных кислотных центров изза повышенного (табл. 1) содержания морденита, не разрушающегося в столь сильной степени, как клиноптилолит [3], при кислотной обработке исходных морденит-клиноптилолитовых пород).

В свете изложенного упомянутое изменение соста ва изомеризатов в сторону его приближения к равно весному при 573 К вполне естественно.

Модифицирование деалюминированных пород катионами цирконила влияет также на выход и состав продуктов гидрокрекинга (табл. 5): наряду с увеличением выхода углеводородов < C4 рост суммарного вы хода разветвленных изомеров гексана сопровождается соотношений ь СДн - C + ьC⁴) уменьшением И ьC⁵/(н-C⁵ + ьC⁵). В случае бутанов наблюдаемый эф фект может быть обусловлен приближением состава смеси изомеров к равновесному для данной темпера туры: при 573 К доля изобутана в равновесной смеси составляет 0,41 [7]. Возможно, такой подход применим и к объяснению изменений изомерного состава смеси пентанов, хотя в некоторых случаях концентрация изопентана несколько ниже его концентрации в равно весной смеси изомеров [1, 7]. Из данных табл. 5 следует также, что мольное содержание С4-С5 в катализатах существенно превышает мольное содержание углеводородов < C4.

Образование и состав продуктов гидрокрекинга н-гексана на декатионированных цеолитах обычно связывают [8] с образованием и последующим p-расщеплением разветвленных карбениевых ионов, содержащих более шести атомов углерода, а это означало бы, что вклад расщепления C-C-связей гексанов в образо вание продуктов гидрокрекинга не является опреде ляющим. Однако более вероятной нам представляется альтернативная трактовка.

Таблица 5. Состав продуктов гидрокрекинга н-гексана (T=573 K) на палладий- и палладий-цирконилсодержащих образцах

	Содерх						
	кин	0	o				
						-	'+
Ц						C	C
a3(< C4	i-C ⁴	н-С4	i- C5	н-С5	-	-
)6p						C	C
0						-	
1.1	0,31	0,59	0,33	1,40	0,54	0,64	0,72
1.2	0,61	0,79	0,48	1,13	0,48	0,62	0,70
2.1	0,90	2,09	1,24	3,50	1,26	0,63	0,74
2.2	1,24	2,45	1,44	3,41	1,35	0,63	0,72
3.1	0,91	5,14	2,31	7,84	3,62	0,69	0,68
3.2	2,40	2,60	2,24	3,74	1,89	0,54	0,66
3.3	0,44	1,09	1,30	3,54	1,89	0,46	0,65
4.2	1,53	1,98	1,79	3,68	1,81	0,53	0,67

Мы склоняемся к суперкислотному механизму изомеризации [4], согласно которому активация молекулы гексана сводится к ее протонированию с образованием неклассического карбоний-иона. Последний, теряя под воздействием палладия два превращается классический атома водорода. в карбокатион, который подвергается скелетной изомеризации, за чем следует возвращение палладием с водорода в виде протона и гидрид-иона образованием конечного разветвленного продукта и восстановлением кислотного центра Бренстеда.

Стадия собственно скелетной изомеризации сводится к внутримолекулярным перегруппировкам в карбоний-ионных интермедиатах. Перегруппировки включают в себя гидридный перенос, а также перенос углеводородных фрагментов интермедиата после отрыва последних по правилу р-расщепления в виде карбанионов CH^{3^-} , $C^2H^{5^-}$ и $C^3H^{7^-}$. Данные карбанионы, как и гидрид-ионы, возникая под воздействием положительного заряда интермедиата, будут присоединять ся к положительно заряженному атому углерода с последующим соответствующим перемещением заряда интермедиата и возникновением карбокатиона новой структуры. Поскольку все эти преобразования происходят на кислотном центре Бренстеда, то кристалличе скую решетку цеолита можно считать существенным стабилизирующим фактором по отношению к карбокатиону, поэтому вполне возможной представляется

стабилизация даже первичных карбокатионов [9]. Мы не исключаем, что описанные анионные переносы могут происходить при участии льюисовских кислотных центров, тогда как процессы дегидрогенизациигидрогенизации протекают на палладии. При таком подходе катализатор изомеризации был бы даже не би-, а трифункциональным.

Несмотря на высказанное выше предположение о значительном превращении гексана на внешней поверхности цеолитных кристаллов, которая при указанном среднем размере последних 0,1 мкм составляет величину на уровне 40 м² на 1 г катализатора [4], ∞ новные превращения происходят все же внутри цеолитных полостей. Распределение продуктов изомери зации в условиях кратковременности пребывания той или иной молекулы в полостях катализатора и воз можных диффузионных затруднений по отношению к молекулам определенных изомеров контролируемо не только термодинамически, но и кинетически, поэтому, как и в случае алкилирования изобутана бутенами на цеолитном катализаторе [10], возможны отклонения от равновесия в обе стороны.

Трактовка скелетной изомеризации через возникновение и перемещение карбанионов CH³, C²H⁵ и С³Н⁷ не исключает возможности отрыва гидрид-ионов от последних положительным зарядом интермедиата с нейтрализацией данного заряда гидрид-ионом и возникновением радикала CH2 (из CH3), который рекомбинирует с себе подобным радикалом до этилена, а также непосредственным возникновением этилена и пропилена из С²Н^{5⁻} и С³Н^{7⁻} соответственно. Возникшие этилен и пропилен дают С4 и С5 олефины, которые, гидрируясь, суммируются с образующимися из оставшихся на активных центрах линейных фрагментов парафинами С⁴ и С⁵. С учетом упомянутой возможной стабилизации первичного карбокатиона при образовании С4- и С5-углеводородов из этилена и пропилена может иметь место преимущественное возникновение линейных структур. Отсюда - молярная диспропорция между С1-С3 и С4-С5 в продуктах реакции в пользу C4-C5, равно как и падение соотношений 1-C4/(1-C4+н-C4) и ьС5/(1-C5+н-С5) на цирконил содер жащем катализаторе.

Из исследования температурной зависимости изомеризации (табл. 3, 4) вытекает, что в случае цирконилсодержащих катализаторов на основе обработанных кислотой Н-форм пород суммарный выход разветвленных гексанов может быть увеличен (по сравнению с наблюдаемым при 573 К) за счет снижения температуры процесса до 548 К. При этом резко снижается скорость гидрокрекинга гексанов и соответственно возрастает селективность процесса изомеризации. Увеличение содержания цирконила с 0,6 до 2,05 % (мас.) (образцы 3.2 и 3.3) не приводит к дальнейшему росту активности катализатора. Положительный эффект в данном случае наблюдается только при темпе-

ратуре 523 К в условиях относительно низкой конверсии гексана (табл. 4). В целом наблюдаемое изменение состава смеси изомеров гексана в зависимости от температуры изомеризации (табл. 3, 4), судя по величине отношений 3-МП/2-МП, 2-МП/2,2-ДМБ, н-С6/1-С6, оп ределяется, как упоминалось, тенденцией приближения состава смеси к равновесному при повышении температуры процесса. Так, при 573 К отношение 3-МП/2-МП в большинстве случаев практически совпадает с равновесным соотношением данных изомеров -0,55 [7], тогда как отношение 2-МП/2,2-ДМБ падает в 1,7-4,2 раза при повышении температуры с 523 до 573 К. Важно, что модифицированные катионами цирконила декатионированные формы пород, различающиеся фазовым составом (образцы 2.2, 4.2), при температуре 523-548 К близки по каталитической активности и селективности. С учетом изложенного выше это указывает на возможность использования морденитклиноптилолитов^гх пород месторождения Липча без специального отбора сырья с определенным соотношением морденитовой и клиноптилолитовой фаз.

Таким образом, модифицирование палладийсодержащих катализаторов изомеризации на основе при родных цеолитов цирконилом заметно повышает эф фективность образцов, что связано с увеличением си лы их кислотных центров.

Литература

1. Болтон А. П., Химия цеолитов и катализ на цеолитах/ Под ред. Дж. Рабо, Москва, Мир, 1980, Т. 2, 337-409.

2. Бобонич Ф. М., Манза И. А., Патриляк К. И. и др., *Минерал. журн*, 1995, **17** (4), 85.

3. Бобонич Ф. М, Патриляк К. И., Волошина Ю. Г. и др., *Теорет. иэксперим. химия*, 1997, **33** (6), 385.

4. Patrylak K. I., Bobonych F. M., Voloshyna Yu., G. et al., *Appl. Catal. A: General*, 1998, **174**, 187.

5. Patrylak K. I., Bobonych F. M., Voloshyna Yu..G. et al., *Book of Abstracts of the 4th European Congress on Catalysis (EuropaCat-4)*, Rimini, Italy, 1999, 596.

6. Szabo G., Cormerais F.-X., *PREPRINTS, Amer. Chem. Soc., Div. Petr. Chem.*, 1991, **36** (4), 848.

7. Егиазаров Ю. Г., Савчиц М. Ф., Усталовская Э. Я., Гетерогенно-каталитическая изомеризация углеводородов, Минск, Наука и техника, 1989.

8. Пуцма М. Л. Химия цеолитов и катализ на цеолитах/ Под ред. Дж. Рабо, Москва, Мир, 1980, Т.2, 5-125.

9. Patrylak K. I., Manza I. A., Urusova N. P., Zub Yu., *PREPRINTS, Amer. Chem. Soc., Div. Petr. Chem.*, 1997, **42** (4), 773.

10. Kirsh F. W., Potts J. D., Barmby D. S., J. Catal., 1972, 27 (1), 142.

Поступила в редакцию 31 январяі 2000 г.

Гідроізомеризація н-гексану на паладій- та цирконілвмісних модифікованих морденітклиноптилолітових породах

К. І. Патриляк¹, Ф. М. Бобонич², Л. К. Патриляк¹, Ю. Г. Волошина², М. М. Левчук¹, В М. Соломаха², І. М. Цуприк¹

¹ Інститут біоорганічної хімії та нафтохімії НАЛ України, Україна, 02094, Київ, вул. Мурманська, 1; факс: (044)573-25-52 ² Інститут фізичної хімії ім. Л.В.Писаржевського ЛАН України, Україна, 02039, Київ, просп. Науки, 3; факс (044)265-62-16

На основі модифікованих морденіт-клиноптилолітових порід українських родовищ синтезовано ряд Рсі-вмісних (0,5 % (мас.)) каталізаторів, промотованих хлористим цирконілом. Зразки випробувано в ізомеризації н-гексану: проточні умови; 523-573 К; З МПа Зміна вмісту морденітової компоненти початкових порід у межах 49-72 % (мас.) практично не впливає на каталітичні властивості промотованих зразків; крім того, промотування, дозволяє знизити температуру ізомеризації. Розподіл продуктів реакції трактовано з позицій перебігу ізомеризації через гідридний та карбаніонний переноси на центрах Бренстеда та Льюїса за участю деї дрогенізаційно-гідрогенізаційних центрів.

Linear Hexane Isomerization on the Palladiumand Zirconyl-Containing Modified Mordenite-Clinoptilolite Rocks

K. I. Patrylyak¹, F. M. Bobonych², L. K. Patrylyak¹, Yu. G. Voloshyna², M. M. Levchuk¹, V. M. Solomakha², I.M. Tsupryk¹

¹Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine, 1, Murmanskaya Str., Kyiv, 02094 Ukraine; Fax: (044) 573-25-52 ²L. V. Pisarzhevskij Institute of Physical Chemistry of NAS of Ukraine; 31, prosp. Nauky, Kyiv, 02039, Ukraine; Fax: (044)265-62-16

A range of Pd-containing (0.5 wt %) catalysts, promoted by Z1OCI2, has been synthesized on the basis of the modified mordenite-clinoptilolite rocks of Ukrainian deposits. The samples in the linear hexane isomerization are tested: flow conditions, 523-573 K, 3 MPa The catalytic properties of promoted samples are practically not influenced by the change of parent rock mordenite contents within 49-72 % Besides, promotion allows to decrease the isomerization temperature. The reaction product distribution from the positions of isomerization proceeding through the hydride and carbanion transitions on the Broensted, Lewis and dehydrogenization-hydrogenization sites has been treated.