УДК 669.158:621.785.74

# Б. Ф. Белов, А. И. Троцан, И. Л. Бродецкий, М. Н. Сосновцев\*,

#### В. А. Драчук

Институт проблем материаловедения НАН Украины, Киев  $^{^*}$ ПГТУ, Мариуполь

# СТРУКТУРИЗАЦИЯ ОКСИДНЫХ ФАЗ В ПРОЦЕССАХ РАСКИСЛЕНИЯ ЖЕЛЕЗОУГЛЕРОДИСТЫХ РАСПЛАВОВ КРЕМНИЕМ И АЛЮМИНИЕМ. Сообщение 3

ПДС-методом построена базовая диаграмма  $FeO-Al_2O_3$  тройной системы  $FeO-SiO_2-Al_2O_3$  и выполнены физико-химический и микро-наноструктурный анализы (СХС-анализ) исходных компонентов (вюстит, глинозем) и промежуточных фаз — алюминатов железа, определяющих природу неметаллических включений при раскислении алюминием железоуглеродистых расплавов.

ПДС-методом побудована базова діаграма FeO-Al $_2O_3$  потрійної системи FeO-SiO $_2$ -Al $_2O_3$  і виконани фізико-хімічний та мікро-наноструктурний аналізи (СХС-аналіз) вихідних компонентів (вюстіт, глинозем) і проміжних фаз - алюминатів заліза, що визначають природу неметалевих включень при розкисленні алюмінієм залізовуглецевих розплавів.

PDS-method is built base diagram FeO-Al $_2$ O $_3$  triple system FeO-SiO $_2$ -Al $_2$ O $_3$  and is executed physico-chemical, micro-nanostructured analysis (SHS-analysis) source component (wustit, alumine) and intermediate phases - an ferric aluminate, defining nature non-metallic inclusion under deoxidation aluminum iron-carbon melts.

**Ключевые слова:** полигональная диаграмма, промежуточные фазы, алюминаты железа, ионно-молекулярный комплекс, анализ структурно-химического состояния.

Условия образования и структуризация алюминатов железа

Полигональная диаграмма состояния бинарной системы  $FeO-Al_2O_3$ , построенная графо-аналитическим методом (ПДС-метод), как и предыдущая диаграмма  $FeO-SiO_2$  в сообщении 2 [1], представлена на рис. 1.

Взаимодействия исходных компонентов вюстита и глинозема совершаются при температурах их существования, превышающих температуру образования вюстита (560  $^{\circ}$ C), с образованием первичной промежуточной фазы (ППФ) стехиометрического состава 2FeOAl<sub>2</sub>O<sub>3</sub> при 1000  $^{\circ}$ C.

ППФ условно разделяет систему FeO-Al $_2$ O $_3$  на две подсистемы FeO-2FeOAl $_2$ O $_3$  и Al $_2$ O $_3$ -2FeOAl $_2$ O $_3$ , в которых образуются вторичные промежуточные фазы, последовательный ряд которых имеет следующий вид: FeO→12FeOAl $_2$ O $_3$ ( $\bigcirc$ )→8FeOAl $_2$ O $_3$  →  $\rightarrow$ 6FeOAl $_2$ O $_3$  →4FeOAl $_2$ O $_3$  →3FeOAl $_2$ O $_3$ ( $\bigcirc$ ) →2FeOAl $_2$ O $_3$ ( $\bigcirc$ (ППФ) →3FeO2Al $_2$ O $_3$ ( $\bigcirc$ 3) →  $\rightarrow$ FeOAl $_2$ O $_3$  → ReO3Al $_2$ O $_3$  → Al $_2$ O $_3$  и включает три эвтектики, пять сингулярных фаз с конгруэнтной точкой плавления и две инконгруэнтные фазы.

На классической диаграмме (см. вставку на рис.1) известна только одна фаза (герцинит FeOAl<sub>2</sub>O<sub>3</sub>), образующая эвтектики с вюститом (1310  $^{\circ}$ C) и корундом (1750  $^{\circ}$ C).

На ординатах чистых компонентов обозначены следующие критические точки — тепловые и химические  $(t, {}^{0}\mathrm{C})$ :

FeO: 
$$B_0(560) \rightarrow B_1(1000) \rightarrow B_2(1100) \rightarrow B_3(1200) \rightarrow B_4(1370) \rightarrow B_5(1500) \rightarrow B_6(1600) \rightarrow B_7(1800) \rightarrow B_8(2000),$$

где  $B_{_0}$  и  $B_{_4}$  — температуры образования и плавления, точки  $B_{_5}$  –  $B_{_8}$  — для жидкого состояния.

$$Al_2O_3$$
:  $A_1(1000) \rightarrow A_2(1350) \rightarrow A_3(2050) \rightarrow A_4(2300)$ ,

где  $A_4$  — точка плавления.

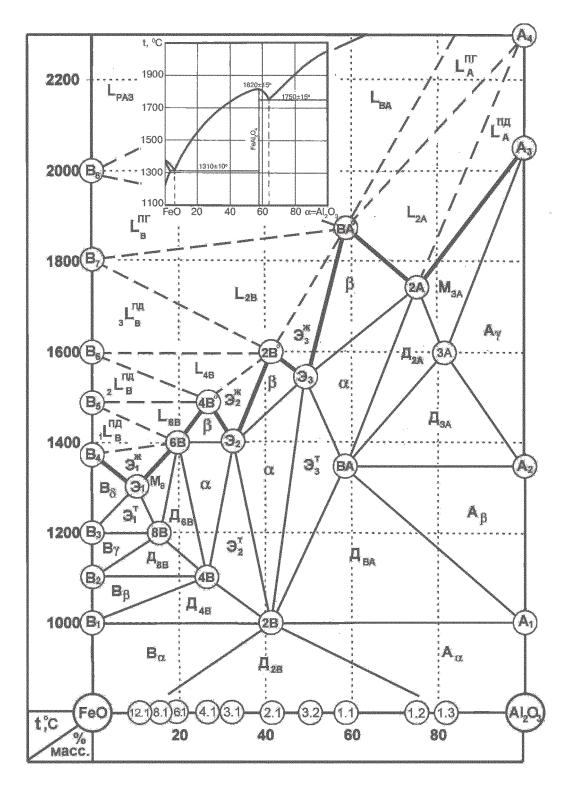



Рис. 1. Полигональная диаграмма системы Fe-Al<sub>2</sub>O<sub>3</sub>

## Получение и обработка расплавов

На базе исходных компонентов в результате мезо- и изоморфных превращений образуются следующие области гомогенности твердых и жидких фаз:

$$\text{FeO: } B_{\alpha} \rightarrow B_{\beta} \rightarrow B_{\gamma} \rightarrow B_{\delta} \rightarrow_{1} L_{R}^{\Pi \square} \rightarrow_{2} L_{R}^{\Pi \square} \rightarrow_{3} L_{R}^{\Pi \square} \rightarrow_{4} L_{B}^{\Pi \Gamma} \rightarrow L_{PA3};$$

$$\text{Al}_2\text{O}_3\text{:}\ A_\alpha\!\!\to\!\!A_\beta\!\!\to\!\!A_\gamma\!\!\to\!L_A^{\Pi\Pi}\to L_A^{\Pi\Gamma}\to L_{PA3}\ .$$

Линия ликвидуса (жирная линия), проведенная через сингулярные точки  $B_4 \rightarrow 3_1 \rightarrow 6B \rightarrow 4B^0 \rightarrow 3_2 \rightarrow 2B^0 \rightarrow 3_3 \rightarrow BA^0 \rightarrow 2A^0 \rightarrow A_3$ , разделяет области существования твердых и жидких фаз, ограниченных линиями сольвуса (сплошные линии) и линиями ликвуса (пунктирные линии). Сингулярные фазы, образующиеся в твердом состоянии, в области гомогенности имеют модификации низко- и высокотемпературные ( $\alpha$ ,  $\beta$  соответственно), а также моно- и диструктурные состояния (M и M-состояния) твердых растворов.

В табл. 1 приведена классификация промежуточных фаз системы FeO-Al $_2$ O $_3$  на основе анализа их структурно-химического состояния (СХС-анализ), включающего физико-химический анализ: химические реакции взаимодействия в квазибинарных линейных системах концентрационного поля диаграммы, стехиометрический и химический составы, оксидный модуль (М = FeO/Al $_2$ O $_3$ ), температуры образования и плавления, а также микроскопический (М и Д-состояния) и наноструктурный анализы (стабильные ионномолекулярные комплексы (СИМ-комплексы). Условные обозначения стехиометрического состава промежуточных фаз показаны двузначными цифрами на абсциссе диаграммы (первая цифра — вюстит, вторая — глинозем) и на концентрационном поле диаграммы литерами В (вюстит) и А (глинозем), литеры М и Д — моно- и диструктурные состояния.

СИМ-комплексы исходных компонентов и отдельных промежуточных и эвтектических фаз, сведенные в табл. 2, представляют собой центрально-симметричные плоские (полигональные ячейки) или объемные (полиэдрические ячейки) конструкции с максимально плотной упаковкой заданного числа частиц в единичном дву- или трехмерном пространстве. Число частиц (N), составляющих СИМ-комплекс, находят из структурной формулы исходных компонентов и промежуточных фаз, а плотность упаковки определяют из приведенных площади ( $S_0$ ) и объема ( $V_0$ ) полигональных и полиэдрических ячеек путем деления численных значений  $S_{\Pi \Gamma}$ , нм² и  $V_{\Pi Z}$ , нм³ на N. Геометрические параметры структурных ячеек находят из орбитальных радиусов, рассчитанных по модели РОМ-атома [2] для заданного типа химических связей железа ( $Fe^{2+}$ ), алюминия ( $Al^{3+}$ ) и кислорода ( $O^{2-}$  и  $O^{1-}$ ) при образовании промежуточных фаз.

Полигональные ячейки имеют форму полимерных плоских электронейтральных или отрицательно заряженных сеток на базе комплексов  $(Al_2O_5)^{4-}$ , связанных катионами железа  $(Fe^{2+})$  с анионами кислорода, образующих закрытые или открытые концевые связи. Полиэдрические электронейтральные ячейки кубической сингонии составляют из комплекта полигональных ячеек (не менее двух), связанных между собой физическими (притяжение-отталкивание) или химическими (ионными) силами в кристаллическом теле простых форм с заданным типом габитуса гармонических структур вещества.

Полигональные структуры позволяют исследовать механизм шлаковой обработки металлического расплава, тогда как полиэдрические позволяют оценить линейные размеры неметаллических (шлаковых) включений в литом металле.

В ПДС-методе построение диаграмм состояния, как уже отмечалось, конструкция диаграммы зависит от стехиометрического состава и структурного типа первичной промежуточной фазы, разделяющей бинарную систему на две подсистемы с исходными компонентами. При этом полиэдрические ячейки первичной промежуточной фазы образуют прототипы кристаллических форм — для подсистем  $2\text{FeOAl}_2\text{O}_3$ -FeO и  $2\text{FeOAl}_2\text{O}_3$ -Al $_2\text{O}_3$ .

На рис. 2 представлена графическая зависимость геометрических параметров структурных ячеек в зависимости от стехиометрического состава алюминатов железа.

Таблица 1. Классификация алюминатов железа

| :                                                                           |                                                                                                                                                           | Промежуто                           | Промежуточные фазы    |               |                               |                      |                      |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------|---------------|-------------------------------|----------------------|----------------------|
| Линеиные<br>системы                                                         |                                                                                                                                                           | химические                          | условные              | Al,O.,        | FeO                           | температура, °С      | ypa, <sup>0</sup> C  |
|                                                                             | химические реакции                                                                                                                                        | формулы                             | обозна-               | , 3.<br>мас.% | $\overline{\mathrm{Al_2O_3}}$ | образования          | плавления            |
| FeO-Al <sub>2</sub> O <sub>3</sub>                                          | $2\text{FeO+Al}_2O_3 \leftrightarrow 2\text{FeOAl}_2O_3$ $3(2\text{FeOAl}_2O_3) \leftrightarrow 3\text{FeOAl}_2O_3 + 3\text{FeO2Al}_2O_3$                 | 2FeOAl <sub>2</sub> O <sub>3</sub>  | 2.1(2B)               | 41,5          | 1,41                          | 1000<br>H.Д.*        | <u>1600</u><br>н.д.  |
| FeO-2FeOAl <sub>2</sub> O <sub>3</sub>                                      | $2\text{FeOAl}_2O_3 + 2\text{FeO} \leftrightarrow 4\text{FeOAl}_2O_3$ $3(4\text{FeOAl}_2O_3) \leftrightarrow 6\text{FeOAl}_2O_3 + 2(3\text{FeOAl}_2O_3)$  | 4FeOAl <sub>2</sub> O <sub>3</sub>  | 4.1(4B)               | 26,2          | 2,82                          | 1100<br>H.A.         | 1500<br>H.A.         |
| FeO-4FeOAl <sub>2</sub> O <sub>3</sub>                                      | $4\text{FeO} + 4\text{FeOAl}_2O_3 \leftrightarrow 8\text{FeOAl}_2O_3$ $3(8\text{FeOAl}_2O_3) \leftrightarrow 12\text{FeOAl}_2O_3 + 2(6\text{FeOAl}_2O_3)$ | 8FeOAl <sub>2</sub> O <sub>3</sub>  | 8.1 (8B)              | 15,0          | 5,05                          | <u>1200</u><br>н.д.  | <u>1500</u><br>н.д.  |
| $8$ FeOAl $_2$ O $_3$ - $-4$ FeOAl $_2$ O $_3$                              | $8\text{FeOAl}_2\text{O}_3 + 4\text{FeOAl}_2\text{O}_3 \leftrightarrow 2(6\text{FeOAl}_2\text{O}_3)$                                                      | 6FeOAl <sub>2</sub> O <sub>3</sub>  | 6.1(6B)               | 19,1          | 4,24                          | <u>1400</u><br>н.д.  | <u>н.д.</u><br>н.д   |
| FeO-8FeOAl <sub>2</sub> O <sub>3</sub>                                      | $4\text{FeO} + 8\text{FeOAl}_{_2}\text{O}_{_3} \!\leftrightarrow\! 12\text{FeOAl}_{_2}\text{O}_{_3}$                                                      | 12FeOAl <sub>2</sub> O <sub>3</sub> | 12.1(9 <sub>1</sub> ) | 10,6          | 8,47                          | 1300<br>1300         | $\frac{1300}{1300}$  |
| 4FeOAl <sub>2</sub> O <sub>3</sub> -<br>-2FeOAl <sub>2</sub> O <sub>3</sub> | $4\text{FeOAl}_2\text{O}_3 + 2\text{FeOAl}_2\text{O}_3 \leftrightarrow 2(3\text{FeOAl}_2\text{O}_3)$                                                      | 3FeOAl <sub>2</sub> O <sub>3</sub>  | 3.1(9 <sub>2</sub> )  | 32,1          | 2,10                          | <u>1400</u><br>н.д.  | <u>1400</u><br>н.д.  |
| Al <sub>2</sub> O <sub>3</sub> -2FeOAl <sub>2</sub> O <sub>3</sub>          | $A_1O_3 + 2FeOAl_2O_3 \leftrightarrow 2(FeOAl_2O_3)$<br>4(FeOAl_2O_3) $\leftrightarrow 3FeO2Al_2O_3 + FeO2Al_2O_3$                                        | FeOAl <sub>2</sub> O <sub>3</sub>   | 1.1(BA)               | 58,6          | 0,71                          | 135 <u>0</u><br>H.A. | 185 <u>0</u><br>1820 |
| FeOAl <sub>2</sub> O <sub>3</sub> -Al <sub>2</sub> O <sub>3</sub>           | $FeOAl_2O_3 + 2Al_2O_3 \leftrightarrow FeO3Al_2O_3$                                                                                                       | FeO3Al <sub>2</sub> O <sub>3</sub>  | 13(3A)                | 81,0          | 0,23                          | 1600<br>H.Д.         | <u>1850</u><br>H.Д.  |
| FeOAl <sub>2</sub> O <sub>3</sub> -<br>-FeO3Al <sub>2</sub> O <sub>3</sub>  | $FeOAl_2O_3 + FeO3Al_2O_3 \leftrightarrow 2(FeO2Al_2O_3)$                                                                                                 | FeO2Al <sub>2</sub> O <sub>3</sub>  | 1.2(2A)               | 73,9          | 0,35                          | 175 <u>0</u><br>H.A. | <u>1750</u><br>н.д.  |
| 2FeOAl <sub>2</sub> O <sub>3</sub> -<br>-FeOAl <sub>2</sub> O <sub>3</sub>  | 2FeOAl <sub>2</sub> O <sub>3</sub> +FeOAl <sub>2</sub> O <sub>3</sub> ↔3FeO2Al <sub>2</sub> O <sub>3</sub>                                                | 3FeO2Al <sub>2</sub> O <sub>3</sub> | 3.2(3 <sub>3</sub> )  | 51,5          | 0,94                          | 1550<br>H.A.         | <u>1550</u><br>н.д.  |

<sup>:</sup> н.д. - нет данных

# Получение и обработка расплавов

Таблица 2. Структуризация алюминатов железа

| Формульный состав                  |                                                                                                          | СИМ – комплексы<br>(О - кислород, ●- железо, △- алюминий) |                                       |
|------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------|
| стехиомет-<br>рический             | структурный                                                                                              | структурные ячейки<br>полигональные / полиздрические      |                                       |
| Al <sub>2</sub> O <sub>3</sub>     | (Al <sub>2</sub> O <sub>5</sub> ) <sup>4-</sup>                                                          | a = 14,5 HM                                               | a, a*= 16,5 HM                        |
| 2 3                                | (Al <sub>8</sub> O <sub>12</sub> ) <sup>0</sup>                                                          | $N = 7, S_0 = 136,7$                                      | $N = 20, V_0 = 219,5$                 |
| FeO                                | (Fe <sub>4</sub> O <sub>4</sub> ) <sup>0</sup>                                                           | b = 17,3 HM,                                              | с = 24 нм                             |
|                                    | (Fe <sub>8</sub> O <sub>8</sub> ) <sup>0</sup>                                                           | $N = 8, S_0 = 149,7$                                      | $N = 16, V_0 = 1795,8$                |
|                                    |                                                                                                          | a = 14.5  HM, b = 17.                                     | -                                     |
| 2FeOAl <sub>2</sub> O <sub>3</sub> | (Fe <sub>2</sub> Al <sub>2</sub> O <sub>5</sub> ) <sup>0</sup><br>2FeOAl <sub>2</sub> O <sub>3</sub>     | <i>?</i> − <u>6</u> −Q                                    |                                       |
|                                    | (Fe <sub>4</sub> Al <sub>4</sub> O <sub>10</sub> ) <sup>0</sup><br>4FeO2Al <sub>2</sub> O <sub>3</sub>   | $N = 9.0, S_0 = 108.6$                                    | $N = 18, V_0 = 1616,6$                |
| 4FeOAl <sub>2</sub> O <sub>3</sub> | (Fe <sub>4</sub> Al <sub>2</sub> O <sub>7</sub> ) <sup>0</sup><br>4FeOAl <sub>2</sub> O <sub>3</sub>     |                                                           | b b b                                 |
|                                    | (Fe <sub>8</sub> Al <sub>4</sub> O <sub>14</sub> ) <sup>0</sup><br>8FeO2Al <sub>2</sub> O <sub>3</sub>   | $N = 13, S_0 = 163,0$                                     | $N = 26, V_0 = 2238,4$                |
| 3FeOAl <sub>2</sub> O <sub>3</sub> | (Fe <sub>6</sub> Al <sub>4</sub> O <sub>12</sub> ) <sup>0</sup><br>6FeO2Al <sub>2</sub> O <sub>3</sub>   |                                                           | b b b b b b b b b b b b b b b b b b b |
|                                    | (Fe <sub>12</sub> Al <sub>8</sub> O <sub>24</sub> ) <sup>0</sup><br>12FeO4Al <sub>2</sub> O <sub>3</sub> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$      | $N = 44, V_0 = 3968, 0$               |
| FeOAl <sub>2</sub> O <sub>3</sub>  | (Fe <sub>2</sub> Al <sub>4</sub> O <sub>8</sub> ) <sup>0</sup><br>2FeO2Al <sub>2</sub> O <sub>3</sub>    | 22a 22a b                                                 | 2a a a a a                            |
|                                    | (Fe <sub>4</sub> Al <sub>8</sub> O <sub>16</sub> ) <sup>0</sup><br>4FeO4Al <sub>2</sub> O <sub>3</sub>   | $N = 16, S_0 = 167,8$                                     | $N = 28, V_0 = 2078,5$                |

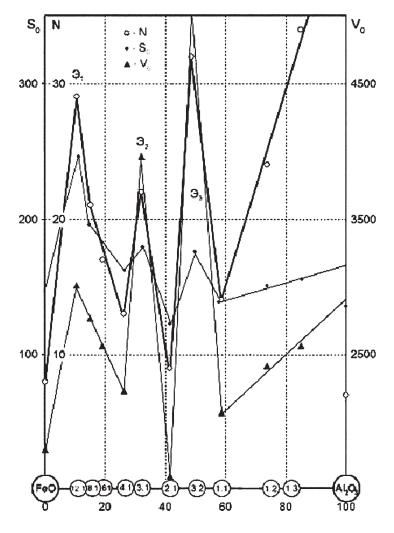



Рис. 2. Зависимость геометрических параметров СИМ-комплексов от стехиометрического состава алюминатов железа

Параметры ячеек  $(N, S_0, V_0)$  имеют экстремальные значения: для первичной промежуточной фазы  $(\Pi\Pi\Phi)$  — min на кривых и max на кривых для эвтектических фаз  $(\Im_1 - \Im_2 - \Im_3)$ . Подобная зависимость установлена и для силикатов железа [1], что свидетельствует о наличии общих закономерностей структуризации оксидных фаз:  $\Pi\Pi\Phi$  имеет упорядоченную структуру с максимальной плотностью упаковки при минимальном числе составляющих частиц, тогда как эвтектические, наоборот, относятся к разупорядоченным структурам с рыхлой упаковкой в дву- и трехмерном пространстве. Это позволяет определить правило тестирования наличия эвтектических точек на диаграмме состояний.

В частности, высокотемпературная эвтектика 1750 °C стехиометрического состава 2FeO3Al $_2$ O $_3$  не отвечает этому правилу и на ПДС FeO-Al $_2$ O $_3$  она отсутствует, уступив место сингулярной фазе FeO2Al $_2$ O $_3$ . Кроме того, экстраполяция кривых до пересечения с ординатой «Al $_2$ O $_3$ » позволяет оценить предельные геометрические параметры микроструктуры глинозема: N=60-70;  $S_0$ =300-350;  $V_0$ =3000-3500.

Таким образом, построенная  $\Pi$ ДС-методом полигональная диаграмма FeO-Al $_2$ O $_3$  является базовой для анализа физико-химического и наноструктурного состояния промежуточных фаз — алюминатов железа, неметаллических включений при раскислении алюминием жидкого железа.

### Получение и обработка расплавов



- 1. Белов Б. Ф., Троцан А. И., Бродецкий И. Л. Структуризация оксидных фаз в процессах раскисления железоуглеродистых расплавов кремнием и алюминием. Сообщение 2 // Процессы литья. 2008. № 4. С. 56-62.
- 2. *Троцан А. И., Харлашин П. С., Белов Б.* Ф. О природе химической связи элементов в металлургических фазах // Изв. вузов. Чер. металлургия. 2002. № 4. С. 60-63.

#### ВНИМАНИЕ!

Предлагаем разместить в нашем журнале рекламу Вашей продукции или рекламный материал о Вашем предприятии. Редакция также может подготовить заказной номер журнала.

Стоимость заказного номера - 4000 грн.

# Расценки на размещение рекламы (цены приведены в гривнях)

| Размещение                                | Рекламная<br>площадь                         | Стоимость, грн.      |  |  |
|-------------------------------------------|----------------------------------------------|----------------------|--|--|
| Рекламные блоки в текстовой части журнала |                                              |                      |  |  |
| Цветные                                   | 1/2 страницы<br>1/3 страницы<br>1/4 страницы | 900<br>600<br>300    |  |  |
| Черно-белые                               | 1/2 страницы<br>1/3 страницы<br>1/4 страницы | 550<br>380<br>200    |  |  |
| Цветная реклама на обложке                |                                              |                      |  |  |
| Третья страница<br>обложки                | 1 страница<br>1/2 страницы<br>1/4 страницы   | 2800<br>1400<br>700  |  |  |
| Четвертая страница<br>обложки             | 1 страница<br>1/2 страницы<br>1/3 страницы   | 3100<br>1550<br>1000 |  |  |

#### При повторном размещении рекламы - скидка 15 %

Наш адрес: **Украина, 03680, г. Киев-142, пр. Вернадского, 34/1** Физико-технологический институт металлов и сплавов НАН Украины

Справки

телефон: (044) 424-12-50

факс: (044) 424-35-15; E-mall: proclit@ptima.kiev.ua