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The Gibbs states of a spin system on the lattice Z¢ with pair interactions Jyyo(z)o(y) are studied. Here
(x,y) € E,i.e. z and y are neighbors in Z%. The intensities J..,, and the spins o(z), o(y) are arbitrarily real.

To control their growth we introduce appropriate sets J, C RE and S, C RZ’ and show that, for every
J = (Jzy) € Jq: (a) the set of Gibbs states G,(J) = {u : solves DLR, u(Sp) = 1} is non-void and weakly
compact; (b) each p € G, (J) obeys an integrability estimate, the same for all ;.. Next we study the case where
Jq is equipped with a norm, with the Borel o-field B(7;), and with a complete probability measure v. We show
that the set-valued map J; > J — G,(J) has measurable selections J; > J — u(J) € Gp(J), which are
random Gibbs measures. We demonstrate that the empirical distributions N—1 ZnNzl A, (-], &), obtained
from the local conditional Gibbs measures 74, (-|J,£) and from exhausting sequences of A, C Z?, have
v-a.s. weak limits as N — +o0, which are random Gibbs measures. Similarly, we show the existence of the
v-a.s. weak limits of the empirical metastates N1 27]:7:1 O p, (19,6) which are Aizenman-Wehr metastates.
Finally, we demonstrate that the limiting thermodynamic pressure exists under some further conditions on v.

Key words: Aizenman-Wehr metastate, Newman-Stein empirical metastate, chaotic size dependence,
Komlos theorem, quenched pressure, spin glass
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1. Introduction

In the present note, we announce a number of the results describing Gibbs states of a lattice
system with unbounded spins and unbounded random interactions. Their complete proof will be
published in a separate work. Our motivations, as well as the discussion of the connections of our
results with those known for spin models with random interactions are given in section 3.2 below.

Throughout the note, for a topological space S, by P(S) we denote the set of all probability
measures on (S, B(S)), where B(S) will always stand for the corresponding Borel o-field.

Given a countable set X, a random field on X is a collection of random variables - spins, defined
on some probability space and taking values in the corresponding single-spin (Polish) spaces S,
x € X. In a ‘canonical version’, the probability space is (S, B(S), 1), where S is the product space
of all S,.. Then the notion random field is attributed to the latter measure as well. A particular case
of such a field is the product measure of some single-spin probability measures ., * € X. Gibbs
random fields with pair interactions are constructed as perturbations of [] .« xz by the ‘densities’

exp [ S Way(o(@), o) | (L1)
(w,y)

where Wy, : Sy x S, — R are measurable functions — interaction potentials, whereas the sum
is taken over a subset of X x X. Such a field defines the graph G = (X,E), where the set of
edges E consists of those pairs {x,y} where Wy, is not the zero function. The case of a special
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interest is where the potentials are random. Then one deals with another random field, this time
on E, represented by the triple (W, F, P). Here W is the space of interactions consisting of W =
(Way)(z,yyce, F is an appropriate o-field, and P is a probability measure. A standard assumption
is that the degree of each vertex is finite and that the functions Wy, : S; x Sy — R are P-almost
surely bounded, in which case the interactions are called regular, c.f. Definition 6.2.1 in [1], page 99.
The only irregular case studied in the literature is that of the long-range spin glasses, where the
single-spin spaces are finite, and thus the functions W, are bounded, but the vertex degrees are
infinite. In the case of regular W, a measurable map

WS W e u(W) € P(S) (1.2)

is called a random Gibbs measure, or a random Gibbs state, if for P-almost all W, u(W) has a
Markov property, standard for Gibbs measures, c.f. Definition 6.2.5 in [1]. The measurability in
(T2 is the key point since only in this case one can speak about averages with respect to the
disorder, that is, about the expectations Ep® (EM(W)F), where FF : § - Rand & : R - R
are appropriate functions, see the discussion in section 6.2 in [1]. In general, for models with the
interactions (), there might exist multiple Gibbs measuredl]. Hence, the map W s {u(W) : (W)
is a Gibbs measure} can be set-valued and the existence of its measurable selections (2] is not
obvious. To the best of our knowledge, in a systematic way this aspect of the theory has never
been discussed so far. Thus, one of the aims of this work is to look at the problem of Gibbs fields
with random interactions from the point of view of the set-valued analysis |2]. Another aim is
to elaborate a method, which would allow us to study the models with unbounded interactions
— the other irregular case that has not been studied yet. In order to make the things as much
transparent as possible, we consider the simplest case where the graph is a lattice Z? with the edge
set E = {(z,y) : |x — y| = 1}, whereas the interaction potentials have the form

Wy (u,v) = Jyyuv, Joy, u,v € R, (1.3)

that is, all S, are the copies of R. In the physical terminology, this is a lattice spin model with
unbounded spins and a harmonic pair interaction. The existence and the properties of the corre-
sponding Gibbs fields for all J,, being the same (or just uniformly bounded) and nonrandom have
been studied since the 1970th, see [3, 4] and the bibliographic notes in [5]. However, the case of
SUP(y ek |Joy| = +00 has not been studied so far. To control the growth of J = (Juy)(s.y)cE and

o = (0(x))zex, we introduce two Banach spaces J, C RE and S, C RZ*. They are large enough
so that every ball in J, contains J with arbitrarily big |Jy,|. Then the interaction randomness is
realized as the triple (7, B(J,),v), where v is a general complete probability measure (need not
be product, etc). For every finite A C Z?, by means of the potentials (I3)) we introduce the local
conditional Gibbs measure wa(-|J,§), J € J; and € € Sp,, which then allows us to define the set of
tempered Gibbs measures G, (J) consisting of those p € P(de) which solve the DLR equation and
are such that p(S,) = 1. We claim that:

a) for every J € J,, the set G,(J) is non-void and weakly compact, and that each
q P
w € Gp(J) obeys an integrability estimate, the same for all such p (Theorem [B);

(b) the map J, > J — G,(J) is measurable, as a set-valued map, and hence there exist
measurable selections J; 2 J — u(J) € G,(J)(Theorem [3.7]).

The key element of the proof of (a) is an integrability estimate for the measures 7 (-|J,£) which
implies the existence of accumulation points of the family {ma(:|J,€)} aocza, that are elements of
Gp(J). Then, the corresponding estimate for ¢ € G,(J), which holds uniformly for all such p and
all || J|lq < R, R > 0, are obtained therefrom. This allows us to prove that the map J; 3 J — Gp(J)
is upper semi-continuous, which extends the result obtained (for bounded interactions) in item (d)
of Theorem 4.23 in [6], page 72. By Theorem 8.1.4 of [2], page 310, the mentioned upper semi-
continuity implies the measurability of J, 3 J — G,(J), which in turn yields the existence of

1The a.s. uniqueness of Gibbs measures of disordered spin systems, as well as the problem of phase transitions,
are highly nontrivial, see the discussion and the corresponding references in section 6.3 in [1].
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measurable selections, see Theorem 8.1.3 in |2]. In Corollary B:2] we also establish the existence
of the averages E, ® (IEH( J)F) for appropriate functions F' and ®. Note that the constants in (B3]
are explicitly expressed in terms of the model parameters.

As is commonly accepted, see chapter 7 in [6], the extreme elements of G,(.J) correspond to
thermodynamic phases of the physical system modeled by the family {wa(:|J,&)} acze. These
elements are contained in the set of limiting Gibbs measures (Minlos states), see Corollary 7.30
on page 135 in [6], which are exactly the accumulation points of {ma(-|J,£)} Acz¢. The physical
meaning of such limiting Gibbs measures is that they approximate Gibbs measures of large finite
systems, c.f. the corresponding discussion in [7]. The random Gibbs measures obtained in (b)
as measurable selections need not be limiting Gibbs measures — thus, the result of Theorem [3.4]
has rather got a theoretical value from the point of view of physics. The characteristic feature
of the spin models with random interactions is the so-called chaotic dependence of the measures
wa(-]J,€) on A, see [8] and the references cited therein. This means that the limits of the sequences
{74, (:|7,€)}nen need not be measurable (with respect to J) and hence cannot serve as limiting
random Gibbs measures. With the help of the Komlds theorem [9, 110] in Theorem we obtain
that,

(c) for every £ € S, there exists a random Gibbs measure p&(.J) and an exhausting
sequence D = {A, }en such that u¢(J) is the v-a.s. weak limit of the sequence
of ‘empirical distributions’

N
L3 ma (118, NeN (1.4)
n=1

Under rather general assumptions, each Gibbs measure has an extreme decomposition, see Theo-
rem 7.26 in |6], page 133. Thus, every measurable selection can be written in the form

u(J) = / () (dp). (15)

gex(J)

Here G;*(J) is the extreme boundary of G,(J) and t(J) is a weight, uniquely determined by p(.J).
This decomposition holds for all J € [J,, however, the weights w(J) need not be J-measurable.
Suppose now that a representation holds, which is similar to (I3 with a measurable weight and
the integral taken over the whole set G,(J). Then it yields a random Gibbs measure and the
corresponding weight is called an Aizenman-Wehr metastate [11l], see also page 103 in [1] and
Definition 2.4l below. In Theorem B.7] we show that

(d) for every £ € S,, there exists an Aizenman-Wehr metastate m¢(J) and an exhausting
sequence D = {A, },en such that m&(J) is the v-a.s. weak limit of the sequence of
empirical metastates { N1 2521 Ora, (-|7,6) JNEN-

The thermodynamic pressure, or the free energy density, is an important characteristic which one
obtains in the thermodynamic limit, see. e.g. the discussion in [1], p. 24-28. For non-random
(translation invariant) systems, the pressure exists and is independent of the way the limit has
been taken, see sections 2 and 3 in [3] or Theorem 3.10 in [12]. In Theorem B.8] we show that under
an additional condition on the measure v the pressure can be obtained as the almost sure limit of
the local pressures, ‘averaged’ over { A, } similarly as in (L4). In Theorem [3.9] we assume that v is
a product measure with the zero first moment and prove that all the sequences of local pressures
averaged over the disorder have one and the same thermodynamic limit — the quenched pressure.
In proving Theorems and [3.9] we employ a version of the first GKS inequality, known for such
models with J;, > 0, which we obtain here by extending the approach of [13, [14] to the case of
unbounded interactions.
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2. Setup

2.1. General setting

In constructing Gibbs random fields, we follow the standard scheme [6]. Our Gibbs fields will
live on the set X = Z¢, d € N, equipped with the adjacency relation  ~ y defined by the condition
|z —y| = 1. By E we denote the set of edges of the corresponding graph. We also use the shorthand

SeY. swesp Y- ¥
x x

z€Zd r € Yy~ yeZL: y~x

The set RZ" is equipped with the product topology, which turns it into a Polish space — a sepa-
d

rable and completely metrizable topological space. Let Cy, (RZ ) be the Banach space of bounded

continuous functions f : RZ" — R with the norm

[flloc = sup |f(o)].

ocRrz?

By means of Cy, (de) we define the weak topology on the set of all probability measures ’P(]de)7
which turns it into a Polish space, see e.g. page 39 in [15].

For any A C Z%, we let A° def 74 \ 4; by writing A € X we mean that 0 < |A] < c0. A
sequence D = { A, }nen, such that A,, € Z? for all n € N, is said to be cofinal if it is: (a) ordered
by inclusion; (b) exhausting, i.e. such that each z € Z? belongs to a certain A,. For A C Z%, by
B a we denote the o-sub-field of B(de) generated by (o(x))zea. For A @ Z¢, a probability kernel
wa(+]) is a function on (B(de),RZd) such that for any ¢ € RZ", ma(-]€) is in ’P(]de)7 and for
any A € B(de), mA(A[") is Bae-measurable. Such a kernel is said to be proper if ma(A]-) = 1a(+)
for any A € Bac. Here 14(§) = 1if £ € A, and [4(§) = 0 otherwise. Given a family {ma}aezq,
suppose that there exists u € ’P(de) such that

p(AlBac) = ma(Al), (2.1)

which holds p-almost surely for all A € B(de) and A € Z¢. Then this measure p is said to
be specified by the family {ma} sez¢. In this case, all the kernels ma are p-almost surely proper,
and their family is p-almost surely consistent. The latter means that for p-almost all ¢ and all
A € B(RZY,
[ matdimmatanie) = a(ale), (22)
Rz4

which holds for any pair of subsets such that 4 C A. It should be pointed out that (ZI)) is
equivalent to

/ 7a(Al§)u(d€) = u(A), (2.3)

RZ¢

which holds for all A € B(de) and A € Z%. The condition (Z3J) is called the Dobrushin-Lanford-
Ruelle (DLR) equation. It is equivalent to

/ A (FIE)1(d€) = u(f), (2.4)

RZ4

for all f € Cb(RZd) and all A € Z¢. Here we use the notation

u(f) = / f(0)u(do). (2.5)
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2.2. The Gibbs fields

The Gibbs fields we are going to construct are specified by the kernels obtained as perturbations
of the products of single—spin measures by the factors (1)) with the functions Wy, as in (I.3). For

AeZand € € de, we set

—Ha(oal1,&) = Y Juo@oly)+ D Juyo(@)iy), (2.6)

(z,y)€EA T€EA, yeAC, zrvy

where E 5 consists of the edges with both endpoints in A. In the mentioned terminology, Ha(oalJ, §)
is the energy of interaction of the spins located in A with each other and with the fixed spins outside
A. For a family x = (Xz)zezd, Xz € P(R), we put

a(doa) = [ xa(do(a oa = (0(7))zea, (2.7)
€A

which is an element of P(RI4l). Thereafter, for A € B(R%"), we define

1

ma(AlJ,€) = 72009

/ La(oa x €ac) expl—Ha(oalJ,€)]xa(do). (2.8)
RIAI

Here Z(J,€) is a normalizing factor, that is,
2a(0,9) = [ expl-Ha(oal)a(doa) (29)
Rl4l
and the juxtaposition stands for the element of RZ" such that
(ca x€ac)(x) =0(x), foraxe A; (ca x&ac)(x) =&(x), forx e A°.

The family {ma}aeza is clearly consistent. It is the local Gibbs specification for our model.

As is typical of Gibbs measures of models with unbounded spins, the description of the prop-
erties possessed by all such measures is rather unrealistic. Usually, the study is restricted to those
measures which have a prescribed support property. Such measures are called tempered. To define
the mentioned property we use a weight function w : Z¢ — (0, 1], which by definition has the
following properties:

(a) ] €3 w(z) < o, (2.10)

T

(b) Jwy >0 w(z) < wow(y), for all x ~y. (2.11)
Note that wy > 1, otherwise one would get w(x) = 0. A typical example can be
w(z) = exp(—alz]), a>0. (2.12)

For w obeying [2I0) and ([ZI1)) and for a p > 1, we set

1/p
||0||p<2|0 )Pw(a ) : (2.13)

and
S, = LP(Z% w) = {c € R”" : ||o], < oo} (2.14)
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This will be the space of tempered spin configurations. Next, for ¢ > 1, we introduce the space of
tempered interaction intensities

1/q

g ={ D Waylfw(@) +w®)]] (2.15)
(z,y)€E

Ty = LI(E,w) = {J € RE : || ], < oo}.

Clearly, LP(Z%,w) and L9(E,w) are measurable subsets of the Polish spaces RZ" and RE, respec-
tively. We equip these sets with the corresponding norm topologies, which turns them into separable
Banach spaces. It can easily be shown (see also the Kuratowski theorem, page 15 in [15]), that

B(S,) = {S,NA: AeBRY). (2.16)
Thus, one can consider the set
Premp = {1 € PRE") : 1 (S,) = 1} (2.17)

The elements of Piemp are called tempered measures. Now we impose conditions on the family of
single-spin measures x = (Xg)gzezd- For A > 0 and g > 1, we set

sup/eXp (A|u|2q/(q_1)> X (du) = CL(N),

R
inf / exp <f)\|u|2‘1/(q*1)) Xa(du) = C_ (V). (2.18)
R
And then
Ky € {x = (Xa)oeza : VA >0 CL(\) < 00, C_(A) > 0}. (2.19)

As an example of x € K, one can take the copies of the measure xo(du) ~ exp(—V (u))du, where
V' is an even semi-bounded polynomial of degV” > 2¢/(q¢ — 1), c.f. [3,15]. This corresponds to the
physical model called an anharmonic crystal where the spins are the displacements of the oscillators
from their equilibrium positions.
In the sequel, we shall always choose J in J; and x in K, with one and the same ¢ > 1. We
also assume that this ¢ and p in (2I4) and (ZI7) satisfy
2q
- 7 2.20
p="q (2:20)
i.e. p > 2. As our main concern is the dependence on J, the dependence on x will always be
suppressed from the notations.

Definition 2.1 Given J = (Joy)(zy)ce € Ty and p as in (Z20), by G,(J) we denote the set of
all @t € Premp which solve the DLR equation (Z.3) with the kernels defined in (2.0) and (Z38). The
elements of G,(J) are called (tempered) Gibbs measures.

We recall that a probability space (2, O, P) is said to be complete if for every A such that P(A) =0,
each subset of A is in O. We also recall that J; is a separable Banach space.

Definition 2.2 By the lattice model with unbounded spins and unbounded random interactions we
mean the pair
(T, B(Ty),v) and {ra(-|],&): A€z JeJ, £€Sy},

where the probability space is complete and the kernels wa are defined in (2:8) and (2.8).
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Definition 2.3 A B(jq)/B(P(de))—measumble map Jy 3 J — pu(J) € P(de) is said to be a
random Gibbs measure if ((J) € G,(J) for v-almost all J € Jj.

Note that when we speak about a Gibbs measure ;1 we mean merely an element of a given G,(J).
However, a random Gibbs measure (1(J) will stand for a measure-valued function of J € Jj.

Let 9 denote the space of all probability measures on (P(RZ"), B(P(RZ"))). We equip it with
the weak topology and thereby with the Borel o-field 8. For every f € C} (de), the evaluation
map ’P(de) > u— p(f) is continuous and bounded.

Definition 2.4 A B(J;)/B-measurable map J; 3> J — m(J) € B is said to be an Aizenman-Wehr
metastate if

(a) m(J)(Gp(J)) =1 for v-almost all J € Jy;
(b) the map

Ve / pm(J)(dp) € PREY) (2.21)

P(RZY)
18 a random Gibbs measure.

Note that the integral in (Z2ZI]) is understood in terms of the pairing with f € C}, (de).

3. The results

3.1. Theorems

For R > 0, we set By(R) ={J € J; : | J|lq < R}. From (ZIF) it follows that

sup  sup |Jyy| = +o0, (3.1)
JEBy(R) (z,y)€E

for any R > 0. Recall that the set of tempered measures Piomp was defined in (ZI7). In the sequel,
when we discuss topological properties of G,(J) we always mean the topology induced by the weak

topology of the space P(de), defined by means of C,(R?).

Theorem 3.1 For every J € Ty, q¢ > 1, the set G,(J) (p as in (Z20)) is non-void and compact.
For any X > 0, there exist positive constants 1;(X\), i = 1,2, such that for every u € G,(J), the
following estimate holds

[ e (o) ntder) < exp (120 + T (3.2)
Rz¢
By Jensen’s inequality, one readily gets from (32)) the following.

Corollary 3.2 There exist positive constants A and B such that for any random Gibbs measure
w(J), the following estimate

/ B / lol2u()(do) | v(d) < / & (A+ BJl7)2) v(dJ) (3.3)

Tq 4 Tq
holds for any increasing function ® : Ry — R

Random Gibbs measures can be obtained as measurable selections.
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Definition 3.3 A measurable map J; > J — p(J) € P(de) such that
VieJy: ulJ) €Gy(J)
is called a measurable selection of the set-valued map Jq > J — Gp(J) C P(RZ").

Theorem 3.4 Let p and g be as in Theorem [31] and the probability space (Jy, B(Jy),v) be as in
Definition[ZZ4 Then the map J; > J — G,(J) has measurable selections.

It turns out that measurable selections constitute quite a big subset of the set of Gibbs measures,
c.f. item (vi) of Theorem 8.1.4 in [2], page 310.

Remark 3.5 There exists an at most countable family {p, }nen of measurable selections mentioned
in Theorem [3]) such that, for every J € Ty, the set {un(J)}nen C Gp(J) is dense in Gp(J). Thus,
Gp(J) ts a singleton for v-almost all J if there is only one measurable selection.

As was already mentioned in Introduction, only limiting Gibbs measures can serve as the approxi-
mations of the Gibbs measures of large finite systems, see [7]. In the next theorem, we obtain random
Gibbs measures as weak limits of the averaged kernels mp n. For a cofinal sequence D = {A,, }nen
and N € N, we set

2

o (] ],6) = Z PNQPASL (3.4)

Theorem 3.6 For every & € Sp, there exists a random Gibbs measure u¢ and a cofinal sequence
D such that, in the topology of P(de), one has p*(J) = imy_ 100 7o N (:|J, &) for v-almost all
J e Jy.

The fact that we use the sequences of averaged kernels to approximate the finite volume Gibbs mea-
sures rather than the sequences of kernels themselves can be explained by the chaotic dependence
of the kernels ma(+|J,€) on A, which is smoothed up in (B4).

For A € 74, let 9%(J) denote the d-measure centered at wa(-J,€), that is 9% (J)(A) =
A (ma(:]J,€)) for all A € B. Then for a cofinal sequence D and N € N, we set, c.f. (34),

¢ EER
0 N () =5 D%, (), (3.5)

which is the Newman-Stein empirical metastate, see equation (B19) in page 77 in [16] or equa-
tion (A18) in page 281 in [8]. Recall that the Aizenman-Wehr metastates were introduced in
Definition 2.4

Theorem 3.7 For every & € S,, there exists an Aizenman-Wehr metastate mé and a cofinal
sequence D such that, in the topology of B, m&(J) = im0 0%’N(J) for v-almost all J € J;.

For AeZ? Je Jq, and £ € S, the (local) pressure in A is
1
pa(J,§) = mlOgZA(J, €)s (3.6)

where Za(J,€) is the same as in ([Z9). Like in (B4, for a cofinal sequence D = {4, }nen and
N € N, we consider

2

poN(J;€) = Z (3.7)
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Let now u be a random Gibbs measure, see Definition Then

P = / pa(T,E)u()(de),

Rz¢
Pon(D) = [ pon(n()e), (33
RZ¢
are measurable functions of J € J,, and
¥(do,dJ) = p(J)(do)r(dJ) (3.9)

is a probability measure on the product space RZ" x Jq-

Theorem 3.8 Suppose that v has the property

sup /|Jzy|q1/(dJ) =a, < +o0. (3.10)
(w,y)€E

Ty
Then, for any random Gibbs measure u, there exists a cofinal sequence D such that the sequence
{ﬁ%,N(J)}NeN converges, for v-almost all J € Jy, to a certain p* € L'(J,,v). Furthermore, for v
obeying (ZI0), let ¥ be as in (T9). Then there exists a cofinal sequence D such that the sequence

{pp.~n(J,€)} nen converges, for 9-almost all (§,J) € RZ" x Jq, to a certain p € LI(RZd X Jg,9).

Imposing an additional condition on the measure v we can strengthen the above result as follows.
A cofinal sequence D = {A, },en is called a van Hove sequence if

o [0A,] . 04,]
£ — _
A T Y

see e.g. page 193 in [17]. Here 0A ={y € A® : Jxz € A z ~ y}.

Theorem 3.9 In addition to (FI0), assume that v is a product measure such that

/mey(dj) =0, (3.11)

Iq

for all {x,y) € E. Then, for any cofinal sequence D = {A, }nen, there exists the quenched pressure

pr = tim [ pa, (L0w(An) = swp [ patsowd)), (312)
n (X)j A@Zdj

which thereby is independent of D. Furthermore, for any random Gibbs measure i and any van
Hove sequence D = {A,}nen, we have that

p"™ = lim /1327 (Jv(dJ). (3.13)

n—-+o0o v

T

3.2. Comments

As was already mentioned, the model with the interaction as in ([26), and with the single-
spin measures xo(du) ~ exp(—V (u))du, describes an anharmonic crystal with unbounded random
interactions. On the other hand, this is an irregular model, which has not been studied yet and it
seems a challenging task to develop its mathematical theory. We plan to include a random external
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field into consideration in a separate work, c.f. [11]. All the results presented above can be readily
extended to any bounded degree graph, and, after some modifications, to unbounded degree graphs
of a certain kind [18]. They can also be extended to more general pair interaction potentials Wg,,
c.f. (L3). If every single-spin measure X, is supported on a bounded [a,b], then all the results
formulated above hold true with any ¢ and p = 2¢/(¢ — 1), including ¢ = 1 and p = oco. In this
case, we deal with regular random interactiondd. An important particular model of this kind is the
Edwards-Anderson spin glass, see section 2 in [8]. In this model, the spins take values £1 with equal
probabilities and the interaction intensities J,, are symmetric, typically Gaussian, i.i.d.. Note that
such a model meets the conditions of Theorem
More specific remarks to the above results are as follows:

e Theorem [3.1l The main point of this theorem is the lack of uniform boundedness of the
intensities Jyy, c.f. (B1)). Clearly, the growth of J,, should be controlled in one or another
way. We do this by imposing the temperedness condition ||.J||; < oo, which appears in
the right-hand side of (82)) and in similar estimates. The same results can be obtained for
the Euclidean Gibbs measures which describe equilibrium thermodynamic states of lattice
systems of interacting quantum anharmonic oscillators with random interactions. In this case,
our Theorem BJlwould be an extension of Theorems 3.1 and 3.2 of |[12] and of Theorems 3.3.1
and 3.3.6, p. 214-216 in [17]. For the Euclidean Gibbs measures, the single-spin spaces S,
are the copies of the space of periodic continuous functions o, : [0, 3] — R, where 5 > 0 is
the inverse temperature. In view of this, one needs to apply more sophisticated methods of
the path integral approach [17].

e Theorem [3.4. If J is random and fixed, the set G,(J) describes the equilibrium thermody-
namic states of the spin system with quenched disorder. In order to average over the disorder,
one has to have the measurability as in Definition In Theorem 3], we prove that G, (J) is
non-void by showing that the family {ma(:|J, &)} aeze possesses accumulation points, which
are tempered Gibbs measures. Each measure of this kind is, therefore, obtained as the limit
of {ma, (:|J,&) }nen for the corresponding sequence {A,, },en which, however, can depend on
J in an uncontrollable way (the so-called chaotic size dependenc). In view of this fact, it is
unclear whether these limiting points provide the measurability of J +— p(J). In Theorem B.4]
this measurability is obtained by means of general methods of the set-valued analysis. To the
best of our knowledge, this is the first instance of the use of such methods in the theory of
lattice models with random interactions.

e Theorems and [B.7] These theorems give a constructive procedure of obtaining random
Gibbs measures as the infinite volume limits. Even for p = co and ¢ = 1, i.e. in the regular
case of bounded interactions, Theorems and 37 are the corresponding extensions of
Theorems 6.2.6 and 6.2.8 in [1], p. 101-104. The novelty of these our theorems is that the
chaotic size dependence is harnessed with the help of the Komlds theorem [10] — a renowned
tool in the probability theory. This provides a new look at the approach put forward by
C. M. Newman and D. L. Stein, see [1, |7, [8, [16] and the references therein.

e Theorems [3.8] and B.9l For the translation invariant lattice systems with nonrandom
interactions, the thermodynamic pressure exists and is unique even if the Gibbs measures
are multiple, see Theorem 3.10 and Corollary 3.11 in [12], and/or Theorems 5.1.2 and 5.1.3
in [17). Thus, this is an important thermodynamic function by means of which one can
establish, e.g., the absence/existence of phase transitions, see [19] and/or chapter 6 in [17].
For disordered systems, the pressure in A € Z? clearly manifests the chaotic size dependence.
For the model considered here, we propose to eliminate this effect by passing to the averages
BI0), as we did in Theorems and B7 The existence of the limiting quenched pressure
obtained in (3I2)) is a generalization to unbounded spins of the relevant result of [13,/14]. The
important point in Theorem is that the pressure averaged over the disorder is the same

2See Definition 6.2.1 in [1.
3See the discussion in [§] and in [16], p. 55, 56, 64.

43601-10



Gibbs states of spin systems with unbounded disorder

in all states, which resembles the corresponding fact known for nonrandom interactions, see
Theorem 3.10 in [12] and Theorem 5.1.3 in |17], page 268. One observes that this result holds
true for the Edwards-Anderson spin glass as well. For the systems of quantum anharmonic
oscillators with the corresponding random interactions, the analogous statements can readily
be proven by means of a combination of the methods of [12, [17] and those of the present
work. This would be the extension of the results of |20].
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N -

Ctanu I'l66ca rpaTKOBMX CMiIHOBMX CUCTEM 3 HEOOMEXEHUM
0e3napom

t0. KoHppaTtbesd, 10. Koauupskuif, T. Masyperd

dakynsTeT MaTemMaTukn, YHisepcutet binedensba, D-33615, HimeuunHa
IHcTUTYT MaTematuku, YHiBepcuteT Mapii Kiopi-Cknogoscbkoi, 20—-031 J1to6niH, MonbLua

LocnipxyioTees cTanm M66ca cniHOoBOi cucTemm Ha rpatui Z¢ 3 napHoo B3aeMomieto Jyyo(x)o(y). TyT
(z,y) € E, T06T0 x Ta y € cycinamu B Z%. IHTEHCUBHOCTI Jyy | CRiHW o (), o(y) NPUAMAIOTb LOBIbHI
LiNcHi 3Ha4eHHs. o6 koHTponioBaTh ix picT, MM BBOAVUMO BIiANOBIAHI MHOXUHW Jq C RE Sp C RZ! Ta
MOKa3yeMOo, Lo ANis KOKXHOrO J = (Jzy) € Jg: (a) MHOXMHA cTaniB T66ca Gp(J) = {u : ', u(Sp) = 1}
€ HEMoOpPOXHbLOIO | KOMMNAKTHO B cnadkomy ceHci; (b) koxHa u € G, (J) 3aA0BINbHSE IHTErPasbHi OLLHL,
0[HaKoBIV Ana BCix w. Jani M1 AOCNIAXYEMO BMNAAOK, KOMM Ha Jy; BBOAUTLCS HOpMa, Hopenescbke o-
Tino B(J,) Ta noBHa MOBIpHiCHa Mipa v. M nokasyemo, Lo MynsTuBifo6paxerHs J,; 3 J — Gp(J)
mae BuMipHi cenektopu J; > J — u(J) € Gp(J) — cyTb Bunaakoeoi Mipw i66ca. Mu nokasyemo,
Lo emnipyyHi posknaan N1 271:,:1 7, (-|J,€), onepxaHi 3 nokanbHUx yMmoBHux Mip Ti66ca 7 a,, (+|J, &)
Ta 3 BMYEPMYIOYMX MOCAIAoBHOCTEW A, C Z% maloTb v- maiike nesHi rpaHuui npu N — oo —
CyTb BMNaakoBoi Mipu li66ca. MoAiGHUM YMHOM MU NOKA3YEMO iICHYBAHHS v- Maixe NEBHWUX rPaHuLb
eMMIpUYHMX MeTacTaHiB N*lzﬁ’:l 6MW(,‘J7§), aki € metactaHammn AlideHmaHa-Bepa. HakiHeub, mun
MoKa3yeMO iCHYBaHHS FPaHNYHOrO TEPMOAMHAMIYHOFO TUCKY 33 NEBHUX JOJATKOBMX YMOB Ha 1.

Kniou4oBi cnoBa: mertacTtaH AriseHmaHa-Bepa, emnipnyHnii metactaH Holomera-LUTariHa, xaoTn4Ha
poCcTOpOBa 3aniexHicTb, Teopema Komsiowia, criHoBe CK10
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