В.В. Круковская, канд. техн. наук (ИГТМ НАН Украины) ИЗМЕНЕНИЕ ПАРАМЕТРОВ ПРОЦЕССА ВЫБРОСА УГЛЯ И ГАЗА В ЗАВИСИМОСТИ ОТ ДЛИНЫ ШПУРОВ ДЛЯ ОТБОЙКИ УГЛЯ И ПОРОДЫ

Виконано чисельне моделювання процесу викиду вугілля та метану у вибої одиночної гірничої виробки, що проводиться буропідривним способом. Розглянуто ініціювання процесу викиду у випадках різної довжини шпурів для відбивання вугілля та породи. Проаналізовано зміну розподілів коефіцієнтів проникності поперед вибоєм, значень тиску газу та швидкості утворення порожнини викиду вугілля та газу.

CHANGE OF PARAMETERS OF THE COAL AND GAS OUTBURST DEPENDING ON LENGTH OF BLAST-HOLES FOR COAL AND ROCK BREAKING

Numerical modeling of process of coal and methane outburst in a working face of single opening, what is driving by drill and fire system, is executed. Initiation of coal and methane outburst process in cases of various length of blast-holes is observed. Change of distribution of permeability coefficient ahead of a face, pressure values and speed of formation of outburst cavity is analysed.

Взрывные работы на выбросоопасных пластах ведутся в режиме сотрясательного взрывания, направленного на защиту людей от опасных последствий внезапных выбросов [1, 2]. В результате специальной организации производства взрывных работ и применения особых схем расположения и взрывания шпуровых зарядов при отсутствии людей в проводимой выработке и в опасной зоне либо провоцируются выбросы угля и газа либо снижается их частота и интенсивность. Заряды ВВ по углю рассчитываются как заряды камуфлетного рыхления. Это делается для того, чтобы создать вокруг шпуров системы трещин [3]. В этом случае происходит интенсивная дегазация угольного пласта и снятие напряженного состояния в пределах контура выработки.

Задача о взрыве зарядов ВВ в газонасыщенном углепородном массиве с одиночной выработкой является связанной задачей второго класса, состоящей в определении изменяющегося во времени напряженно-деформированного состояния породного массива, параметров нестационарной фильтрации метана и распространения взрывной волны. Изменение напряженно-деформированного состояния среды влечет за собой изменение ее проницаемости. Поле значений коэффициентов проницаемости обуславливает изменение параметров фильтрации газа, в том числе и его давление в трещинно-поровом пространстве. В свою очередь, изменение давления газа влияет на напряженное состояние среды. Кроме этого, во время распространения волны сжатия от взрыва заряда BB скачок давления на ее фронте и отраженная от поверхности забоя волна растяжения накладывают определенные возмущения на поле напряжений и поле давлений газа.

Для упрощения расчетов примем, что взрывание шпуровых зарядов в забое выработки происходит одновременно. В этот же момент времени вглубь массива начинает распространяться волна сжатия, накладывая на существующее поле напряжений дополнительные сжимающие напряжения, вызванные взрывом.

Для расчета радиальной $\sigma_r(r,t)$ и тангенциальной $\sigma_{\varphi}(r,t)$ составляющих волны напряжений от взрыва сосредоточенного заряда, в диапазоне расстояний $r = (20 \div 100)R_0$, где R_0 – радиус заряда, будем использовать зависимости Боровикова В.А. и Ванягина И.Ф. [4].

Когда волна сжатия подходит к открытой поверхности забоя, она отражается от нее, превращаясь в волну растяжения, центром которой является точка, симметричная центру взрыва относительно поверхности забоя.

Напряженно-деформированное состояние породного массива в окрестности горной выработки, проницаемость среды и нестационарное движение газа в нарушенном массиве описываются системой уравнений [5]:

$$\sigma_{ij,j} + X_{i}(t) + Y_{i}(t) + T_{i}(t) + P(t) = \rho_{n} \left(\frac{\partial^{2} u_{i}}{\partial t^{2}} \right), \ i, j = x, y;$$

$$\mu_{2} \frac{\partial p}{\partial t} + \frac{\partial}{\partial x} \left(k \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial p}{\partial y} \right) + q(t) = 0;$$

$$k = k_{me\kappa m}(x, y) + k_{mex \mu} \left(\sigma_{ij}, t \right);$$

$$k_{mex \mu}(\sigma_{ij}, t) = \begin{cases} 0 \operatorname{прu} Q < 0.7; \\ k_{\min} \operatorname{пpu} 0.7 < Q < 0.8; \\ k_{\max} \operatorname{пpu} P < 0.1; \end{cases}$$
(1)
(1)

где $\sigma_{ij,j}$ – производные от компонент тензора напряжений по x, y; t – время; $X_i(t)$ – внешние силы; $Y_i(t)$ – сила воздействия взрывной волны; $T_i(t)$ – силы, вызванные внутренним трением, $T_i(t) = -c_g \partial u_i / \partial t$; c_g – коэффициент демпфирования, определяемый экспериментально; u_i – перемещения; P(t) – сила давления газа; ρ_n – плотность породы; μ_e – вязкость газа; p – его давление; q(t) – интенсивность источников газовыделения; k – полное поле коэффициентов проницаемости пород; k_{mexn} – технологическая проницаемость, вызванная перераспределением поля напряжений в результате проведения горной выработки; $k_{mexm}(x, y)$ – начальная, тектоническая проницаемость, которая развивается в углях в результате тектонических процессов; $Q = (\sigma_1 - \sigma_3)/\gamma H$ и $P = \sigma_3/\gamma H$ – геомеханические параметры.

Для математического описания процесса перехода горных пород в нарушенное состояние применяется условие прочности Кулона-Мора, которое учитывает возможность возникновения разрушения как в результате сдвига, так и в результате отрыва. Начальные и граничные условия для данной задачи:

$$\begin{split} \sigma_{yy}\Big|_{t=0} &= \gamma h; \qquad p\Big|_{\Omega_1(t)} = 0.8 \cdot \gamma_{oodol} h; \\ \sigma_{xx}\Big|_{t=0} &= \lambda \gamma h; \qquad p\Big|_{\Omega_2} = p_v; \quad p_v = 0.1 \text{ MII}a; \\ \sigma_{zz}\Big|_{t=0} &= \lambda \gamma h; \qquad k_{mekm} = f(x, y); \qquad (2) \\ p\Big|_{t=0} &= 0.8 \cdot \gamma_{oodol} h; \qquad u_x\Big|_{\Omega_3} = 0; \\ p\Big|_{t=t_{63P}, x=x_{63P}, y=y_{63P}} &= \frac{P_d}{2}; \qquad u_y\Big|_{\Omega_4} = 0; \end{split}$$

где γ - усредненная плотность вышележащих горных пород; h - глубина разработки; λ - коэффициент бокового распора; γ_{sodbl} - плотность воды; $\Omega_1(t)$ - изменяющаяся во времени граница области фильтрации; Ω_2 - внутренний контур; Ω_3 - вертикальные границы внешнего контура; Ω_4 - горизонтальные границы внешнего контура; p_{ℓ} - детонационное давление; t_{esp} - момент взрыва; x_{esp} , y_{esp} - координаты центра взрыва.

Исходя из полученных авторами [6] данных, можно сказать, что детонационное давление для основных BB, применяемых на практике, изменяется в пределах $p_d = 1500 \div 24000 M\Pi a$.

Чтобы получить решение системы (1) с начальными и граничными условиями (2) на определенном временном промежутке, применяется конечноразностный метод. При этом считается, что в начальный момент времени t = 0 распределение напряжений и давления задано, и для достаточно малых значений Δt с помощью итерационных соотношений получаем распределение напряжений, давления метана, скоростей его течения и расходов на момент времени $t + \Delta t$. Этот процесс продолжается от исходного состояния до любого текущего момента времени.

Рассмотрим случай, когда забой выработки высотой 3 *м* находится на расстоянии 9,75 *м* от тектонического нарушения типа «сброс» с амплитудой смещения 1 *м*, вокруг которого расположена десятиметровая зона перемятого угля. Мощность выбросоопасного угольного пласта – 1,5 *м*, глубина проведения выработки – 1000 *м*. Газоносность угля – 20 m^3/m , содержание метана в свободной форме – 10 %, в сорбированной – 90 %. Вмещающая порода – аргиллит. Свойства пород приведены в табл. 1.

Выработка проводится буровзрывным способом в режиме сотрясательного взрывания. Радиус заряда – $R_0 = 0,025 \, m$, длину шпуров будем варьировать в пределах от 1,4 до 5,0 *m*.

Порода	Модуль упругости, <i>E</i> , <i>МПа</i>	Коэффи- циент Пуассона, <i>µ</i>	Сцепле- ние, <i>С</i> , <i>МПа</i>	Угол внутреннего трения, φ°	Прочность на растяже- ние, σ_p , <i>МПа</i>	Плот- ность, р , <i>кг/м</i> ³	Скорость звука в породе, <i>с</i> , <i>м/с</i>
Аргиллит	10^{4}	0,2	3,5	30	-2	$2*10^{3}$	$5*10^{3}$
Уголь	$5*10^{3}$	0,2	1,75	30	-1	$1,25*10^3$	$3*10^3$

Таблица 1 – Характеристики пород

Расчеты проводятся с применением метода конечных элементов. Конечноэлементная сетка, шпуры для отбойки угля и породы показаны на рис. 1. Шаг по времени составляет 0,1 *с*. Взрывание происходит в момент времени t = 0,2 *с*.

Рис. 1 – Центральный фрагмент конечно-элементной сетки со шпурами для отбойки угля и породы (1-3)

Выполним расчет для случая взрывания зарядов 1-3 с длиной шпуров $l_{u} = 1,4; 2,0; 3,0; 4,0; 5,0$ *м*. Получим распределения геомеханических и фильтрационных параметров в различные моменты времени. Анализ полученных данных показывает, что в первых двух случаях сразу же после взрывания шпуровых зарядов начинает развиваться процесс выброса угля и метана, рис. 2. Видно, что в момент взрыва, t = 0,2 *c*, в точках взрывания давление газа высоко, но уже на следующих итерациях зоны повышенного давления исчезают, в местах взрывов образуется полость, сообщающаяся с выработкой, давление газа в ней практически равно атмосферному.

В случае $l_{u} = 2,0 \ m$ время протекания динамического процесса – 7 с. В течение этого времени градиенты давления принимают очень высокие значения. Происходит образование полости выброса в угольном пласте, длина которой достигает 6,6 m. Затем рост полости останавливается (рис. 2, д), скорости течения метана падают, давление метана в угольном пласте продолжает медленно снижаться – геомеханические процессы и процесс течения газа возвращаются к квазистационарному режиму.

Рис. 2 – Относительное давление метана и рост полости выброса, $l_{uu} = 2,0 \ m$

Рис. 3 – Относительное давление метана и рост полости выброса, $l_{uu} = 3,0 \ m$

При $l_{ul} = 3,0 \ m$ развитие процесса выброса начинается на 5-ой секунде, рис. 3. В этом случае время протекания динамического процесса составляет 3 *c*, в течение которых образуется полость длиной 5,5 *m*. Вплоть до начала выброса в массиве, в области взрывания зарядов сохраняется зона повышенного давления газа, которая исчезает только, когда полость выброса достигает ее границ.

Рис. 4 – Относительное давление метана, $l_{uu} = 5,0 \ m$

На рис. 4 приведены изобары относительного давления газа перед забоем выработки, когда длина шпуров равна 5,0 *м*. Как видно, при $l_{uu} = 5,0$ *м*, так же, как и при $l_{uu} = 4,0$ *м*, процесс выброса угля и метана не развивается. Зона повышенного давления в области взрывания зарядов исчезает в результате фильтрации газа по нарушенному угольному пласту и породам в пространство выработки. Фильтрация происходит постепенно, в течение 30 *с*. В забое выработки, в угольном пласте, образуется небольшая полость. Из-за малости объема высыпавшегося угля это явление следует отнести скорее к вывалу или высыпанию угля.

На рис. 5 показано изменение максимального значения коэффициента проницаемости массива впереди забоя во время протекания динамических процессов в рассмотренных пяти случаях.

Рис. 5 – Изменение максимального значения коэффициента проницаемости массива впереди забоя

Видно, что увеличение проницаемости во время выброса происходит постепенно, значения коэффициента проницаемости в это время находятся в пределах от 0,8 до 1,0 *мДа*, рис. 7, L=1,4; L=2,0 *м*. Если же взрывание шпуровых зарядов не сопровождается выбросом, рис. 4, L=4,0; L=5,0 *м*, то в течение первых 5 *с* проницаемость массива принимает максимальные значения в местах взрыва, и эти значения в 2 раза выше, чем в случаях L=1,4; L=2,0 *м*.

Рост длины полости выброса показан на графиках, рис. 5. Скорость образования полости в случаях L=1,4; L=2,0 *м* составляет 0,86 *м/с*, в случае L=3,0 *м* – 1,45 *м/с*.

Рис. 5 – Рост длины полости выброса

По результатам имитационного моделирования можно сделать следующие выводы. Развитие процесса выброса угля и метена в выбросоопасной зоне тектонического нарушения при проведении выработки буровзрывным способом зависит от длины шпуров для отбойки угля и породы. При $l_{ul} < 3,0$ *м* взрывание шпуровых зарядов сопровождается выбросом, который инициируется в результате суммарного действия растягивающих напряжений, возникающих в призабойной зоне, и отраженной от поверхности волны растяжения от взрыва шпуровых зарядов.

При $l_{u} = 3,0 \ м$ процесс выброса инициируется с замедлением в 5 с.

При *l_u* > 3,0 *м* выбросов угля и метана не происходит. При увеличении длины шпуров вероятность возникновения выбросов угля и метана снижается за счет увеличения глубины зоны разгрузки призабойной части угольного пласта.

Увеличение глубины зоны разгрузки призабойной части угольного пласта за счет опережающего взрывного воздействия используется для снижения интен-

сивности и частоты выбросов угля и метана при сотрясательном взрывании во время проведения подготовительных выработок смешанным забоем на особовыбросоопасных пластах, в зонах геологических нарушений и повышенного горного давления [7]. Этот способ называется способом передового рыхления угольного массива и вмещающих пород и заключается в предварительном взрывании в выбросоопасной зоне или над ней 2-3 зарядов рыхления, длина которых в 2 раза больше глубины шпуров, используемых для отбойки угля и породы.

СПИСОК ЛИТЕРАТУРЫ.

1. Шевцов Н.Р., Таранов П.Я., Левит В.В., Гудзь А.Г. Разрушение горных пород взрывом: Учебник для вузов. – 4-е издание переработанное и дополненное – Донецк, 2003. – 253 с.

2. Правила ведення гірничих робіт на пластах, схильних до газодинамічних явищ. // Стандарт Мінвуглепрому України. СОУ 10.1.00174088.011-2005. – К.: Мінвуглепром України, 2005. – 226 с.

3. Петросян А.Э., Иванов Б.М. Причины возникновения внезапных выбросов угля и газа. // В сб. науч. трудов ИГД им. А.А. Скочинского «Основы теории внезапных выбросов угля, породы и газа» – М.: Недра, 1978. – С. 3-61.

4. Боровиков В.А., Ванягин И.Ф. Моделирование действия взрыва при разрушении горных пород. – М.: Недра, 1990. – 231 с.

5. Круковская В.В. Изучение параметров процесса выброса угля и газа с использованием компьютерного моделирования //Деформирование и разрушение материалов с дефектами и динамические явления в горных породах и выработках: Матер. XVII Межд. науч. школы. – Симферополь: Таврич. нац. ун-т, 2008. – С. 152-154.

6. Ефремов Э.И., Харитонов В.Н., Семенюк И.А. Взрывное разрушение выбросоопасных пород в глубоких шахтах. – М.: Недра, 1979. – 256 с.

7. Инструкция по применению сотрясательного взрывания в угольных шахтах Украины. - Макеевка: Мак-НИИ, 1994. – 46 с.