© 2010

В.М. Талаш

Механізми утворення оксидних наноплівок на поверхні диборидів перехідних металів IV групи при електрохімічному окисненні

(Представлено членом-кореспондентом НАН України О. М. Григор'євим)

За допомогою методів потенціодинамічних анодних поляризаційних кривих та кількісної Ожсе-електронної спектроскопії вивчені механізми анодного окиснення у 3%-ному розчині NaCl, що імітує морську воду, зразків TiB₂ і HfB₂, отриманих методом високотемпературного ізостатичного пресування, та ZrB₂, отриманого методом прямого синтезу. Встановлено, що в результаті електролізу на поверхнях Me(IV)B₂ утворюється захисна плівка, що складалась у випадку TiB₂ з двох, ZrB₂ — одного, HfB₂ трьох наношарів. Визначено склад і електрохімічні параметри утворення кожсного наношару в захисній плівці. Для підвищення стійкості Me(IV)B₂-керамік рекомендована попередня анодна обробка.

На цей час спостерігається зростання кількості нових композиційних, в тому числі керамічних матеріалів, що пропонуються для застосування у різних галузях промисловості. Кераміка на основі диборидів титану та цирконію відноситься до конструкційних матеріалів, що використовуються у різних галузях машинобудування, в авіаційній промисловості, зокрема, для яких важливою є стійкість до корозії. Борид гафнію HfB₂ знаходить застосування у зносостійких покриттях та у виробництві надтвердих сплавів [1]. У зв'язку з цим значний інтерес викликають дослідження електрохімічної стійкості диборидів Me(IV)B₂ у природних середовищах, зокрема у морській воді.

Компактні зразки TiB₂ і HfB₂ були виготовлені в Лабораторії кераміки університету м. Лімож (Франція) методом високотемпературного ізостатичного пресування. Вихідні порошки спікалися у кварцевій ампулі при температурі, що не перевищувала 2173 К, під тиском до 220 МПа протягом 90 хв при всебічному стисненні в середовищі аргону. Диборид цирконію ZrB₂ отримували прямим синтезом у дуговій печі на мідному кристалізаторі, що охолоджувався водою, за технологією ІПМ НАН України.

У всіх випадках зразки $Me(IV)B_2$ були атестовані методом РФА, вміст бориду становив 98,0 \sim 99,0%.

Дослідження кінетики та механізмів анодного окиснення у 3%-ному розчині NaCl, що є аналогом морської води, незачищених від оксидної плівки зразків TiB₂, ZrB₂ та HfB₂ проводили за допомогою методів потенціодинамічних поляризаційних кривих та кількісної Оже-електронної спектроскопії. Анодні потенціодинамічні поляризаційні криві були зняті на потенціостаті ПИ-50-1 з швидкістю розгортки потенціалу 5 мB/с. Для пошарової ідентифікації складу продуктів взаємодії (оксидних плівок) використовували метод Оже-електронної спектроскопії. Дослідження проведено на приладі французького виробництва LAS-2000 Riber. Кількісний склад елементів у кожному шарі оксидної плівки (% (ат))

ISSN 1025-6415 Доповіді Національної академії наук України, 2010, №11

Рис. 1. Анодні поляризаційні криві окиснення зразків Me(IV)B₂: 1 — TiB₂; 2 — ZrB₂; 3 — HfB₂

встановлювали при послідовному травленні поверхонь окиснених зразків іонами Ar^+ ; тривалість травлення — до 10 хв.

Методом Оже-аналізу всіх вихідних зразків з'ясовано, що на їх поверхнях знаходився тонкий шар хемосорбованого кисню, який пасивував поверхню і значно зменшував початок анодних процесів у електроліті.

Результати потенціодинамічних досліджень наведено на рис. 1.

Розглядаючи анодну поведінку TiB_2 (рис. 1, крива 1) та, згідно з проведеним хімічним аналізом електроліту на Ti^{3+} - і Ti^{4+} -іони [2], можна дійти висновку, що в діапазоні потенціалів — 0,40–0,15 В у розчині відбувається утворення Ti^{3+} -іонів та борної кислоти

$$TiB_2 + 6H_2O = Ti^{3+} + 2BO_3^{3-} + 12H^+ + 9e^-.$$
 (1)

З розвитком анодного процесу при потенціалах, позитивніших 0,15 В, спостерігається формування плівки TiO₂ (рутилу)

$$TiB_2 + 8H_2O = TiO_2 + 2BO_3^{3-} + 16H^+ + 10e^-.$$
 (2)

При потенціалах, більших за 1,85 В, стає можливою поява на поверхні зовнішнього шару титанату натрію Na₄TiO₄, згідно з рівнянням (3):

$$4Na^{+} + TiO_{2} + 4H_{2}O = Na_{4}TiO_{4} + 8H^{+} + O_{2} \uparrow + 4e^{-}.$$
(3)

Дані Оже-аналізу оксидних шарів, отриманих при глибокій анодній поляризації TiB_2 , свідчать про те, що окалина, утворена на поверхні зразка, складається з двох шарів: зовнішнього — тонкого (~ 5 нм) шару Na₄TiO₄ та внутрішнього шару TiO₂ (рутилу).

Компактний зразок ZrB₂ (рис. 1, крива 2) на початку електролізу виявився значно стійкішим за TiB₂, головним чином за рахунок шару хемосорбованого кисню. Так, поява анодних струмів на поверхні ZrB₂, що означає початок окиснення, починається при потенціалі 0,60 В, що на 1,00 В позитивніше за випадок TiB₂. Але у подальшому, починаючи з потенціалу $E \sim 0,70$ В, окиснювальні процеси на зразку ZrB₂ стають більш активними при порівнянні з TiB₂.

82

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2010, № 11

У цілому процеси, що відбуваються на поверхні ZrB_2 , відповідають механізму анодного окиснення TiB_2 . Перший етап окиснення ZrB_2 (з утворенням іонів Zr^{3+} і BO_3^{3-}) протікає у діапазоні потенціалів 0,60–0,90 В

$$ZrB_2 + 6H_2O = Zr^{3+} + 2BO_3^{3-} + 12H^+ + 9e^-.$$
(4)

На заключному етапі анодного процесу (E > 0.90 B) утворюється ZrO_2 :

$$ZrB_2 + 8H_2O = ZrO_2 + 2BO_3^{3-} + 16H^+ + 10e^-.$$
 (5)

Оже-аналіз оксидного шару, утвореного на поверхні ZrB₂, підтвердив наявність на ній шару бадделеїту ZrO₂, що має захисні властивості, проте, на відміну від випадку TiB₂, наноплівки цирконату натрію аналіз не виявив, чим і пояснюється більша активність ZrB₂ при глибокій поляризації.

З результатів досліджень видно виключно високу корозійну стійкість HfB_2 (рис. 1, крива 3): при потенціалі 1,00 В швидкість корозії цього зразка на 4,5 порядка, а при потенціалі 1,50 В — на 2 порядки менше швидкості корозії зразка TiB_2 .

Як свідчить крива 3 на рис. 1, корозії зразка HfB₂, починаючи від стаціонарного потенціалу (-0,20 В) до 0,70 В, практично не спостерігається взагалі внаслідок наявності на його поверхні захисної плівки хемосорбованого кисню; при цьому при потенціалах 0,70–1,35 В відбувається процес десорбції кисню [3].

В ході анодної поляризації HfB_2 окиснення починається лише при потенціалі 1,35 В та відбувається у три стадії. Перша з них, в інтервалі потенціалів від 1,35 до 1,45 В, відповідає переходу у розчин двозарядних позитивних гафніл-іонів та аніонів борної кислоти у відповідності з реакцією

$$HfB_2 + 7H_2O = HfO^{2+} + 2BO_3^{3-} + 14H^+ + 10e^-.$$
 (6)

Друга стадія окиснення — від потенціалу 1,45 В до потенціалу 1,75 В — як було підтверджено Оже-дослідженнями, відбувається при формуванні на поверхні зразка твердої плівки, що складається з нестехіометричного оксиду гафнію HfO_x ($x \sim 0.5$) та оксидів бору B₆O і B₁₂O [3], з одночасним переходом гафнію у розчин у вигляді чотиризарядних катіонів:

$$9HfB_2 + 4H_2O = 5Hf^{4+} + 4HfO_{0.5} + B_6O + B_{12}O + 8H^+ + 28e^-.$$
(7)

Повна пасивація зразка HfB₂ наступає відразу після досягнення граничного струму при потенціалі 1,75 В.

Відносно верхнього, утвореного в кінці електролізу, наношару плівки на поверхні HfB₂, та, згідно з Оже-дослідженнями, співвідношення елементів у твердих фазах становить Hf : B : O = 1 : 8 : 90, що відповідає протіканню при потенціалах E > 1,75 В одночасно двох паралельних електрохімічних реакцій; перша з них — за участю аніона метаборної кислоти HBO₂⁻:

$$2HfB_2 + 12HBO_2^- = 2Hf(BO_2)_4 + B_2O_3 + B_6O + 4H_2O + 4H^+ + 16e^-$$
(8)

з твердофазним співвідношенням Hf : B : O = 1 : 8 : 10 і друга — відповідна за появу надлишкової кількості кисню:

$$2H_2O = O_2 \uparrow + 4H^+ + 4e^-.$$
(9)

83

ISSN 1025-6415 Доповіді Національної академії наук України, 2010, №11

Надлишковий (у 9 разів) вміст кисню у поверхневому шарі зразка після електролізу пояснюється багатошаровим характером хемосорбції кисню на дуже пористому шарі аморфного B₂O₃ (товщиною близько 5 нм).

Після завершення експерименту поверхня анодно окисненого зразка HfB_2 характеризується наявністю (у тісному зрощенні один з одним) окремих кристалітів бората гафнію $Hf(BO_2)_4$ та субоксиду бору B_6O , які розміщені в пористому шарі аморфної плівки B_2O_3 .

Така досить специфічна анодна поведінка HfB₂ (його виключно висока корозійна стійкість порівняно з диборидами титану і цирконію) пов'язана саме з утворенням на його поверхні захисної багатошарової "кисневої подушки".

Таким чином, встановлено, що внаслідок електролізу на поверхні HfB_2 утворюється плівка, яка складається з трьох наношарів. Її верхній шар (товщиною 5 нм) під хемосорбованим киснем містить аморфний оксид бору B_2O_3 з вкрапленнями в нього кристалітів борату гафнію $Hf(BO_2)_4$ і нижчого оксиду бору B_6O , тоді як середній шар (20 нм) містить нестехіометричний оксид гафнію $HfO_{0,5}$ і B_6O та $B_{12}O$, а граничний із зразком шар (15 нм) є твердим розчином 5% O_2 в HfB_2 .

З точки зору практичного застосування $Me(IV)B_2$ -керамік у корозійно-активних середовищах, то, згідно з проведеним дослідженням, можна рекомендувати їх попередню анодну обробку, що значно підвищить стійкість таких керамік не тільки до електрохімічної, але й до високотемпературної корозії.

- 1. *Химия* и технология редких и рассеянных элементов / Под ред. К. Большакова. Т. 2. Москва: Высш. шк., 1976. 252 с.
- 2. Набиванець Б. І., Князева Е. Н., Клименко Е. П., Довгань Н. Л. Метод визначення вмісту титану в розчині // Журн. аналіт. хімії. 1982. **37**, № 2. С. 247–250.
- Лавренко В. А., Талаш В. Н., Демезон-Брут М. и др. Кинетика и механизм электрохимического окисления борида гафния // Порошк. металлургия. – 2009. – № 7/8. – С. 121–126.

Інститут проблем матеріалознавства ім. І. М. Францевича НАН України, Київ Надійшло до редакції 13.05.2010

V.M. Talash

Mechanisms of formation of oxide nanofilms on the surface of diborides of transition metals of the IV group at electrochemical oxidation

Within the method of potential-dynamic anodic polarization curves as well as Auger-electron spectroscopy, the mechanisms of anodic oxidation of TiB_2 and HfB_2 samples obtained by the hightemperature isostatic pressing method and a ZrB_2 sample obtained by the method of direct synthesis are studied in a 3% NaCl solution imitating marine water. It has been established that, as a result of electrolysis on the $Me(IV)B_2$ surfaces, the multilayer protective film is formed. It consisted of two nanolayers in the case of TiB_2 , one layer for ZrB_2 , and three nanolayers for HfB_2 . The compositions and the electrochemical parameters of formation have been determined for every nanolayer. The preliminary anodic treatment to increase the durability of $Me(IV)B_2$ -ceramics is recommended.