В. М. Теслюк, к.т.н., доцент кафедри САП, НУ «Львівська політехніка»,

Р. В. Загарюк, аспірант НУ «Львівська політехніка»,

Тарік (Mox'д Тайсір) Алі Аль Омарі, аспірант НУ «Львівська політехніка», М. Р. Мельник, аспірант НУ «Львівська політехніка».

ПОБУДОВА VHDL-AMS МОДЕЛІ АКСЕЛЕРОМЕТРА ЄМНІСНОГО ТИПУ З ВРАХУВАННЯМ ЖОРСТКОСТІ ПРУЖИН

В роботі побудовано VHDL-AMS модель ємнісного акселеромтра, що враховує жорсткість пружин з допомогою яких інерційна маса кріпиться до основи, що забезпечує підвищення точності моделі. Наведено результати тестування VHDL-AMS моделі.

In this work it is built VHDL-AMS model of capacitive accelerometer, which counts a inflexibility of springs by which inertia mass is fixing to the basis, which provides the raise of model exactness. Results of testing the VHDL-AMS model is illustrated.

Вступ

За останні роки індустрія мікроелектроніки активно розвивається як у напрямку мініатюризації мікроелектронних пристроїв, так і у напрямку інтеграції в єдине ціле різних за фізичними принципами дії функціональних пристроїв. Називають такі інтегральні пристрої – мікроелектромеханічні системи (MEMC)[1 - 3]. Процес розроблення таких мікросистем відбувається з використанням досвіду, знань, технічних прийомів та методів з різних галузей науки і техніки. Це в свою чергу зумовлює необхідність функціональної інтеграції різнорідних комп'ютерних систем або розробки принципово нових інформаційних технологій аналізу та синтезу MEMC. Центральне місце таких інформаційних технологій займає математичне забезпечення, яке описує процеси з різних областей науки та техніки.

В більшості випадків для розроблення нових мікросистем використовують багаторівневе ієрархічне проектування, яке передбачає виконання проектних процедур на системному, функціональному, компонентному та елементному рівнях [4].

Проведений аналіз існуючого математичного забезпечення для схемотехнічного рівня показав, що ці моделі володіють низькою точністю [5 - 7]. Тому робота присвячена розробці VHDL-AMS — моделі ємнісного акселерометра для схемотехнічного рівня проектування із врахуванням жорсткості пружин для підвищення точності вихідних результатів є актуальною.

© В. М. Теслюк, Р. В. Загарюк, Тарік (Mox'д Тайсір) Алі Аль Омарі, М. Р. Мельник

1. Модель для врахування жорсткості пружини акселерометра ємнісного типу

Приклад конструкції ємнісного акселерометра зображено на рис.1. У зв'язку з нееластичністю рухомої маси, модель жорсткості акселерометрів цього типу визначає U-жорсткість. В цьому випадку ефективну жорсткість U-пружин визначаємо за допомогою енергетичного методу. В цьому методі сила F (або момент М) прикладається до вільного кінця пружини в визначеному напрямі. Зміщення П визначається на основі другої теореми

Кастіліано. Константа жорсткості визначається з виразу $k = \frac{F}{\delta}$.

Рис.1. а) базова конструкція ємнісного акселерометра, б) конструкція пружини

Враховуючи зміщення тільки від згину та кручення, загальна енергія напруження U лінійної структури визначається з виразу:

$$U = \sum_{i=1}^{N} \int_{0}^{Li} \frac{Mi(\xi)^{2}}{2*E*Ii} d\xi, \qquad (1)$$

де E – модуль Юнга для матеріалу пружини, L_i – довжина і-ої пружної балки в пружині, $Mi(\Box)$ – момент кручення вздовж пружної балки i, і $\zeta \Box \Box \Box$ відстань з кінця пружини. Момент кручення Mi визначається з сил і моментів, які прикладаються до кінця пружини.

З другої теореми Кастіліано, частинна похідна енергії напруження U від прикладеної сили F_i рівна зміщенню від заданої сили, $\Box j$.

$$\delta_j = \frac{\partial U}{\partial F_j}.$$
 (2)

Відповідно, кутові зміщення Θ_j , отримані з прикладених моментів, Мј визначаються як:

$$\Theta_j = \frac{\partial U}{\partial M_j}.$$
 (3)

Після розв'язання системи рівнянь з енергетичного методу, жорсткість пружини вздовж осі X є:

162

$$k_{x} = \frac{12 * \alpha * E * I_{b}}{L_{t}^{2} (6 * \alpha * L_{b} + L_{t})},$$
(4)

де Е — модуль Юнга для полікремнію, Lb та Lt — довжини горизонтальних та вертикальних пружних балок відповідно; Wt та Wb — відповідні їх ширини; Ib — момент кручення балки b1 та b2.

$$I_b = \frac{t^* W_b^3}{12}, \ \alpha = \left(\frac{Wt}{Wb}\right)^3.$$
(6)

За схожим принципом можна визначити жорсткість вздовж осі у:

$$k_{y} = \frac{3 * E * I_{b} (2 * \alpha * L_{b} + L_{t})}{L_{b}^{3} (\alpha * L_{b} + 2 * L_{t})}.$$
(7)

Повна форма k_{θ} для спрощенного випадку ($W_t = W_b, L_{b1} = L_{b2} = L_b$) с: $k_{\theta} = \frac{E * I_b \left[12 * L_{p2}^2 * L_b^2 + 12 * L_{p2} * L_b^2 * L_t + L_t^2 (36 * L_b * W_{p2} + 36 * W_{p2}^2 + 15 * L_b^2) \right]}{6 * L_b^3 * L_t^2},$

де L_{p2} і W_{p2} є половина довжини та ширини рухомої маси відповідно. Робота наведеної вище спрощеної моделі описується диференціальним рівнянням другого порядку [8, 9]

$$m\frac{d^{2}X}{dt^{2}} + b\frac{dX}{dt} + kX = F, \ F = F_{a} + F_{el},$$
(8)

де X - зміщення; F_a - механічна сила; F_{el} - сила, обумовлена електростатичним полем; m - сейсмічна маса; k – коефіцієнт пружності пружини; b – коефіцієнт демпфірування.

Для визначення ємності акселерометра використано наступну формулу [10] $C_o = \varepsilon_o \varepsilon \frac{A}{d}$, де ε - діелектрична проникність речовини між пластинами мікрофона; ε_o - діелектрична проникність вакууму; А – площа мембрани; d – відстань між пластинами.

Для визначення змін вихідного струму використано наступний вираз:

$$i = \frac{\partial Q}{\partial t}, Q = CU,$$
 (9)

де U - прикладена напруга, Q - накопичений на конденсаторі заряд.

2. Побудова VHDL-AMS модель ємнічного акселерометра

Приклад розробленої VHDL-AMS моделі наведено на рис.2, а результати зміни ємності від прикладеної сили на рис. 3.

```
----- Module ACCEL COMB1 ------
library Disciplines; use Tutorial.extra functions.all;
use Disciplines.electrical system.all;
entityACCEL COMB1 is
generic ( E:real:=12600000000;
     Lb:real:=0.000413;
         Lt:real:=0.000044;
     Wt:real:=0.0000045;
         Wb:real:=0.000005;
     t:real:=0.0000008;
         M : real := 1.2e-7:
     D : real := 4.0e-6:
         K : real := 2.6455;
     eps: real := 1.0006;
         epsVak:real:=8.85419e-12;
     Area : real := 1.0e-6;
         d : real := 5.0e-5;
     Volt : real := 10.0 );
port ( terminal Fin : electrical );
end entity ACCEL COMB1;
architecture archACCEL COMB1 of ACCEL COMB1 is
     quantity x : real := 0.0;
         quantity R : real := 0.0;
     quantity V : real := 0.0;
         quantity F across Fin to GROUND;
     quantity C1 : real := 0.0;
quantity Q1 : real := 0.0;
quantity I1 : real := 0.0;
quantity alfa:real:=0;
quantity Kx:real:=0;
quantity Ib:real:=0;
begin
         alfa==(Wt/Wb)*(Wt/Wb)*(Wt/Wb);
     Ib = ((t Wb Wb Wb)/12);
         Kx = (12*alfa*E*Ib)/(Lt*Lt*(6*alfa*Lb+Lt));
     V'dot == (F-R)/M;
         R == D*V + Kx*x;
     x'dot == V;
         C1 == Area*eps*epsVak/(d-x);
     Q1 == C1*Volt;
         O1'dot == I1:
end architecture archACCEL COMB1;
```

Рис.2. Побудована VHDL-AMS модель ємнісного акселерометра

Рис. 3. Результати аналізу зміни електричної ємності

висновки

Розроблено VHDL-AMS модель акселерометра ємнісного типу для схемотехнічного рівня проектування, яка враховує жорсткість пружин відносно осей X та Y, та проведено аналіз результатів її роботи. Запропонована модель дає змогу підвищити точність вихідних результатів на схемотехнічному рівні.

1. *Теслюк В.М.* Моделі та інформаційні технології синтезу мікроелектромеханічних систем: Монографія. – Львів: Видавництво ПП "Вежа і Ко", 2008 – 192 с.

2. Лучинин В.В. Микросистемная техника. Направления и тенденции развития // Научное приборостроение. 1999. Т. 9. № 1. С. 3-18.

3. *Лысенко И.Е.* Проектирование сенсорных и актюаторных элементов микросистемной техники. – Таганрог: Изд-во ТРТУ. 2005. – 103 с.

4. *Норенков И.П.* Основы автоматизированного проектирования: Учеб. для вузов. 2-е изд., перераб. и доп.- М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. – 336 с.

5. *Bernhard E. Boser* Capacitive Interfaces for Monolithic Integrated Sensors, Chapter in "RF Analog-to-Digital Converters; Sensor and Actuator Interfaces; Low-Noise Oscillators, PLLs and Synthesizers," Kluwer Academic Publishers, November 1997.

6. Varadan V.K. and Varadan V.V. Microelectro- mechanical Systems (MEMS), 2000.

7. Теслюк В.М., Загарюк Р.В., Тарік (Мох'д Тайсір) Алі Аль Омарі, Бобало С.І. Розробка vhdl-ams моделі ємнісного акселерометра зустрічно-стрижневої конструкції // Вісник Національного університету «Львівська політехніка»: Комп'ютерні системи проектування. Теорія і практика. - Львів, 2008. – № 626. – С. 110 - 115.

8. *Teslyuk V., Zaharyuk R.* Model of capacitive microaccelerometer / Perspective technologies and methods in MEMS design : Proc. of the II-d intern. conf. of young scientists. – Lviv-Polyana, 2006. – P. 86.

9. Молчанов И. Н. Мапинные методы решения прикладных задач. Дифференциальные уравнения. – К. : Наукова думка, 1988. – 344 с.

10. Тамм И.Е. Основы теории электричества: Учеб. Пособие для вузов.-10-е изд., испр.- М.: Наука. Гл. Ред. Физ.-мат. Лит., 1989. – 504 с.