концентраций кремния (до 3,5 %) ударная вязкость и относительное удлинение снижаются, но остаются на достаточно высоком уровне для высокопрочного чугуна марки ВЧ 500-7, получаемой в литом состоянии. Опыт промышленного опробования подтверждает целесообразность получения и применения высокопрочного чугуна марки ВЧ 500-7 с повышенным содержанием кремния по сравнению с рекомендациями стандартов (ГОСТ 7293-85; ДСТУ 3925-99) в результате чего обеспечивается эффективное снижение склонности тонкостенных отливок к отбелу, уменьшается их твердость и улучшается обрабатываемость резанием на станках-автоматах.

- Lerner Y. S. Overview of ductile iron treatment methods // Foundry Trade journal. 2003. V. 177.
 — P. 25-27.
- 2. Lightweight iron castings can they replace aluminum castings? // Foundryman. 2003. Vol. 96, N_{\odot} 9. C. 221-224.
- 3. *Torbjorn Skaland*. A new method for chill and shrinkage control in ladle treated ductile iron // Foundry Trade Journal. 2004. № 12. P. 396-400.
- 4. *Большаков Л. А., Жерлицина О. В.* О снижении содержания углерода при модифицировании чугуна кремнемагниевой лигатурой // Вісник Приазовського держ. техн. ун-ту. 2007. № 17. С. 35-39.
- Вольнов И. Н. Компьютерное моделирование кинетики кристаллизации отливки из чугуна с шаровидным графитом // Литейн. пр-во. — 2004. — № 2. — С. 31-36.
- Csonka J. M. et. el. Ductile Iron Trends: reducing costs, Improving Quality // Modern Casting. 2002.
 Nº 5. P. 27-29.
- 7. Справочник по чугунному литью / Под ред. Н. Г. Гиршовича Л.: Машиностроение, 1978. С. 7-10.

Поступила 12.01.2009

УДК 621.74.94:669.131.7.061.062

Г. Д. Хуснутдинов, Б. Г. Зеленый

Физико-технологический институт металлов и сплавов НАН Украины, Киев

ИССЛЕДОВАНИЕ ПАРАМЕТРОВ ОБРАБОТКИ ЧУГУНА НИТРИДОМ МАГНИЯ

Исследованы рафинирующая и сфероидизирующая способности реагента, содержащего нитрид магния, в широком интервале интенсивности его взаимодействия с расплавом чугуна.

Досліджені рафінуюча і сфероідизуюча здатністі реагенту, що містить нітрид магнію, в широкому інтервалі інтенсивності його взаємодії з розплавом чавуну.

Fining and spheroidizing capability of the reagent containing magnesium nitride was analyzed in terms of broad intensity range of interaction between the reagent and cast iron melt.

Ключевые слова: рафинирование чугуна, модифицирование, нитрид магния, диссоциация, магниеемкость.

Замену металлического магния нитридом магния при обработке чугуна провели с целью исключения взрывообразного взаимодействия расплава с реагентом, содержащим большую массовую долю магния (в нитриде магния 72 % Mg). Интенсивность обработки жидкого чугуна нитридом магния регламентируется скоростью диссоциации нитрида. Образование нитрида магния происходит с выделением большого количества тепла (115,2 ккал/моль), а полная диссоциация на магний и молекулярный азот протекает при температуре около 1500 °C [1]. Эти параметры свидетельствуют о достаточно высокой термодинамической устойчивости нитрида.

Нитрид магния получали путем нагрева на воздухе смеси порошка магния с порошком одного из наполнителей (графит, силикокальций, чугун, ферросилиций). Детально исследовали реагент, образовавшийся в результате нагрева смеси магниевого и графитового порошков.

Для установления количества магния, связанного азотом в полученной смеси, определяли изменение массы смеси, происходящее в результате ее нагрева, и последующее изменение массы смеси в результате ее выдержки на открытом воздухе.

При нагреве приращение массы вызвано образованием нитридов и окислов магния.

На рис. 1 графически представлено приращение массы смеси в зависимости от температуры нагрева и продолжительности выдержки. Масса порошка магния в опыте составляла 10 г.

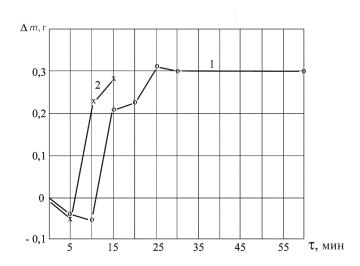


Рис. 1. Изменение массы смеси графит-магний в зависимости от температуры и продолжительности нагрева: Δm — удельное, на 1 г магния изменение массы смеси графит-магний, г, τ — продолжительность выдержки, мин; I — температура нагрева 750 °C; 2 — температура нагрева 920 °C

В соответствие с реакцией

$$3Mg + N_2 = Mg_3N_2 \tag{1}$$

прирост массы смеси за счет связывания азота магнием должен составить 0,39 г на 1 г магния. Фактически величина приращения массы составляет 0,30 г. Разница может быть связана с неполной азотацией магния или с частичной окисленностью использованного порошка магния.

Нитрид магния в результате выдержки на воздухе взаимодействует с влагой воздуха по реакции

$$Mg_3N_2 + 6H_2O = 3Mg(OH)_3 + 2NH_3^{\uparrow}.$$
 (2)

Суммарное приращение массы 1 г магния теоретически по двум реакциям должно составить 1,42 г.

Исходя из пропорции

$$1 - 1,42$$
 $Mg_N - A,$ (3)

составили уравнение

$$Mg_N = 0.704 A,$$
 (4)

где ${\rm Mg}_{\rm N}$ — магний, связанный азотом, г; ${\rm A}$ — фактическое приращение массы смеси, приходящееся на 1 г магния в ней.

На рис. 2 представлено выраженное в % количество магния, входящего в состав нитридов, в зависимости от температуры и продолжительности нагрева смеси графит-магний.

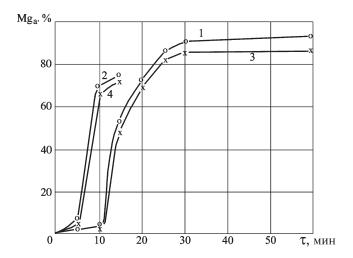


Рис. 2. Изменение количества магния, входящего в состав нитридов, в зависимости от продолжительности нагрева смеси графит-магний при различной температуре нагрева: I — температура нагрева 750 °C с учетом угара графита; 2 — температура нагрева 920 °C с учетом угара графита; 3 — температура нагрева 750 °C без учета угара графита; 4 — температура нагрева 920 °C без учета угара графита

Как видно из графика, при оптимальных условиях (t = 750 °C, $\tau \sim 30$ мин) около 90 % порошкового магния, находящегося в смеси с порошком графита, подвергается азотации.

В результате нагрева и азотации магния смесь спекается и представляет собой достаточно однородное вещество темно-серого цвета. Для обработки чугуна смесь может быть раздроблена либо использоваться в виде брикета.

Реагент в виде брикета, закрепленный на штанге, погружали в расплав чугуна и удерживали под уровнем расплава.

Характер поведения смеси в расплаве чугуна резко отличается от поведения всех известных лигатур, содержащих магний.

В интервале температур чугуна 1350-1500 °С при массовой доле магния в реагенте более 40 % взаимодействие с расплавом проявляется как барботаж с появлением отдельных ярких точечных вспышек на поверхности расплава. Выбросы расплава и обильное дымовыделение не наблюдаются. Барботация возникает не сразу после погружения реагента, а после некоторой его выдержки под уровнем расплава. Продолжительность выдержки зависит от температуры чугуна и меняется от минуты до 15-20 с при увеличении температуры расплава в указанном интервале.

Интенсивность барботации расплава, очевидно, определяется количеством нитрида

магния, диссоциирующего в единицу времени. Ход процесса можно представить в виде трех этапов (рис. 3). Первый, как отмечалось, характеризуется видимым полным отсутствием взаимодействия реагента с расплавом. На втором этапе интенсивность процесса диссоциации нитрида достигает максимума и сохраняется примерно постоянной около 3 мин. Далее процесс затухает.

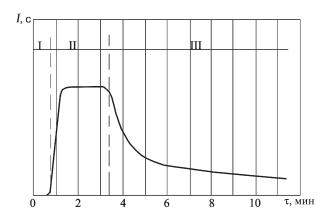


Рис. 3. Изменение интенсивности взаимодействия с жидким чугуном брикетированного реагента, содержавшего нитрид магния-графит, по мере выдержки реагента в расплаве: I — интенсивность взаимодействия, c^{-1} ; τ — продолжительность выдержки, мин; I — этап отсутствия взаимодействия (до 1 мин), II — этап затухающего взаимодействия

Осмотр брикетов реагента, изъятых из расплава на разных этапах, показал, что после выдержки в расплаве в течение 5-10 мин их размеры мало изменяются по сравнению с исходными. Периферия брикетов приобретает черный цвет графита и становится рыхлой на глубине 2-5 мм. Внутри брикет сохраняет серо-коричневый цвет и при взаимодействии с водой разлагается с выделением аммиака. Взвешиванием брикета реагента до и после его нахождения в расплаве установлено, что после 10 мин выдержки в расплаве до 50 % нитрида магния оказывается не израсходованным. При этом на втором, активном этапе процесса диссоциации нитрида, когда интенсивность поступления магния в расплав наибольшая, расходуется только 10-25 % массы нитрида в брикете.

По ходу обработки чугуна отбирали пробы на содержание магния в расплаве. Их анализ показал, что реализуемая схема обработки чугуна реагентом, содержащим смесь нитрида магния с графитом в брикете, не является эффективной. Содержание магния в чугуне не удается поднять выше 0,015 % вследствие низкой интенсивности поступления магния из реагента в расплав. Такой режим обработки может быть использован только для рафинирования чугуна и только при условии подогрева расплава в процессе обработки из-за чрезмерной длительности процесса.

Замедление и полное затухание процесса диссоциации нитрида магния задолго до расходования всего нитрида в реагенте вызвано появлением неразрушающегося каркаса уже отработанной периферийной части брикета. Он препятствует прямому контакту нитрида с расплавом и ухудшает поступление тепла к реагенту.

Опробованы различные способы повышения интенсивности массообменных процессов между реагентом и расплавом. Неполная азотация магния за счет сокращения продолжительности нагрева смеси при изготовлении реагента сокращает продолжительность обработки, препятствует образованию неразрушающегося каркаса в брикете, однако существенно ухудшает экологические параметры процесса и уменьшает коэффициент усвоения магния.

Перемещение (вращение) брикета в расплаве с целью разрушения отработавшей части приводит к образованию на его поверхности тугоплавкого шлакометаллического «кокона», препятствующего дальнейшему процессу массообмена. При содержании

серы в исходном чугуне 0,054% ее содержание в «коконе» составляет 1,03%. После обработки чугуна в течение 13 мин достигнуто содержание магния 0,012% при содержании серы 0,018%. Израсходовано около 30% реагента.

Применение измельченного реагента также не позволило добиться эффекта. При засыпке порошка на зеркало с последующим перемешиванием реагент окислялся кислородом воздуха.

Последовательная подача небольших порций порошка под уровень расплава с помощью графитового колокольчика растягивает процесс во времени и не позволяет получить чугун с содержанием магния более $0.015\,\%$.

Поведение большой порции измельченного реагента, погруженного в расплав в колокольчике, аналогично поведению брикета.

Присадка легкоплавких компонентов (алюминия) в порошковую смесь приводит к заметному росту количества окисленного магния при нагревании смеси, то есть к потере магния уже на стадии изготовления реагента.

Наилучший результат получен за счет увеличения площади контакта реагента с расплавом, достигаемого изменением формы брикета. Таким путем стремились уменьшить толщину брикета и создать условия, при которых бы вся масса реагента работала в режиме наибольшей интенсивности взаимодействия с расплавом (см. рис. 3, этап 2).

Расплав чугуна массой 10 кг обрабатывали в тигле высокочастотной печи, удерживая реагент под уровнем расплава с помощью штанги на глубине 120 мм. Реагент в виде брикета имел форму диска диаметром 60 мм и толщиной 10 мм. По ходу обработки из расплава отбирали пробы на содержание магния, азота и кислорода. При исходном содержании серы в чугуне 0,029 % за первые три минуты обработки содержание магния поднялось с 0,004 до 0,027 %. Далее оно медленно, но стабильно увеличивалось. К завершению 6-й минуты достигло 0,032 %, 12-й — 0,035 %. Синхронно возрастало содержание азота в расплаве от 0,0022 до 0,0054 % (рис. 4). Содержание кислорода уменьшилось с 0,003 до 0,0018 %. Металлографическое исследование отобранных образцов чугуна показало, что обработка нитридом магния приводит к уменьшению (до 0,017 %) порога минимального содержания магния в чугуне, при котором наступает сфероидизация графита.

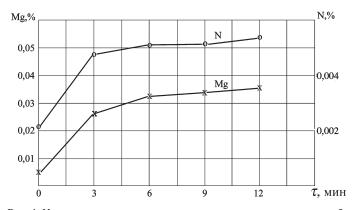


Рис. 4. Изменение содержания азота и магния в чугуне по ходу его обработки брикетом реагента в форме диска: N — массовая доля азота, %; Mg — массовая доля магния, %; τ — время обработки, мин

Аналогичным путем обрабатывали рафинированный аустенитный чугун с содержанием никеля около 9 %. Содержание магния в этом чугуне достигло 0,07 % в течение одной минуты обработки и в дальнейшем сохранялось практически постоянным на протяжении всего времени обработки. Максимальное содержание азота $(0,006\ \%)$ получено после $10\$ мин взаимодействия реагента с чугуном (рис. 5).

При обработке чугуна с высоким исходным содержанием серы (0,13%) содержание в нем магния не удается поднять выше 0,008% до тех пор, пока содержание серы не

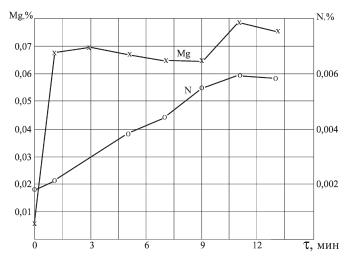


Рис. 5. Изменение содержания азота и магния в аустенитном чугуне по ходу его обработки брикетом реагента в форме диска: N — массовая доля азота, %; Mg — массовая доля магния, %; τ - продолжительность обработки, мин

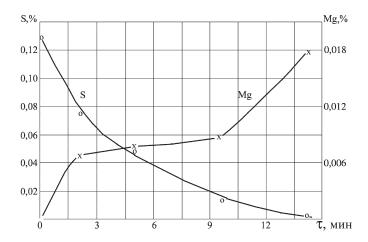


Рис. 6. Изменение содержания серы и магния в высокосернистом чугуне по ходу его обработки (брикет реагента в форме диска): S- массовая доля серы, %; Mg- массовая доля магния, %; $\tau-$ продолжительность обработки, мин

снижается до уровня около 0.02% (примерно в течение 10-ти минут). Повышение содержания магния до 0.018% за последующие 4-е минуты снижает содержание серы до 0.006% (рис. 6).

Приведенные результаты опытов показывают, что с повышением интенсивности обработки чугуна реагентом, содержащим нитрид магния, путем увеличения площади контакта расплава и реагента последний может одинаково успешно использоваться как для рафинирования чугуна, так и сфероидизации графита в его структуре.

Во всех описанных экспериментах массовая доля магния в реагенте составляла 0,2% от массы расплава чугуна. Коэффициент полезного использования магния на различных стадиях процесса менялся. По приблизительным расчетам при обработке высокосернистого чугуна он составлял 50-80% в начале процесса и снижался до 15-30% на завершающем этапе. Средняя величина полезного использования магния составляла ~ 40 %. Если принять во внимание, что нитридом магния обрабатывали небольшие массы расплава (10-12 кг), этот показатель следует признать хорошим. Дымовыделения и выбросы отсутствовали.

Изменение содержания магния в чугуне по ходу его обработки реагентом с нитридом магния (рис. 4-6) показывает, что использование брикета реагента в форме диска, хотя и позволяет поднять массовую долю магния в расплаве до 0,035-0,07 %, не обеспечивает постоянной высокой интенсивности поступления магния из реагента в расплав. Замедляющего влияния неразрушающейся отработавшей зоны брикета полностью избежать не удается. Поэтому длительность процесса остается существенной. Для полного расходования реагента в режиме наибольшей интенсивности потребовалось бы снизить толщину брикета до 2-3 мм, что невозможно из-за малой его прочности.

Интенсивность процесса обработки чугуна магнийсодержащей присадкой характеризует количество магния, поступающего из реагента в расплав за единицу времени, приходящееся на единицу массы расплава, и может быть определена по формуле

$$I = m/\tau \cdot M, \tag{5}$$

где I— интенсивность поступления магния в расплав, c^{-1} ; m— масса магния, вводимая в расплав, кг; τ - продолжительность процесса, c; M— масса расплава, кг.

Каждый технологический процесс, связанный с вводом в чугун магния, имеет уровень интенсивности, превышение которого приводит к снижению эффективности и недопустимым отклонениям от нормального хода процесса. Выбросы металла из ковша, обильное дымовыделение, яркое свечение при низком коэффициенте полезного использования магния — признаки превышения оптимального уровня интенсивности обработки. Рассчитали интенсивность поступления магния в расплав чугуна при использовании реагента с нитридом магния по результатам описанных выше опытов. В среднем она составила $8 \cdot 10^{-7} \text{c}^{-1}$, хотя на этапе максимальной интенсивности обработки была существенно выше. Например, при обработке аустенитного чугуна (см. рис. 5) в течение 1-й минуты процесса интенсивность поступления магния в расплав составила $1,7 \cdot 10^{-5} \text{c}^{-1}$ при нормальном течении процесса. В этом случае для расчета использовали такие данные: $M=10 \text{ кг}, \tau=60 \text{ с}$. Достигнутая массовая доля магния в расплаве — 0,07 %. При коэффициенте полезного использования 70 % в расплав было введено 0,01 кг магния.

Проведен эксперимент, позволивший увеличить интенсивность обработки чугуна нитридом магния на протяжении всего процесса обработки за счет уменьшения обрабатываемой массы расплава. В чугун, расплавленный в индукционной печи, погрузили графитовый тигель вместимостью 0.5 кг расплава, заполняя его металлом, и затем приподняли верхний край тигля на 20-25 мм выше уровня металла в печи. Внутри тигля заранее размещен реагент с нитридом магния. В процессе обработки печь не выключали. В течение 5-ти минут обработки содержание серы в чугуне, находящемся в графитовом тигле, снизилось с 0.2 до 0.004 % при конечном содержании магния 0.08 %. Расчетная средняя интенсивность поступления магния в чугун составила $3.3 \cdot 10^{-6}$ с⁻¹ Для сравнения по данным работы [2] рассчитали интенсивность поступления магния в расплав в процессе десульфурации доменного чугуна порошковым магнием. Она вполне сопоставима с полученными нами результатами и составляет $6 \cdot 10^{-6}$ с⁻¹.

Приведенные результаты опытов с нитридом магния свидетельствуют о том, что повышение интенсивности обработки чугуна этим реагентом имеет большой резерв. При интенсивности обработки, сопоставимой с условиями внедоменной десульфурации порошковым магнием, эколого-технологические параметры процесса с применением нитрида магния сохраняются без видимых ухудшений.

- 1. Славинский М. П. Физико-химические свойства элементов. М.: Металлургия, 1952. 138 с.
- 2. Воронова М. А. Десульфурация чугуна магнием. М.: Металлургия, 1980. 121 с.

Поступила 17.10.08