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For a consistent description of kinetic and hydrodynamic processes in dense gases and liquids the gener-
alized non-Markovian equations for the nonequilibrium one-particle distribution function and potential part of
the averaged enthalpy density are obtained. The inner structure of the generalized transport kernels for these
equations is established. It is shown that the collision integral of the kinetic equation has the Fokker-Planck
form with the generalized friction coefficient in momentum space. It also contains contributions from the gener-
alized diffusion coefficient and dissipative processes connected with the potential part of the enthalpy density.
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1. Introduction

A number of investigations |[1H12] was devoted to the problem of constructing a consistent
description of kinetic and hydrodynamic processes in dense gases, liquids, and plasma. The paper
by D.N. Zubarev and V.G. Morozov [3] is a fundamental one in kinetic theory of dense gases and
liquids. In that paper the formulation of a new boundary condition to the BBGKY hierarchy for
nonequilibrium distribution functions which takes into account correlations connected with local
conservation laws was given. In a pair collisions approximation this modification of Bogolyubov’s
correlation weakening condition allows one to consistently derive the Enskog kinetic equations [3]
for neutral and one-component charged hard sphere systems. In the paper by Yu.L. Klimontovich [6]
the necessity and possibility of a consistent description of kinetic and hydrodynamic processes
in gases for values of the Knudsen number of order of unity were substantiated. Herewith, the
relation (Tgl)min ~L%. /D~ Tpn takes place, where 7, denotes the physically infinitesimal time

interval during which one particle suffers a collision from a collection with Ny, = nVpn = %Vph
particles in small volume V, with physically infinitesimal length scale [, where D is the kinetic
coefficient, (Tth)min ~ (lgh)fnin /D (diffusive relation) is the minimal hydrodynamic time typical of
diffusive process, Ly, is the minimal length, on which the diffusive relation is still correct. The
latter is lesser than the free motion path I but larger with respect to the scale I, corresponding
to the kinetic description. Basing on these arguments, the generalized kinetic equation for the
description of nonequilibrium processes at arbitrary Knudsen numbers was proposed. In particular,
the collision integral of this equation contains the diffusion coefficient in velocity space. A regular
perturbation theory can be implemented for solving such an equation. Using the ideas of paper [3, 4]
the generalized transport equations for the hydrodynamic variables such as number of particles,
momentum and total energy densities were obtained in |7, 9] by means of nonequilibrium statistical
operator method. Such equations are consistent with the kinetic equation for the nonequilibrium
one-particle distribution function. They allow one to study the time correlation functions describing
the dynamics of a liquid system in states close to equilibrium. These results are equivalent to those
obtained in the investigations of [1,[2] based on the Mori projection operator method. An important
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common problem of these investigations consists in the calculation of the generalized transport
kernels (memory functions). The latter determine the collision integrals for various models [1, |13~
24| as well as the generalized transport coefficients such as viscosity and heat conductivity |1, 13, 4].
This problem is particularly significant in the region of short-ranged interactions. The reason is that
at small distances according to Klimontovich one obtains the changes not only for the spatially-
temporal characteristics of particles dynamics but also for momenta during the collisions of particles
inside the physical volume V,, at times 7. The importance of taking into account the kinetic
processes connected with irreversible collision processes at the scale of short-ranged interparticle
interactions was pointed out in [25], for instance. The short-wavelength collective modes in liquids
were investigated therein on the basis of a linearized kinetic equation of the revised Enskog theory
for the model of hard spheres.

In section 2 of this paper, a nonequilibrium statistical operator is derived within a consistent
description of kinetic and hydrodynamic processes for the system of classical interacting particles.
In section 3, on the basis of this operator, the set of transport equations for the nonequilibrium one-
particle distribution function and the potential part of the averaged enthalpy density is obtained in
the case of weakly nonequilibrium processes. In the fourth section, the inner structure of generalized
transport kernels of a consistent description of kinetic and hydrodynamic processes is analyzed. It
is shown that they can be expressed in terms of time correlation functions corresponding to the
basic set of dynamical variables, phase density of microscopic particle distribution 72(x), potential
part of the enthalpy density fl‘kf’t () and generalized transport kernels describing diffusive, viscous
and heat-conduction processes.

2. Nonequilibrium statistical operator for a consistent description of ki-
netics and hydrodynamics of system

In dense gases and liquids there is no small parameter and the characteristic time of interpar-
ticle correlations is comparable with those for the one-particle distribution function. This means
that during the particle collision process the many-particles correlations related to local mass,
momentum and energy conservation laws, underlying the hydrodynamic description of a system,
cannot be neglected. In this connection the local conservation laws impose some restrictions on the
kinetic processes. Their role is especially important at high densities, when the interaction between
a separate group of particles and other ones cannot be neglected. This indicates a close connection
between the kinetic and hydrodynamic processes in dense gases and liquids [3, [4]. Therefore, to
obtain the kinetic equations for these systems it is quite natural to choose the reduced description
of nonequilibrium states and in such a way to automatically take into account a proper dynam-
ics of conserved quantities. For this purpose we can include densities of hydrodynamic variables
together with f1(x;t) into the set of reduced-description parameters at the very beginning. The
phase functions

p0) = m [ dpine) =mi), 5 =m [ i)

) = /dﬁQ—nl /dp/dp /dr’CID |7 — | )hg (x, '), (1)

correspond to the densities of hydrodynamic quantities p(7;t), 7(7;t) and (7 t). Here

N N N
=N @ —m) =D 0@ -F)F—F),  na(wa)= > s@—z)i —x),  (2)
=1 =1

I#j=1

3

£(

are the phase densities of the microscopic distribution of particles, z; = {p;, 7; } the phase variables
of j-particle, ®(r;;) the interaction energy of two particles, p; the j-th particle momentum, m is
its mass, and r;; = |77 — ;| denote the distance between a pair of interacting particles.

From expressions () we can see an important role of potential energy of interaction. Contrary
to p(7t) = (p(7))t and J(7t) = (J(F))!, the nonequilibrium average e(7t) = (£(7))! cannot
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be expressed only via one-particle distribution function fi(z;t) = (f1(z))!. Indeed, as it follows
from (), the potential part of energy €int(7;t) = (€int(7))? is calculated by means of two-particle
distribution function fo(z,z';t) = (fz(x,2'))t, where

Eint (T /dp/dp /dr’@ — 7)o (z, 2") (3)

is the density of potential energy. Obviously, if fi(x;t) is chosen as one of a parameters of the
reduced description, then the average value of the interaction energy density can be taken as an
additional independent parameter. (...)! = [dI'y---o(z";t) denotes the nonequilibrium aver-
age calculated by means of nonequilibrium distribution function o(2;t). The latter satisfies the
Liouville equation

Sp0@st) +ilno(@;t) =0, (4)
where
N N
. pp 0 1 0 0 0
Ly = 2. _Z — P(r) [ — — —
Ly =2 0 om "3 2 o (”J)(aﬁz aﬁj) )
=1 I#£j=1

is the Liouville operator of the system. The function o(2” ;) is symmetric with respect to inversion
of phase variables of any pair of particles (z; < z;) and satisfies the normalization condition
[dTyo(zN;t) =1, dT" = (dz)V /N, do = dpdr.

In order to solve the Liouville equation (@) we will use the Zubarev nonequilibrium statistical
operator method [10, [11]. Within its framework we will be looking for solutions of the equation (),
which are independent of the initial conditions. The solutions will depend on time only explicitly,
i.e. through the observable quantities selected for a reduced description of nonequilibrium states of
the system. When the basic parameters of a reduced description are chosen, the solution o(z;t)
can be presented using the nonequilibrium statistical operator method in the following general
form |10, [11]:

t

o(z™;t) = oq(x;t) — / IT () (1 — Py(t)) ilyog (2™ t)dt, (6)

— 00

where T(t,t') = eXer{ ft, 1Lth'} is the evolution operator containing projection;

exp, is the ordered exponential. Pq (t’ ) is the generalized Kawasaki-Gunton projection operator
whose structure depends on the form of quasiequilibrium distribution function gq(:cN ;t). The latter
is determined according to Gibbs and corresponds to a maximum of the entropy of the system at
fixed parameters of the reduced description with taking into account the normalization condition. In
our case, the basic parameters are the nonequilibrium one-particle distribution function fi(x;t) and
the averaged density of the interaction energy of the system (€in(7))!. Then, the quasiequilibrium
distribution function g, (xV; ) providing a maximum for the entropy of the system at fixed averaged
values f1(x;t) and (£iy¢(7))! can be obtained in a standard way. Such a function has the following
form [, 19]:

04(xN;t) = exp{cb(t) - / drB(7 t)éing () — / d:ca(x;t)le(:c)}, (7)
where

() = In / dr'y eXp{— / AFB(F ) (7) — / dxa(m;t)ﬁl(x)} (8)

23005-3



B.B. Markiv, I.P. Omelyan, M.V. Tokarchuk

has been determined from the normalization condition for distribution function [ dI'y g, (xN:t) =
1. B(#t) and a(x;t) are the Lagrange multipliers, which are defined from the self-consistency
conditions:

(Eme(7)" = Eme(M)g, (@) = (1 (z))g - 9)

In order to understand the physical sense of parameters 3(7;t) and a(z;t), let us transform the
function in the following way

gq(a:N;t)zexp{—(I)(t)— / AFB(F e (7) — / dxa'(x;t)ﬁl(x)}, (10)

where

€'(F) = éin(F) — U(T3t) - J(F) + %19(77; )11 (7) + Eing (7) (11)

is the total energy density in the reference frame moving together with a system element of the
mass velocity ¢(7;t). Herewith, the parameter a’(z;t) is of the form

oit) = alait) = 40 { 2= 05+ R0}

Consequently, the first self-consistency condition (@) transforms to

()" = (€M) - (12)
When the self-consistency conditions ([@) and (I2)) are fulfilled, we obtain the relations

50 (t) ot 50(t) NENY IR
Sn = EO o =~ = (@) = A (13)
They mean that parameters 3(7; t) and o’ (x;t) are conjugated to (¢/(7))" and (R (z))?, respectively.
Now let us determine the entropy of the system, taking into account the self-consistency conditions

@) and (T2):
50 = ~ne ™0l = 00+ [ABENEO) + [ @) a9

Then, the thermodynamic relations can be obtained as

A Ty

6(e'(m)
From relations (IZ]) we see that parameter §(7;t) can be considered as an analogue of the local in-
verse temperature. Excluding a’(x; t) by means of self-consistency condition (@) in (I0J), one obtains
an explicit expression for the entropy of a nonequilibrium state when kinetics and hydrodynamics
are considered consistently [3, [7]:

=d'(z;1). (15)

st=a(0)+ [ @B { ) i) + Fo 06 - dowom ZEL 1)
and
7—,'N71 N (7
u(rit) = [ 7& —r e {000 - [amoe @} ] uﬁfjg .

Explicit contributions of the averaged values of hydrodynamic variables (¢(7)), (J{i))t, and (A(7))*
and the contribution of kinetics in the form analogous to the Boltzmann entropy (the last term)
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are present in the expression (I6). However, if we formally omit the contribution of potential
energy, it is possible to show that u(7¢) = e and the expression (I6]) explicitly transforms into
the Boltzmann entropy. For the quasiequilibrium statistical operator (I{) the Kawasaki-Gunton
projection operator Py (t) has the following form:

ﬂjN' l‘N'
P(1)d(a" 1) = {@q@sN;t) - [artl Dy - [atiee ) <m<x>>t} [arngwin

(
+/d’l" 6<é\/(7:’)>t /dFNE (T)Q (I ,t)"r/d’l“ 6<ﬁ1(x)>t /dFN 1( )Q( 7t).
(17)

The projection operator Py (t) acts on distribution functions only and possesses the following prop-
erties: Py(t)P,(t') = Py(t), Py(D)og(t') = 04(t'), Py(Dolt') = o,(t).

The solution (B]) is exact and corresponds to the idea of a reduced description of kinetic and
hydrodynamic processes of nonequilibrium states of the system. In [9] by means of o(z";t) (@) a set
of the coupled equations for a nonequilibrium one-particle distribution function and the averaged
density of the total energy was obtained. This set is strongly nonlinear. It takes into account
complicated kinetic and hydrodynamic processes and can be used for the description of both
strongly and weakly nonequilibrium states. Now we will show that in the case of nonequilibrium
sates which are close to equilibrium these equations can be significantly simplified.

3. Equations for a consistent description of kinetics and hydrodynamics in
weakly nonequilibrium states

Studying the nonequilibrium states of that system which is close enough to equilibrium it is
quite natural to suppose that the averaged value of energy (£(7))?, the nonequilibrium distribution
function fi(z;t) as well as the parameters 3(7;t) and b(z;t) = a(x;t) — (7 t)p?/2m slightly differ
from their corresponding equilibrium values. Then, we can expand the quasiequilibrium distribution
function (I0)

04(xN;t) = exp {@(t) — /df’ﬂ(F; LE(F) — /d:cb(:c;t)ﬁl(:c)}

into a series with respect to deviations of parameters §3(7; t) = G(7; t)— 5 and 6b(x;t) = b(x;t)—Lu,
and restrict the consideration to the linear approximation:

u(a¥:0) = an(a™) {1 = [ arsp 02 — [ assvies o) | (18)

Here, 8 = 1/kgT, T is the equilibrium value of temperature, QO(xN) = Z leAH-1N) ig the
equilibrium distribution function, Z = [ dI' ye AU =1N) is the grand partition function, y is the
equilibrium value of chemical potential. The values of parameters db(x;t) and 63(7;t) are deter-
mined from the self-consistency conditions:

(€)' =My, (@) = (u(z)). (19)

Then, using the Fourier transformation for spatial coordinates and self-consistency equations ([I9]),
we write down the distribution function ([I8) in the form [9]:

[ANPNN oA !/
ufa™it) = ao(a™) {14 3 ity B + X [ ap [ a5 e (.5 ¢ L (20)
k k
where ;' = D R(R0): k is the wave-vector.

hz () = /dfe*@m(a@ (21)
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is the Fourier-components of microscopic phase density of particles number,

hint = gint _ gty 0S5t (k)i (22)

the Fourier-components of the potential part of the enthalpy density, & Amt =3 Z#J 1 (75 |)e*i’;’?ﬂ'

and Ny = lel e~F are the Fourier-components of the potential energy and particle num-
ber densities, respectively. @g}}(ﬁ) is the function inverse to the equilibrium correlation function
Bpn(k) = (hBAML), (..o = [dTn ... 00(a™), (Az())o = O(k # 0). =" (5,5") is the function
inverse to ®;(p,p") = (ng(P)n_z(7"))o = nd(p— p") fo(p') + n* fo(p) fo(p ) 2(K). Tt is equal to

_6(p—p)
P) = e

where n = N/V, fo(p) = (ﬂ/27rm)3/2 exp(—fBp?/2m) is the Maxwellian distribution and cy(k) is
the direct correlation function, related to correlation function ho(k): ha(k) = ca(k)[1 — nea(k)] 1.

So(k) = (ngn_g)o is the static structure factor. It is important to note that dynamic variables
fl%‘t and 7z (p) in the distribution (20) are orthogonal in the sense that (ﬁg‘tﬁg(ﬁ))o = 0. In the
approximation (20), the nonequilibrium distribution function o(z";¢) (@) has the following form:

— ca(k), (23)

o(@™;t) = oo(a™) 1+Z/dp/dp (5 +Z (himt ) () himt
*Z/dp/dp/ Ty, )1 (R P) g 7))

X / Oy (o, )1 () (BB e (21)

where
In(k;p) = (1= Po)ikynz(p) = (L — Po)ng(@),  Ii™(k) = (1 — R)iLyhi? = (1 — Py)hi* (25)

are the generalized flows in linear approximation and Ty(t,t') = exp[(t — t')(1 — Py)iLn] the
evolution operator with regard to projection Fy. Operator Py is the linear approximation of the
Mori projection operator and is constructed on the orthogonal dynamic variables 7z(p), hiE’“t 19]:

Podp = 3 (Aghint) o or ) hmz / a7 / a5 (Agh g7 G5 @).  (26)

k

It possesses the properties PoPy = Py, Po(1 — Py) = 0, Ponng(p) = ny(P), POh‘nt h”’t

In view of its own structure, the nonequilibrium distribution function (IQZI) is a functional of
the reduced-description parameters (z(p))", <h%‘t>t, dynamic variables nz(p), hiE’“t along with their
generalized flows ([25). Using o(2;t) @4) for the parameters of reduced description f;(pit) =
(g (P))*, hi];’“t (t) = (li‘kf’t>t we can obtain the following set of equations [9]:

ik - I iE~ﬁ
P f(i) =

9, .
&f;;(p; t) +

(P)ea(k) / 05 F("31) + Q0 (F; R 1)

t
_/dﬁ//ea(t’_t) (E Pt )fk(—»/7 ¢t — /ee(t/—t)wnh(lg;ﬁ;t,t')h.};nt(t/)dt', (27)
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S = [ a0 - [ o / Fp'st )1t

t
- / Doy, (s t, )RR ()t (28)

Here, iQ, (k; §), iQnn (k; ) are the normalized static correlation functions

) = P00l B, OnFip) = [5G 0t D) (29)
and
orn (B 0,775 1,8') = [ dp" (Lo (B ) To (b, ') I (=3 7))o ® 7 (7", 57,
sohn@;ﬁ;, ) = J i Im%k)To(t,t’)In( k;57)o®; (7, 5,
oran (K5 7 1, ) = (T (B D) To (1, ) I} (=) )o@ (R,
(R Bt 1) = (LR (R)To (8, 1) IR (< K)o @y (F) (30)

are the generalized transport kernels (memory functions) describing kinetic and hydrodynamic
processes. The set of equations ([Z7) and (28] is closed with respect to the parameters of reduced
description fz(p;t), hikf’t (t). If in this set of equations one formally puts hiE’“t = 0, then we obtain

(P)ea(k) / a7 f (5" )

/ / gt (R s 6 OV fe (5 0)AE . (31)

the kinetic equation for fi(p;¢):

1k:p

O e+ P gy =

This is true when the contribution from the potential energy is considerably smaller than the
averaged kinetic energy (e.g. in the case of gases or weakly coupled liquids). The equation ([B1]) was
obtained for the first time by means of the Mori projection operators method in [13-15]. Therein,
the basic parameter of the reduced description was a nonequilibrium one-particle distribution
function f;(p;t) which corresponds to the microscopic phase density 7n;(p) (the Klimontovich

function). In this case the memory function ¢/, (E, p,p’;t,t") has the following structure:
GB35 6) = [ A5 IE DT I F 5 Do (77 (32)
where I9(k, ) = (1—P))n nj(p) is the generalized flow, Py is the Mori operator, introduced in [13-15]
=3 [ [ 4 tapn_ g e 6 i), 53
E

and T{(t,t") is the corresponding evolution operator with regard to projection. Based on the ki-
netic equation (3II), the investigations of the dynamic structure factor, transverse and longitudinal
current time correlation functions, diffusion and viscosity coefficients for dense gases and liquids
where carried out [1, 2, 1324, [26]. In particular, in Mazenko’s papers the linearized Boltzmann-
Enskog equation was obtained by means of expansion of the memory functions ¢/, (E, 0, p' st t)
in density. For the case of weak coupling, the equation of Fokker-Planck type was obtained. How-
ever, the main drawback of kinetic equation (ZII) consists in its inconsistency with the total energy
conservation law, especially for dense gases and liquids, when the contribution of potential energy
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into thermodynamic functions and transport coefficients is determinant. In [1] this drawback was
studied in detail. Therein, the investigations of the dynamic structure factor at intermediate values
of wave-vector k and frequency w for simple liquids were carried out by using the Mori projec-
tion operators method for the reduced-description parameters 7z (p), €. Contrary to the transport
equations presented in [1], our set of equations ([Z17) and (28]) is constructed on the orthogonal
dynamic variables nz(p), izg‘t Therefore, “kinetic” and “hydrodynamic” contributions are sepa-
rated and correlation between them is described by the generalized memory functions ([B0). It is
important to reveal their inner structure.

4. Memory functions of a consistent description of kinetic and hydrody-
namic processes

In order to study the structure of the memory functions ([B0) let us look at the form of the
corresponding generalized flows (28] on which the memory functions are built. In particular, let us
take into consideration the fact that

: ik o
i) = L) =~ 5P + 5 Felp), (34)
where
~ N e
) = me (- 7y) (35)
j=1
is the momentum density in the (E, p) space and
Fy(p) Z R TL g ) (36)

J;ﬁl

The action of the Mori projection operator Py on ﬁg(ﬁ) can be presented as

Pohiel) = 5 Bn (B fop) — - - pvg(7), (37)
where
O pp (k) = (FLhit)o®p ) (). (38)

Taking into account (23) we write down the memory function gonn(E p,p’;t,t') in the following
form

ponlFip ) = [ (LEptote (R {PT B - )

= (LEPTIF ) i = [ 457 (LEDT IR, ealh). (9

The second term in the right-hand side of ([B9)) is equal to zero, because
[ =0, (40)

The transport kernel wnn(g;ﬁﬁ';t,t’) enters the kinetic equation (27) as the term
S onn( (k; 7,7, 1) fr(’;t)dp’. Taking into account (39) and (@0) we can write the last one in
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the form
. - . . - 0 -
/dp’cpnn(k Pt fr(p'5t) = /dp’{cp]](k ot t) — a—ﬁcppp(k;p,p’;t,t’)

(o~ 57) }fg(ﬁ’”f )= A - G (4

where the second term has the structure of a generalized Fokker-Planck operator containing the
generalized friction coefficient ¢ pr(k; P, p”;t,t') in the spatially-impulse space.

- k - kooik - )
- / Y ’ - ’
(p]](k.,p7 7t7t) = E ()Ojj(k7 , P 7tat)'E_E'§0jF(k)7p7 7tat)'aﬁ,
- k)
t+ 52 or (kP i 1) - — & g (ks 5 B3 1,1, (42)

’111

prp(k: B, 55 8) = (Fe@)To(t ) F_ g0, (BB i 6,1) = @) To(t, )] _5(5))o, (43)

—

o,r(ks 50t t) = (R To(t. ) F_£(57))o, o) (k5,55 t,t) = (Fe () To(t, )72 (5"))o,

moreover,
/dp/dp (ks 7,558, t") = D(ks t, 1), (44)

is the generalized coefficient of diffusion of particles and cpﬂ(E; p,p’;t,t') is the generalized diffusion
coefficient in momentum space.

/ a5 / A7 o (B, 55 1,1) = £(Fs 1, 1) (45)

is the generalized friction coeflicient and g g (E p,p’;t,t') is the generalized friction coefficient in
momentum space.

()7 o o 8. = - -,
Pk ) = - B (k) fo(p)ony (R 8. 1)

E o= = / E ﬁ - 2 7 0
. L dr
m p(p"](k, , P 7t7t ) m mp (k)fO( )SDhF(k/’ p t,t ) aﬁ/
ik - d k - k 9 ~ ik
o Fao ety 2 . P R A A B A o R AT 4
+m p‘PnF( yPyD 51, ) a—», m @]n( yPyD 5T, )m p 8}7 p(PFn( yPyDP 5, )m
Bz RN | B - ko
= - Pen(k) fo(p)pnn (: p75 8, 8) — - p7 4 P (ks 5t )b, (46)

onn (k39,73 t,t) = (g (D) To (6, )A_p (5o, omn (ks 573 t,8) = (BTo(t,t))i_z(5”))o,
ony (ks 55, 1) = (h ;ntTo(t )7 :())o, onr(kp'it,t) = <}Ali,;ntT0(tat/)f% 2" )o,
g (R 573 4,8') = (A (B) To 2, t)f (B Nor  par(Fs 555 48) = (e To(t, ) F (7))o,
)= (

1) = (p(P)To(t, )R, (47)

constructed on the basic set of dynamic variables 7 (p), izg‘t along with the Fourier-components of

the momentum density j:};(ﬁ) and the force F};(ﬁ) in momentum space. Moreover, 7z (p), j:};(ﬁ) and
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ﬁg (7) are connected by the equation of motion (34). In this respect we assume Ty(t, ') = e!Ln(t'=t),
Then ([T represents the time correlation functions whose evolution does not contain projection.

The time correlation functions (7)) enter cp%)(l;:'; pit,t') as well:

7o k — 7o ﬂ =4 7 ﬂ — 7 ﬂ =4 7
@i t) = L. Fo ot ) B o, (B) + = i )& o (R
San_]( yDi L, ) m pSOnh( s Py by )mn Fh( )+m ( )fo( )Cphh( )mn Fh( )
ik - B - - 9 q B - -
— k:pit, t)—®pp(k) + =— - kipit, t)——®p,(k 48
CP]h( s Py by )mn Fh( )+a—» chh( y Py by )mn Fh( )7 ( )
where
oo (ks it t') = (e (D) To(t, t)h™%)o, prn(k;pit t)) = (Fe(p)To(t, t))h™)o,
onn(k;t t') = (R Ty(t, ¢)h"%) (49)

the time correlation functions of the Fourier-components of densities of the potential part of en-
thalpy, momentum 73 (p) and force F (P) in impulse space.

In the kinetic equation (27)) the transport kernel @, (E, pt,t') describes dynamic correlations
between the kinetic and hydrodynamic processes. Performing the action of operators (1 — Py) and
iLy as well as taking into account ([B37) and

PR = @ (R) - ey Bnr(R) = (BMF ) 50
ol hF( ) hF( ) < i _k>0mna ( )
the kernel @nh(g;ﬁ t,t') can be presented as
ik . B ,
Pun (ks i, 1) = —— - @ (ki Bt ) + o Gpj (ks D54, 1) + ' @rn(k) fo(p) @y (Ri t: )
i_‘ o 7o / iE P / =4 % 0 7o N F! n
+ — pwnh(k; 7tat)+E'90]](k; 7tat) (I)hF(k)f?'chj(kv vtvt) hF(F)
B = e N & (1 iE = L. = nN&!' (L
- Ep q)Fh(k)fO(p)QOh](k,tat ) q)hF(k) E p(pn](k7 7t7t )q)hF(k)a (51)
where
ek pitt) = (GePTo(t, )ALy (k), @py (ki t,1) = (Fr(D)To(t, 1’ hmt>0q)hh(E)
ikt t) = (WD) To(t,t)h"E) oy, (F),
o n ok o
Pkt t)) = —(Rp(D)To(t,t)h™:)0®), ! (k) = ol %h(k;p;tt')*a—ﬁ'wh(k;p;t,t'), (52)

ek Tt t) = o (ks Bt 1)@y (k) @rn(kspit t) = ern(k; Bt )Py (k) (53)
are the normalized time correlation functions. The correlation functions ¢ JJ(E; Pt ), @ FJ(E Dyt t),

@h](E;ﬁt,t’), and @n](g;ﬁt, t') have the structure similar to ([@7). From the structure of trans-

port kernels (@), (@2), {d), @8) and (B0) in the kinetic equation [27) for the nonequilibrium
one-particle distribution function one can see that the contributions of hydrodynamic processes

are described, besides 1", by the moments [ dpf;(pit) = ny(t) = (ng)", [ dppfp(pit) = ()" As
in the case of equation (21), let us find the inner structure of transport kernels in equation (28]
for the average value of the potential part of enthalpy. In particular, taking into account (&{), for
onn(k;t,t") we obtain:

okt t) = @ (Eit,t) — & p(F) - ¢ ’(0 (k1)
—@h](k;t,t’)~ (E)+c1>h (k) - oD (ks t,t') - @ (k). (54)
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P (kst ) = (h‘“tT (tt)hm)O@hh(E) ¢§g>(1‘c’;t,t'):@;To(t,t')ﬁgwoé,;,g(/%‘), (55)

Giy (Rt t) = BT V0. PRt t) = GeTolt, )0 = D(F:t.t') (56)
is the generalized diffusion coefficient (44). Taking into account ([B7), (GI) the transport kernel
Onn(k; D5 t, 1) entering 28) as [ dp’onn(k; 575 t,t") fz(§”;t') can be presented in the following way

1

)nfo(P’)

L ; ik ; . ;
/dp'so;m(k;p';t,t')f;;(p';t') = /dp’W;m( fe(@':t)

- 1 ﬁ/
— [ dp'W k;p'it,t | B/ =
/ p hF( 9 » &y ) fO( /) ( 9

where

— -

Win (k5" t,t) = @i, (k573 6,t) — @4, (573 8,8 -

Wir(ksp'itt) = @kt t) + O p(k)er (657581,
Wiy(kit, 1) = i (ks )8} p (k) — 8o (B)oyn (ks £, 1) B}, o ()
are the transport kernels, formed by the time correlation functions of the type of (52), (B3) and

(B5). Taking into account the structure of the memory functions (@), (&I, (64) and ([&1), we
present the set of equations (27), (28) in the form

o . ik ... ik - I . S i
5 F@ ) + — D) = —— -pnfo(p)CQ(k)/dp’f,;(p’;t) + Qi (K P) R ()
/dﬁ’/ {so]E,:ﬁ’,t,t’)
0 o sp’ 0 )
—. kip,plit, ( - ~(p' t)dt!
o5 rr? o) o) JE)
/ / i B
+ / @k p st 1) - Tp(t)dt + / et ”{1 Wi (B i) = o= Wen (ks i, 1)
— o0 —0o0 P
s 5 W (ks pht, ) bR ()t 58
—Efo(p)p Fh( ;i t,t) P ( )dt’, ( )
a t
ah;;t() / A" i (ks 57) f (55 1) — / et *t){cpﬁbo}z(k;t,t’)—cﬁ;lF(E).@Sz)(E;t,t’)

= t
ik : - 1
——. [ dp’ / W (ks ot t)) —— fr(p; ) dt!
/p hn (K3 D )nfo(p,)fk(p )

/ - 1 0
—l—/dﬁ/ / es(t _t)WhF(k';ﬁl;t,t') > . (ﬁﬁ' _ aﬁ/) f;c‘(ﬁ/;tl)dt/

mn

— / 0w, (ks t, zf')i - JR()dt, (59)
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where in the first equation the transport kernels have the following structure:

Wikt t) = @i (kpitt) — 5 @, (kipit,t)

— (ks it 1) - B (F) + - nj(k Pt ) @ (),
Wen(Espit,t) = @ra(kipit,t) — <PFy(tht) (k)
Wei (ki pit,t)) = Spn(k) gy (Rt t)) — Bpp(k )'%a(k;t,t’)' B, o (k).

The transport equations (B8)), (59)) are functionally connected concerning the basic parameters of
reduced description fi(p;1), h‘kf’t (t). However, the equations contain the average values of densities

of particles number (72;)* and momentum @;)t, which, generally speaking, are the hydrodynamic

variables. Integrating the equation (B8) over momentum, we obtain the equation for ny(t)

2 iyt F
otk m

that represents the conservation law for an average value of number of particles. The transport
equations (), (B9) for fi(p;t) and hikf’t (t) are written in {k,p,t} space. According to ([@2)), @),
@3), fz(pit) and hikf‘t (t) are determined in terms of the time correlation functions of the basic set
nz(p), izg‘t D), @]). This means that the system of equation (B8]), (E9) should be complemented
b_?f the equé‘?ions for the appropriate time correlation functions of dynamic variables 73 (p), 7;(P),
F(p) and hg‘t.

In [9], on the basis of the equations (B8) and (B9) there has been obtained the following set of
transport equations for the time correlation functions:

(t) =0, (60)

??‘Ll

B (3 9573 1) = (7 )75 (550))o, B (k; 575 8) = (W (D)7 _g(5";0))o
O (: i) = (g (B DR(0))o By (K3 t) = (WE(DAT(0)o (61)

Using the Laplace transform A(z) =i fo dte'** A(t), let us represent it in a matrix form,
z&)(k; 2) = S(k; 2)®(k; z) — ®(k), (62)

where nz(pt) = e 'ENTAL(5:0), h“‘t( ) = e_iLNtlAziE“t(O), and ®(k; z) is the matrix whose elements
are the Laplace transforms of the tlme correlation functions (GI).

@(E)(‘I’ME'W') 0 ) i(%;@(fdﬁ”%(/z

E ;2) —onn(k; 2)

*ﬁ 2) Son(k;p2)
J 45" Zhn iz )

S (K5 5,57 2) = iQun (K3 5,5") — onn (K5 5,573 2), (64)

S (3 5 2) = Qi (K5 5) — 0 (K3 55 2), Shn (k5575 2) = QK 5") — onn (k3575 2).

Taking into account the structure of memory functions (1), (&I), (64) and (&1), we present
the set of equations ([62]) in the explicit form:

(p) @t (ks s 2)
=11
ﬂ — )} rm(k pllvﬁ/ Z)

— ¢ (k; *;z><I>m<E;ﬁ’;z>fsanh@;ﬁ;z)@z“;(i%; ';z> o, (E 7"), (65)
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1nt . IEﬁ int/7.. =,
P .o —
(k )+ m nh(k7pvz)
IE 1n 7 ﬂ 7 1n in
(p)ea (k) Py (k; 1 2) — - @ (k) fo (p) ®), (K 2)
_ a ﬁ—*li 6 .
o d_, k‘ — -»// k‘ — —»// (I)mt k .
/ p {90 (ks p, 0”5 2) — aJPFF( ;0,0 )(mnfo( 7 —8;7”)} nh (ks 0”5 2)
= B8 (s 7 2) @I (s 2) — pun (ks 5 2) By ™ (ks 2), (66)
int /7., =/, _ /1 E . 7S, 1
Z(I)hn(k?p ,Z) - /dp {m Whn(k p ’Z)Nfo(p”)
_ .. 1 @_i .=l ol
WhF(kp I )nfo( ) mn aﬁ// } (k p Z)
Wig(:2) 2,0 (R 7 2) — rn (B 2) 0 B 7 ), (67)

int,int /77 - 1]; =, 1
Z(I)h}:7 t(k,z) = —/dp”{g . Whn(k';p”;Z)m

Wi (i"s2) e (2 oo ) )

nfo(p”) \ mn op"
" @it (F:2) — o (R 2) R 2) — @i (), (68)

— Wi, (k; z)

The extended set of equations (B8), (B9) and (GH)-([6]) at fixed values of normalized correla-
tion functions (29)) and transport kernels (BE) describing diffusive, viscous and heat-conduction
processes ((pgloif
in principle, in {E, P, t} space with the help of numerical methods. Obviously, such solutions could
provide interesting and important information, in particular, on the behavior of the time corre-
lation function (fz(7;t)nz(p’;0))o, on momentum. By integrating over momentum variables, this

function can be connected with the time correlation function (7 (t)72;(0))o and, thus, with the

is the potential part of the generalized heat-conductivity coefficient) can be solved,

dynamic structure factor of the system S(k;w).

Projecting the set of equations (B8], (BY) onto the first moments of the nonequilibrium one-
particle distribution function ¥y (p) = 1, U, (p) = V2pa/2ksT, ¥.(p) = /2/3(p?/2mksT — 3/2)
(v =, y, z) one can obtain the set of equations [9] for the averaged values of densities of particles
number nj(t), momentum ji(t), kinetic hlgi“(t) and potential hikf‘t (t) parts of enthalpy. Similarly,
projecting the set of equations (63)—-(G8]) onto the same moments [9], we obtain a set of equations
of the type of (62) for the appropriate time correlation functions

B, 0, 0% oy
. ) n (I)g] (I)k;Ln q)ir;bt
P(k;z) = Kin in in,kin in,int 69
A T Py (F:2)
with the matrix of memory kernels S¢(k; 2).
i:G(Ea Z) = IQG(E)+1:I(E’ Z)a (70)
where
0 i, 0 0
JUNSIN i 0 (Qkin Qint
iQ(k) = n m a0 Ih 71
(k) 0 191,‘1] 0 (71)
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is the frequency matrix, hk® = EE.
kinetic part of enthalpy density.

o)
|3
bl
~
o
—~

>
Eatl

3)
K‘l

e nj; are the Fourier-components of the

0 0 0 0
= o 0 10, Iog» I
I(k: z) = in in,kin in,int 72
(k;2) 0 H%(LJ Hhht ki H.h}é. ¢ (72
in int,kin int,in
0 Iy 1o, 1T,

(k;2)
is the matrix of transport kernels. Its elements have the following structure:

I (F; 2) = (Uu|3(k; 2) + S(k; 2) QeI QS (k; 2)Q) Q(K; 2)|W.), (73)
where @ = 1 —P. P is the projection operator constructed on the eigenfunctions \\II (p)) of the
nonequilibrium one-particle function and P(¥| = S°_ (U|W, (U, |. (U],) = [ dEV(E) fo(E), (€),
while ¥, (§) satisfy the conditions (¥, |¥,) = .., >, |¥,)(¥,| = 1. As we can see from the struc-
ture of elements of the matrixes iQ (k) and I1(k; z), the contributions of kinetic and potential parts
of enthalpy are separated. However, all the transport kernels of lzl(k_'z) are determined in terms
of the time correlation functions (A7), @9) and the transport kernels @ ’( (E;t,t’) ’(0 (k t,t),

( )(k: t,t') and D(k;t,t (E5). Herewith, a question arises regarding the study of tlme corre-
latlon functions (69) and collective modes for liquids using the generalized collective modes ap-
proach [27, [28].

We note one more important feature of the system (27)—(28]). Let us suppose particles interact
through the potential presented as

o(|755]) = @"*(I1751) + @' (|17351), (74)
where ®"%(|7;|) is the hard sphere interaction potential, and ®!(|7%;|) is the long-range part of
the potential. Taking into account the features of the hard sphere model dynamics [4] and in-
Vestigations [20, 123, 25], one can separate Enskog-Boltzmann collision integral from the function
@nn (K 7,75 t,'). Then the equation (Z7) can be written in the form

9500+ T ) = sy - a8 [ a5

—nga(oo? [ a0 [ap T2 T 5 7))
< | Jo) fB:) = folp1) fe(B758) + 577 fo) feBhi ) — €7 fo(p) fe (s )

i (F: R (1) / 5 / Qe (R g st ) (5 )

t

- [ et Fm O @), (75)

— 00

where 08(1_5) is the low-density limit of the direct correlation function. o is the hard-sphere diameter
and the pair distribution function g(c). The step function ©_(x) is unity for z < 0 and vanishes
otherwise. d2, is the differential solid angle, & is unity vector. The pre- and postcollision momenta
of the colliding hard spheres are denoted as (p,p1) and (p*, %), respectively. ¢! (E;ﬁ,ﬁ';t, t') is
the part of transport kernel, related to long-range interaction potential ®!(|7;|). That, is presented
equation contains the Enskog-Boltzmann collision integral describing the short-time dynamics of
the hard sphere model. And the collective effects connected with the 1ong range interactions be-
tween particles are described by the functions i€ (k; ), @b, (k: 7,075, 1), @nn(k:t, ') and the
equation for hikf‘t (t). Since the collective modes for the Enskog- Boltzmann model are well stud-
ied [25], the investigation of time correlation functions and collective modes for the system of
particles interacting through the potential (74) turns out to be of great interest.
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5. Conclusions

In this paper in order to consistently describe the kinetic and hydrodynamic processes in dense
gases and liquids, the generalized non-Markovian equations for a nonequilibrium one-particle dis-
tribution function and the averaged value of the potential part of the enthalpy density are obtained
using the nonequilibrium statistical operator method. The inner structure of generalized transport
kernels (memory functions) for these equations was analyzed in detail. It is shown that they are ex-
pressed in terms of time correlation functions related to the basic set of dynamical variables 7 E(ﬁ),
lAlikI‘t D), @) along with the transport kernels (BI) including the generalized diffusion coeffici-
ent. Herewith, the collision integral of the kinetic equation (B8] for fz(p;t) has the Fokker-Planck
structure with the generalized friction coefficient in momentum space. It also contains contribu-
tions from a generalized diffusion coeflicient in momentum space as well as contributions from
the dissipative hydrodynamic processes connected with the potential part of the enthalpy density.
On the basis of these transport equations, a set of equations for the time correlation functions
corresponding to the basic set 7z (p), hint is obtained. Pro jecting it onto the first three moments of
a nonequilibrium one-particle distribution function, a system of equations is obtained for the time
correlation functions of hydrodynamic variables 7, 7z, h%m and A" with separate contributions of
the kinetic and potential parts of enthalpy density. Such a system in the Markovian approximation
can present an interest from the point of view of investigating the dynamic structure factor, time
correlation functions @if’km(lg; t), @Z?’mt(g; 1), @;I],f’mt(lz; t) as well as collective modes for liquids
within the generalized collective modes approach [27, [28].
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A0 npo6nemMun y3rog>keHoro onmcy KiHeTU4HMX Ta
riapoauHamMmiYHUX NPoLECiB y ryCTUX rasax Ta pigmHax

B.B. Mapcis, I.IN. OmensH, M.B. Tokapuyk

IHCTUTYT Pi3nkm koHaeHcoBaHMx cucteM HAH Ykpainu,
79011 JlbBiB, BYyN. CBEHLUIUbKOTO, 1

[na y3rookeHoro onucy KiHeTUYHUX Ta FigpoANHAMIYHMX NPOLECIB Yy FYCTUX radax Ta pignHax oTpMMaHo
y3arasbHeHi HeMapKiBCbKi PIBHSIHHSA A1 HEPIBHOBaXHOI OAHOYaCTUHKOBOI MYHKL|i po3nogainy Ta cepea-
HbOIO 3HAYEHHS N'YCTUHU NOTEHLanbHOI YaCTUHM eHTanbMii. PO3KPUTO BHYTPILLHIO CTPYKTYPY y3arasibHe-
HUX A8ep NepeHocy AaHWX PiBHSHb. Moka3aHo, Wo iHTerpan 3iTkHEHHS KIHETUYHOIO PIBHAHHSA Ma€e CTPYK-
Typy ®okkepa-lnaHka 3 ysaranbHeHUM KoedilieHTOM TepTs B iMMyJIbCHOMY NPOCTOpI. BiH Takox MicTuTb
BKNAAM Bif, y3aranbHeHoro koediuieHTa andyaii B npocTopi iMNynbCiB i AMCUNaTMBHUX NPOLLECIB, NOB’s13a-
HWX i3 TYCTUHOIO NOTEHLaNIbHOT YaCTUHWN eHTasbmii.

KniouoBi cnoBa: kiHeTuka, rigpoavHamika, KIHeTUYHI PIBHSIHHS, PYHKLII nam [Ti, 4acoBi KOpensiLiviHi
dyHKUiT

23005-16



	Introduction
	Nonequilibrium statistical operator for a consistent description of kinetics and hydrodynamics of system
	Equations for a consistent description of kinetics and hydrodynamics in weakly nonequilibrium states
	Memory functions of a consistent description of kinetic and hydrodynamic processes
	Conclusions

