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 The occurrence and role of image forces in physics and chemistry of surfaces are analyzed. It is 
shown that a prima facie simple concept of classical electrostatics has a very complicated background of 
diverse many-body phenomena. In particular, attention is focused on dynamic effects usually small but, 
nevertheless, important due to their peculiar manifestations. 
 

INTRODUCTION 

 One can conceive many cases when a 
charged particle is at rest or moving in an inho-
mogeneous structure near an interface (inter-
faces) between constituent media. Since dielec-
tric functions εi(q,ω) of different media are, 
generally speaking, not identical, additional po-
larization of the interface regions emerges 
caused by the Coulomb field of the charge in 
question. Arguments q and ω are transferred 
wave vector (in this context we shall make no 
distinction between momenta and wave vectors 
by tacitly assuming the Planck’s constant ħ 
equal to unity) and frequency, so that the polari-
zation properties of any medium involved are 
considered non-local and retarded (i. e. non-
local in time). In other words, introducing ex-
pressions εi(q,ω) we take into account spatial 
and temporal dispersions of the bulk polariza-
tions [1–4]. Therefore, ε(q,ω) is a straightfor-
ward generalization of the conventional dielec-
tric constant ε of the classical electrostatics [5]. 
 An extra position- and time-dependent en-
ergy generated by the field of an extra charged 
particle near an interface is called image force 
energy W, and the corresponding forces are 
called image forces, the term being familiar to 
everybody who has ever read standard text-
books. In particular, the origin of the term 
goes back to electrostatics of conductors 
where a point charge Ze located near an ideal 
infinite neutral conductor at a distance –z in-
teracts with the metal surface in such a way as 
if an opposite charge (–Ze) is positioned inside 
the metal at a distance (z) whereas the metal 
itself is not taken into account [6] 

2( )
( )  

4

Ze
W z

z
= − .     (1) 

Hereafter, we shall define e as a positive ele-
mentary charge, appropriate, say, to a proton. 
The number Z is an integer. 
 In the simplest approximations W near a 
metal surface is always attractive (< 0) as in Eq. 
(1), although the situation is much more complex 
in realistic approaches, better describing the ex-
perimental data and being more consistent from 
theoretical viewpoint. The subscript “i” in formu-
lae for dielectric functions numbers the media. 
 It is necessary to emphasize that possibility to 
restrict oneself to a single dielectric-function sca-
lar εi(q,ω) for each medium is valid only for 
plasma-like media (classical and quantum elec-
tron-ion plasma, dust plasma, electrolyte solu-
tions, colloids) where any periodic crystalline 
structure is absent and ε(q,ω) does not depend on 

reciprocal lattice wave vectors K
uur

 as in solids [7]. 
Moreover, both for plasma-like media and solids 
the imaginary part of ε″(q,ω) exists in addition to 
the conventional real part ε'(q,ω) [1, 3 ,4]. The 
functions ε″(q,ω) describe dissipation and influ-
ence, in particular, polarization, i. e. image, forces 
[8] (see also next Sections). Unfortunately, even 
for non-magnetic, isotropic and spatially non-
dispersive media adequate description of energy 
losses is non-trivial, since the Maxwell equations 
are reversible and do not make allowance for dis-
sipation which enters via material relationships [3, 
9]. For instance, the ohmic conductance is most 
often considered as the main source of macro-
scopic loss in a medium described by the Max-
well equations. On the other hand, to properly 
study dynamic image forces or Van der Waals 
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forces an account of ε″(q,ω) is inevitable because 
ε'(q,ω) and  ε″(q,ω) are  linked  by the Kramers-
Kronig  relations [3, 4]. 
 One should fully perceive that even if all me-
dia concerned are well described by their dielec-
tric functions εi(q,ω) the very existence of a well-
defined interface is a crude approximation which 
has to be justified individually for relevant spe-
cific cases. Indeed, physicists and chemists (in-
cluding biophysicists and biochemists) deal with 
finite transitional zones between bulk media [10–
13] instead of sharp interfaces of the classical 
electrostatics [5, 6, 14]. The electrochemical elec-
trolyte solution-electrode boundaries are the most 
popular examples of such inhomogeneous struc-
tures [10, 15–17]. Therefore, in the strict sense, 
one should talk about the Coulomb polarization 
energy in the inhomogeneous medium rather than 
about the image force energy even generalized in 
one way or another in comparison with its classi-
cal standard form. Nevertheless, the sharp-
interface approximation of interfaces is helpful in 
many cases at least qualitatively, so that the im-
age force concept can be considered an useful 
and fruitful one. Moreover, the image force en-
ergy is frequently invoked as an input quantity to 
calculate electron energy spectra in quantum 
wells [18–20], tunnel currents in layered struc-
tures [21–24], photo-currents [25–28], adsorption 
and catalytic properties [29–33], electron micros-
copy [34, 35]. It should be noted that real inter-
faces are curved rather than flat, ion channels in 
biological membranes being one of the most sig-
nificant examples [36–38]. Therefore, a cumber-
some theory of image forces applicable to cylin-
drical, spherical and more exotic interfaces has 
been also developed [39–46]. 
 It is worthwhile to mention that there are 
weak electromagnetic forces induced by quasi-
neutral objects which, nevertheless, conspicu-
ously perturb interfaces. I mean image forces 
induced by dipoles [29, 33, 47–52] as well as 
Van der Waals forces between atoms or mole-
cules, on the one hand, and surfaces, on the oth-
er hand [53–55]. The latter interaction is used to 
study surface structures by means of the so-
called Atomic Force Microscopy (AFM) [56–
57], younger relative of the Scanning Tunnel 
Microscopy (STM) [58, 59] where image forces 
discussed here play a substantial role. 
 This review is not intended to cover all these 
flourishing activities. At the same time I would 

like to describe in detail what are the origin and 
character of image forces in practically relevant 
situations. Dynamic effects being important for 
rapidly moving charges near the interfaces [60–
63] will be also discussed. The presentation in-
cludes metals (itinerant charges) and insulators 
(bound charges), the theory being easy to per-
form in the framework of the dielectric formal-
ism [61, 64]. Of course, cumbersome mathe-
matical expressions will be omitted in favor of 
physical discussion. Nevertheless, a curious 
reader would be able to trace all the depths of 
the formalism in the reference list. 
 Last but not least, I would like to emphasize 
that while studying surface phenomena one of 
necessity deals with small lengths of atomic or 
molecular order. Large organic molecules even 
exceed relevant lengths for which, e. g., image 
forces are strong enough to talk about. Therefore, 
in surface science physics and chemistry can not 
be separated either ideologically or practically, 
as is well known, in particular, in science of ca-
talysis [65] and related issues [66, 67]. 

PROLEGOMENA 

 A point charge near a planar surface of an 
ideal conductor (a model of a metal in the 
framework of the classical electrostatics [5]) and 
its energy given by Eq.(1) with an accuracy of 
notations are shown in Fig.1 taken from Ref.[13] 

This is the simplest possible electrostatic 
problem [5, 68]. Specifically, there is a real 
charge Ze in one medium (here it is the vacuum) 
and another medium, which is separated from the 
first one by a sharp (infinitely thin) boundary. In 
our case the boundary is grounded or at least 
equipotential. Since screening properties of vari-
ous media are different, extra charges appear at 
the boundaries. These charges serve as additional 
electric field sources in the Poisson equation   

∆Φ = –4πρ(r)    (2) 
for the potential Φ(r) in the medium of interest 
where the initial charge is located at a point ri. 
Here ρ(r) is the external charge density which 
equals Zeδ(r-ri) for a point charge, whereas δ(r) 
is the Dirac delta-function. For our specific 
choice of coordinates ri =(0,0,–z). 

The problem can be solved in an indicated 
conventional manner for general complicated 
configurations of the media (bodies) involved. 
However, when configurations are simple 
enough possessing a high degree of spatial 
symmetry, one can introduce fictitious charges 
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situated outside the medium with real charges. 
Charges of those phantoms are selected in 
such a way that the resulting potentials and 
fields coincide with those of real boundary 
surface charges induced by point charges in-
serted into the medium concerned. Those ficti-
tious charges are called image ones because 
they look like mirror images with mirror 
planes located at the interfaces. Image charges 

are always outside the region where Eq. (2) 
with ρ(r) = Zeδ(r-ri) is valid, since the par-
ticular solution of the Poisson equation must 
remain the same, while image or boundary 
charges can make contributions to the general 
solution of the Laplace equation which can be 
obtained from Eq. (2) by putting ρ(r) = 0. 
 

 
Fig. 1. (Left) A point charge outside and its image inside an ideal half-space conductor and (Right) the 

charge interaction energy with the polarizable interface [13]. 
One should bear in mind that the level of 

physical abstraction is not reduced by the substi-
tution of point-like image charges for their dis-
tributed boundary counterparts. Indeed, contin-
uum models of image forces fail at small dis-
tances from the conventional interfaces where 
their contribution becomes especially large (see 
Eq. (1)), since real inter-phase boundaries are 
neither sharp nor uniform. The atomic nature of 
the condensed matter is significant, in principle, 
and classical approach within the dielectric for-
malism is an approximation only. Nevertheless, 
the very concepts of image charges and image 
forces are extremely useful both for physicists 
and chemists, e.g. as benchmarks to check more 
realistic but numerical solutions. Moreover, an 
account of image forces gives order-of-
magnitude corrections to a plenty of calculated 
quantities leading to much better agreement with 
the available experiments. 
 It should be noted that even if one adopts the 
continuum model for media and the infinitely 
sharp interface is considered as a satisfactory 
approximation, the perfect-conductor (ideal-
conductor) picture has yet one more shortcom-
ing. Namely, inherent finiteness of the screening 
length λm for electron-ion metal quantum plasma 
[2, 11, 15, 39, 40, 64] is also ignored. This quan-
tity equals approximately to the inverse of the 
Thomas-Fermi wave number κTF = (6πne2/EF)

1/2 

≈ ·108 cm-1 where n is the electron concentration 
and EF is the Fermi energy (for definiteness the 
relevant quantities were presented here in a free-
electron approximation [6, 69]). Therefore, λm ≈ 
(0.1-0.5) nm, i.e. is comparable to the crystal lat-
tice parameter. In the ideal-conductor model λm = 
0. If one makes allowance for λm ≠ 0 it means 
exactly the same as making allowance for the 
spatial dispersion of the metal dielectric function. 
 Given the configuration of Fig. 1 one imme-
diately obtains the attraction force between the 
charge Ze and the polarizable boundary, i. e. 
charges induced on the metal surface, 

( )2

2
( )

4

Ze
F z

z
= .    (3) 

The (negative) image force energy W(x) of 
the charge outside the ideal conductor can be 
found as a work executed by the charge while 
moving from the infinity (z = –∞) to its actual 
position –z taken with an opposite sign 

( )2

( ) ( )
4

z Ze
W z dzF z

z

−

−∞

= − = −∫  . (4) 

The r.h.s. of Eq. (4) exactly reproduces that 
of Eq. (1). 
 One can look at Eqs. (1) and (4) from an-
other viewpoint. Let us calculate the image force 
energy directly, bypassing antecedent calcula-
tion of the image force. Then 
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( ) ( )2 2
1

( )
2 2 4

Ze Ze
W z

z z
= − = − .  (5) 

Here I wrote down the interaction of two 
charges, Ze and (–Ze), separated by a distance 2z. 
The important factor 1/2 reflects the fact that the 
fictitious charge (–Ze) is induced itself by the 
test charge Ze rather than being an independent 
entity. Hence, the interaction energy –(Ze)2/2z of 
two independent charges should be divided by 
two in order to obtain the proper value. 
 There is a third way to calculate the same 
elementary energy W(z). Specifically, let us intro-
duce a notation φ(z,Ze) ≡ Ze/2z for the electro-
static potential of the charge Ze at the image point. 
Now imagine that at first the opposite charge was 
equal to zero and then began to grow infinitesi-
mally  slowly until finally it took its true value 
(–Ze). The total interaction energy between the 
initial charge and its image can be defined as an 
integral over the hypothetical charging process 

( )2

0 0

( ) ( , ) ( )
2 4

Ze Ze Ze
W z z d d

z z

ξϕ ξ ξ ξ= − =− =−∫ ∫ .  (6) 

Here intermediate values of Ze were denoted 
by ξ. Of course, Eq. (6) does not differ from Eqs. 
(1), (4) or (5). It should be noted that my specula-
tions in this paragraph are quite similar to those 
well known in electrochemistry where electrostatic 
components of chemical potentials for ions in elec-
trolyte solutions were calculated using the same 
concept of hypothetical charging processes pro-
posed by Güntelberg and Debye [70]. This process, 
in its turn, goes back to the routinely performed 
process of capacitor charging formally described in 
a like manner [5, 68, 71–73]. 
 Since the image charge is in effect a sub-
stitute of the “more real” surface (interface, to 
be precise) charge σ(x,y), it makes sense to 
calculate this quantity and to ascertain that the 
image-force picture is adequate. Analysis is 
easy to carry out assuming from the very be-
ginning that the image charge (–Ze) and its 
genuine counterpart Ze act together [71]. Let 
us assume that a unit vector n, perpendicular 
to the interface, is directed towards the parent 
charge Ze. The choice is arbitrary and a final 
result for σ(x,y) does not depend on it [72]. 
According to the Coulomb law, a z-component 
Ez of the electric field, induced by the charge 
Ze, at a point P = (r; z = 0) at the surface of 
the conductor is as follows 

( )2 2
2 2

cos
,0 .z

Ze
E r x y

r z

θ+ = + =
+

    (7) 

Here r is a distance between the point P 
and the projection of the co-ordinate –z of the 
charge Ze on the conductor surface whereas θ is 
an angle between a vector directed from Ze to P 
and a perpendicular to the surface. Since tgθ = 
r/z, Eq. (7) can be simplified 

( )3/ 22 2

( )
.z z

Ze z
E E

r z

+ = ≡
+

   (8) 

Similarly, z-component of the image charge 
(–Ze) equals to 

( ) ( )3/ 2 3/ 22 2 2 2

( ) ( )
.z z

Ze z Ze z
E E

r z r z

− −= − = =
+ +

 (9) 

One of the consequences of the Gauss theo-
rem is a relationship between a discontinuity of 
the normal component of the electric field (in 
our case z-components) at a charged surface and 
the surface charge σ(x,y) 

( ), , 2 4 ,vac n conduct n z z zE E E E E x yπσ+ −− =− − =− = . (10) 

The first equality in Eq. (10) was written down 
taking into account that the direction of the vector 
n coincides with that of the z-component for the 
image-charge electric field whereas the field of 
the charge Ze is in opposition to n. A total surface 
polarization charge Q is an integral over the sur-
face of the local quantity σ(x,y) given by Eq. (10) 

( )3/22 2
0 0

2 ( , )
rdr

Q rdr x y Zez Ze
r z

π σ
∞ ∞

= =− =−
+

∫ ∫ . (11) 

It means that our replacement of Q by the im-
age charge was mathematically valid being, nev-
ertheless, only a useful computational tool. By the 
way, it is easy to show that tangential fields of 
charges Ze and –Ze compensate each other at any 
point of the surface, which is not surprising be-
cause electrical lines of force are perpendicular to 
conducting surfaces [5, 68, 71–73]. 
 One should not wonder why several methods 
have been used to obtain such an elementary ex-
pression as Eq. (1). The answer is that the sim-
plest possible charge configuration and the sim-
plest possible media considered above, where 
image forces appear, were used as a testing 
ground. Now, we are ready to study much more 
complex situations using, however, the same ba-
sic principles and treating the textbook expression 
as an extremely important limiting case. 
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GENERALIZATIONS. STATIC IMAGE 
FORCES 

All other kinds of image forces can be ob-
tained as generalizations of the picture repre-
sented in the previous Section. In particular, re-
maining in the framework of the conventional 
electrostatic theory one can consider two adja-
cent insulators with dielectric constants ε1 and ε2 
[5, 72, 73]. In this case free charge carriers are 
absent, so that σ(x,y) ≡ 0. The corresponding 
non-symmetrical electrostatic problem is solved 
taking into account continuity of normal dis-
placement components and tangential field com-
ponents. The resulting expression for the image 
force energy has the form 

( ) ( )
( )

2

2 1
1

1 2 1

( )
4

Ze
W z

z

ε ε
ε ε ε

−
= −

+
.   (12) 

Here, for the sake of definiteness, the en-
ergy was written down for medium 1 while for 
medium 2 the energy is given by the same 
formula with an accuracy of interchanged sub-
scripts 1 and 2. For a charge in the vacuum 
near a metal half-space Eq. (1) can be repro-
duced by ε2 tending to infinity and ε1 = 1. In-
deed, in the phenomenological electrostatics 
ideal conductors correspond to ε → ∞. The 
expression (12) demonstrates that a charge 
should approach a medium with larger dielec-
tric constant to lower its energy. 
 Image force energies (1) and (12) in the 
vacuum or in an insulator near another medium 
can be generalized in a straightforward way to 
the case of a slab between covers with differing 
dielectric functions. Of course, the latter may 
possess spatial (k) and temporal (ω) dispersion 
(see Fig. 2 where either possible non-relativistic 
motion of the charge or its rest is considered on 
an equal footing). 

 
Fig. 2. Charge moving, according to the equa-

tion z = z0(t), or quiescent in a three-
layer system [61]. 

It is evident that the image force energy in-
side the sandwich is not a superposition of con-
tributions from image charges induced in both 
covers. Indeed, each image charge form one 
cover is “reflected” in another cover while this 
reflection, in its turn, induces a charge in the 
first cover. Therefore, one has an infinite series 
which can be summed analytically in the sim-
plest cases [5, 61]. Otherwise the resulting im-
age force energy is calculated numerically. On 
the other hand, it is not necessary to directly use 
the image method in a slab where its simplicity 
is lost. It is more convenient to solve the electro-
static (quasi-electrostatic, for slowly moving 
charges) problem [48, 61] with continuity 
boundary conditions mentioned above [5, 72, 
73]. Needless to say, the results coincide for 
both methods. Moreover, similar expressions in 
the static case can be obtained in a less transpar-
ent but more general technique of the Coulomb 
Green’s functions [64]. 
 Image forces in the configuration displayed 
in Fig. 2 are significant to study electrical and 
optical phenomena in hetero-structures [18, 19], 
metal-oxide-semiconductor [23] and metal-
oxide-metal [22] devices in electronics, electro-
lytic liquid crystal cells [31, 74] or double-
walled nanotubes [45]. Sometimes even adsor-
bate layers are described as dielectric slabs in 
the constant approximation for their dielectric 
functions [66]. 
 It is worthwhile to demonstrate some ex-
pressions for the image force energy in the inter-
layer W2(z) in the approximation of the classical 
electrostatics. Let us restrict ourselves to the 
symmetric sandwich with ε1 = ε3 = ε = const and 
ε2 = const ≠ ε [61] 
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2
2
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( )

2
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W z U z

l

η
ε

+
= − + ; (13) 
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ε ε
η

ε ε
−

=
+
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As can be seen from Eqs. (13)–(15), the in-
terplay between images has nothing to do with 
simple summation of two single-boundary image 
force energies. It is especially well seen if one 
makes an approximation of the integral (14) 
valid with an accuracy of 6% so that [61] 
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A term with the logarithm in Eq. (13) can 
be properly called an interference one em-
bodying the contributions of different images 
of all orders. 
 The exact result (13)–(15) tends to the ex-
pression of the classical electrostatics [5] for ε 
→ ∞ and ε2 = 1 

( )2
1 1

( ) 2ln
8 2 2 2 2clas cond

Ze z z
W z

l l l
γ ψ ψ−

    = + − + +    
    

  (17) 

where γ =1.78… is the Euler constant and ψ(x) 
is the di-gamma function. One should note that a 
well-known and widely used Simmons’s ana-
lytical approximation [75] of (17) is not correct 
and should be replaced by our Eqs. (13), (16) 
with ε → ∞ and ε2 = 1. 
 The main shortcoming of all expressions for 
W(x) presented above is their divergence near the 
interfaces. It is not crucial for the macroscopic 
electrostatics where relevant distances from me-
tallic or semiconducting electrodes exceed all 
characteristic lengths of the problem. On the other 
hand, typical problems of emission electronics, 
catalysis, and biophysics of ion channels in cell 
membranes require more or less exact expres-
sions for image forces at 0.5–10 nm distances. 
Hence, various physical reasons leading to finite-
ness of W(x) were found and the corresponding 
physical models were elaborated. I would like to 
mention only the most significant ones. 
 The first step to avoid singularities is to shift 
the denominator in Eq. (1) 

( )
2( )

( )  
4

shift

Ze
W z

z z
= −

+
.   (18) 

Here z  is a phenomenological length (re-

member that both z and z  are positive!) intro-
duced in such a way that Wshift(0) is finite at the 
interface. Of course, there was at first no micro-
scopic justification of Eq. (18) although the re-
sults turned out to be rather satisfactory [76]. 
 Another consideration ensuring a saturation 
of the image force energy at the interfaces is 
based on the trivial but important in this context 
fact that the Coulomb field in a metallic sample 
is totally screened at a final distance λm from the 
surface, contrary to what is assumed in the elec-
trostatics of ideal conductors. I have already in-

dicated that the simplest model, which describes 
this circumstance, is a Thomas-Fermi one [15, 
64, 66]. For this model, the static dielectric per-
mittivity ε(q,0) takes the form 

2

2
( ,0) 1 TF

TF q

κε = +q      (19) 

where κTF is the Thomas-Fermi wave number 
introduced in the previous section. Then, using 
the same routine methods of solving the Poisson 
equations with the indicated above continuity re-
lations, one can obtain the whole profile of WTF(z) 
both in vacuum and metal [64, 77]. The vacuum 
branch of WTF(z) is the generalized image force 
energy with the sought-for saturation at the metal-
vacuum interface: WTF(0) = –(Ze)2

κTF/3. At the 
same time, WTF(z) inside the metal is no longer 
the infinite well of the classical electrostatics 
characterized by the dielectric constant ε → ∞. 
On the contrary, it is a finite internal potential 
energy WTF (z → ∞) = –(Ze)2

κTF/2, in other words, 
a bottom of the conduction band (such an inter-
pretation becomes valid if we abandon generality 
and put Z = 1). This quantity is reckoned from the 
zero-value vacuum energy level and is of the or-
der of several electron-volts in magnitude both in 
the primitive semi-classical Thomas-Fermi ap-
proximation and in any of sophisticated quantum-
mechanical approaches. A transition between 
WTF(0) and WTF(z → ∞) takes place in a tiny in-

terval ~ 1κTF
− . 

 Those concepts may be applied to more real-
istic models of a metal and its surface. In this 
case, the internal potential energy and the very 
dependence W(z) in the entire range –∞ < z < ∞, 
whatever model of metal is used, include both 
the electrostatic part eφel(z) and the exchange-
correlation term µxc(z) contributing to the one-
electron chemical potential µ of the electron liq-
uid (once more, pay attention that here the gen-
erality adopted earlier is absent and Z = 1!). One 
of the drawbacks of the Thomas-Fermi theory is 
a neglect of many-body term µxc(z), so that W(z) 
and eφel(z) coincide and the work function 
equals to zero [78]. 
 Unfortunately, Thomas-Fermi-approximati-
on formula (19) for the electron-gas dielectric 
function which substantially improves the de-
scription of the surface properties, is insuffi-
ciently satisfactory, since a derivative of WTF(z), 
i. e. the image force itself FTF(z) logarithmically 
diverges at the interface [64, 77] 
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( )( )
ln for 0TF

TF

W z
z z

z
κ∂ → →

∂
.  (20) 

The reason is that the quasi-classical (Thomas-
Fermi) theory of matter does not take into ac-
count (i) electron-electron correlations and (ii) 
quantum-mechanical interference of the electron 
wave functions [79, 80]. At the same time, the 
Thomas-Fermi theory is based on the Pauli prin-
ciple and the Fermi-Dirac statistics that are 
enough to describe metal properties for small 
wave vectors q (large lengths, in the spirit of the 
Fourier-transformation ideology). 
 However, for large wave vectors q ≈ kF ≈108 
cm-1 the corresponding distances ~q-1 become 
comparable with crystal lattice constants and the 
electron de Broglie wavelength 2πћ/mvF. Here vF 
≈ 108 cm/s is the electron velocity at the Fermi 
surface, kF = (3π2n)1/3 is the Fermi wave vector, 
and m is the electron mass (here, for definiteness, 
I am reasoning in terms of the free-electron 
model). Then the quantum-mechanical effects 
become significant. Nevertheless, in many cases 
calculated and measured quantities are integrals 
over q, so that one can restrict the consideration 
to the quasi-classics. Such arguments fail for 
interfacial phenomena where we are interested 
in the system behavior for small distances from 
the boundaries, i. e. for large q! 
 A proper expression for the dielectric 
function of a metal making allowance for 
quantum effects was obtained by Lindhard in 
his famous article [80]. In the static limit when 
ω/kvF → 0, the Lindhard dielectric static per-
mittivity takes the form 

( ) ( )
2

2

4
1L

e

q

πε = + Πq q    (21) 

where Π(q) is the polarization operator 

( )
21 1

( ) 1 ln
2 1F

s s
N k

s s

 − +Π = + − 
q . (22) 

In Eq. (22) N(kF) = mkF/2π
2
ћ

2 is the electron 
density of states per spin direction at the Fermi 
level, whereas s = q/2kF. Eq. (22) is valid (in the 
free-electron approximation!) for arbitrary wave 
vectors (momenta). 
 The quantum-mechanical permittivity (21)–
(22) has two peculiarities as compared to the 
quasi-classical one (19). The first one is a loga-
rithmic peculiarity of the polarization operator at 
q = 2kF. Being prima facie weak it, nevertheless, 
leads to a substantial modification of the itiner-

ant electron screening cloud at large distances. 
Namely, the so-called Friedel oscillations of the 

form cos(2kFr)/r
m appear at 1

Fr k −>>  as well as 

concomitant (Kohn) anomalies of the metal 
phonon spectra at q ≈ 2kF [69]. Here a power 
exponent m depends on the shape of the Fermi 
surface [64]. The Friedel oscillations, in particu-
lar, manifest themselves in the electron density 
of metals near the surface, so that the validity of 
the corresponding smooth Thomas-Fermi-like 
behavior is out of the question. 
 The other quantum-mechanical effect is the 
large-q fast reduction of [ε(q) – 1]: 

( )
2 2

4

4
1 at

3
TF F

L F

k
q k

q

κε ≈ + >>q .  (23) 

Because of the property (23) the usage of Eq. 
(21)–(22) instead of Eq. (19) results in a conti-
nuity of both WTF(z) and ( )/TFW z z∂ ∂  at the in-

terface, so that the solid state theory allows to 
eliminate the unphysical singularity of the clas-
sical electrostatics. 
 The same is true for the boundaries between 
different kinds of insulators and semiconductors 
which is extremely important, e.g., for biological 
tissues. The latter from the point of view of their 
electrical conductivity can be considered as a 
network of insulating membranes and channels 
filled by electrolyte solutions [36]. The classical 
formula (12) should be modified there in a simi-
lar way as it happens for its “metallic” counter-
part (1). The revolutionary idea belongs to Ink-
son [81] who understood that the dielectric func-
tion for an insulator ε(q) becomes the static di-
electric constant ε0 (over the optical frequency 
range, as is well known [1, 9, 15, 19, 69], a 
proper screening constant is ε∞ < ε0) only for 
large distances from a test charge or other elec-
tric field source, i. e. for small enough q. On the 
other hand, at small distances (large q) ε(q) 
should tend to unity similarly to what is appro-
priate for metals (see Eqs. (19), (23)). Therefore, 
an interpolation expression was suggested 

( )
( )

0
2

02

1
1

1 1
I

S

q

εε
ε

κ

−= +
+ −

q    (24) 

where κS is the effective screening length by va-
lence electrons described in that sense as itinerant 
ones. I emphasize that this equation is consistent 
with the classical electrostatics in the range of its 
validity, i.e. at q → 0. At the same time, at large q 
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(small distances) all bound charges become effec-
tively free which justifies Thomas-Fermi-like 
treatment of the valence electrons. 
 Eq. (24) has as bad asymptotic at large q as 
its analogue (19). In particular, this drawback 
leads to a finite WI(z → 0) while ( ) /IW z z∂ ∂  

diverges near the interface. Schulze and Unger 
improved the input bulk semiconductor proper-
ties and constructed [82] a phenomenological 
εSU(q) which has the same asymptotic (23) as 
εL(q) 

( )
( )

0
2 2

02 2

1 1
1

3
1 1 1

4

SU

S S

q q

k

εε
ε

κ

−= + ×
+ − +

q . (25) 

Here kS is the Fermi momentum of the semicon-
ductor valence electrons considered as free ones. 
We showed [62, 83] that a choice of εSU(q) as 
dielectric function while calculating image force 
energies WSU(z) removes the divergences, thus 
qualitatively solving the problem concerned. 
The results shown in Fig. 3 are taken form Ref. 
[62]. Pay attention that here vacuum half-space 
is located at positive z. 

One readily sees that the discrepancies be-
tween the models are large in the neighborhood 
of a semiconductor-vacuum interface and the 
use of the Schulze-Unger model is preferable. 
Similar conclusions can be made in the case of 
vacuum interlayers between semiconducting 
electrodes [62]. 

 
 
Fig. 3. Profiles of image force energies for differ-

ent models of semiconducting silicon. 1 – 
Schulze-Unger model, 2 – Inkson model, 
3 – classical electrostatic model [62]. 

 In the cases of doped semiconductors or elec-
trolyte solutions there are two main contributions 
to the overall dielectric function [74, 84]. The De-
bye-Hückel term is the first one having the same 
form as the Thomas-Fermi inverse screening 
length (19). However, the Debye-Hückel screening 
constant is a temperature-, T, dependent one. For 
1:1 electrolyte, e. g., the latter is κDH = 
(8πNe2/kBTεe)

1/2 where N is a concentration of each 
ion component, kB is the Boltzmann constant, εe is 
the solvent macroscopic static dielectric constant. 
A q-dependent polarization function of the solvent 
being of the same nature as the semiconductor Ink-
son function, constitutes the second contribution. 
 Interplay between dielectric functions of 
neighboring electrode and electrolyte solution may 
lead to extra ion adsorption Γ of either sign de-
pending on the system parameters [84] (Fig. 4). 

If one intentionally deposits an interlayer its di-
electric function and thickness may change Γ sign. 
In the case of liquid crystal displays this role often 
plays a polymer film which via changing of image 
forces prevents ion adsorption (sticking effect), thus 
improving display characteristics [74]. The electro-
static excess ad-sorption Γ crucially depends on the 
relationship between the liquid (liquid crystalline) 
solvent εe and that of the interlayer. 

In the case of a metal-vacuum boundary an-
other, more powerful, self-consistent method was 
used to calculate the entire spatial behavior of the 
potential charge energy across the interface from 
the metal bulk (internal potential) to the vacuum 
(image force energy) [78, 85, 86]. Similar tech-
nique was also applied to the electrochemical in-
terface between a metal electrode and an electro-
lyte solution [11, 15]. All models used in those 
cases can be roughly divided into two groups: (i) 
jellium-like ones where ions are treated as com-
pensating positive structureless background; and 
(ii) models explicitly making allowance for a pe-
riodic crystal lattice. Analysis carried out in the 
framework of different approaches supports our 
understanding obtained on the basis of more sim-
ple treatments. Self-consistent quantum-
mechanical approaches are, however, much more 
successful in quantitative calculations [86, 87].  

Another feature deserves to be mentioned –  
due to the 2kF peculiarity of the Lindhard function 
(21), (22) (also appropriate to more sophisticated 
dielectric functions, taking into account electron-
electron correlations [88]), self-consistently cal-
culated electron density n(z) and (to a lesser ex-
tent) the potential energy W(z) exhibit the Friedel 
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oscillations inside the metal. This feature pre-
serves if one explicitly takes into account the dis-
crete nature of the ionic background. Of course, 
in the latter case the electron potential energy 
W(z) reflects the periodicity of the ion-core poten-
tial profile in the bulk, reaching, on the other 
hand, the smooth image-force energy in the vac-
uum. The behavior of W(z) in the surface region 
determines the observed surface characteristics of 
metals and electrolyte cells, including work func-
tions [11, 15, 86, 87].  As an example, depend-
ences of W(z) and its electrostatic constituent 
eφel(z) are shown in Fig.5. One sees that the real-
istic image-force behavior is rather smooth with-
out any surface singularity inherent to naïve con-
siderations, although the classical behavior (1) is 
rapidly restored in the vacuum region. 
  

 
Fig. 4. Dependence of the excess image-

forces-induced surface adsorption Γ 
on dimensionless parameter α ≡ 
e2
κDH/2kBTεe ~ N for the 

Hg/aqueous electrolyte solution in-
terface. Curves l-3 correspond to the 
Taylor model for the metal taking 
into account electron-electron corre-
lations and κS = 0.3 nm, 0.5 nm and 
1 nm, curve 4 corresponds to the 
Thomas-Fermi approximation for 
metal and κS = 0 (Debye-Hückel 
model) and curve 5 corresponds to 
the Thomas-Fermi approximation 
and κS = 0.3 nm [84].  

An interesting generalization arises if one 
considers a micro-charge Ze which polarizes a 
dielectric sphere without [43] or with [39] spatial 
dispersion of its permittivity rather than a plane 

interface. The problem is difficult even from the 
technical viewpoint because the polarization in 
the spherical interface case cannot be formulated 
as an interaction with a fictitious image charge, i. 
e. a number of image charges becomes infinite as, 
e. g., in the case of a charge in vacuum between 
two metallic half-spaces [5]. One of the main 

conclusions is that the strength of image forces 
in spherical geometry is considerably smaller than 
at vanishing curvature [46]. The model was ad-
vantageously applied to colloidal particles and 
polyelectrolytes [46]. 

 
Fig. 5.  Spatial dependences of the electron energy 

W(z) and its electrostatic constituent 
eφel(z) near a metal-vacuum interface 
(vacuum is to the right). Ion lattice is ap-
proximated by a positive background [89]. 

 

DYNAMICAL EFFECTS. SURFACE 
PLASMONS AS A SOURCE OF IMAGE 

FORCES 

The self-consistent theory [78, 85, 89] which 
directly involves renormalization of the one-
electron quasiparticle spectrum by many-body 
effects due to the electron interaction with its 
environment (condensed phases), should involve 
contributions to physical quantities not only 
from one-particle Fermi excitations of relevant 
media but from their collective Bose excitations 
as well [90]. In order to isolate the collective 
excitations that in our case with its explicit elec-
trostatic interaction must be plasmons, i. e. elec-
tromagnetic oscillations in the bulk and at the 
interfaces between media involved one should 
deal with the non-local self-energy Σ(r, r΄, ω) 
(responsible for electron exchange and correla-
tion). Such a program was realized in the 
framework of the model with sharp interfaces 
and bulk dielectric functions [91]. In particular, 
for a hydrodynamic ε(q,ω) 
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( )
2

22 2
( , ) 1

/

TF
MH

p TFq

κε ω
ω ω κ

= +
−

q  (26) 

being a long-wavelength approximation of the 
Lindhard dynamic permittivity [80, 90], relevant 
bulk excitations are bulk plasmons whereas at 
the metal-vacuum interfaces the surface plas-

mons with frequency / 2s pω ω=  are decisive 

factors. Here, in the free-electron approximation 
the Langmuir plasma frequency is 

24 /p ne mω π=  and m is the electron mass. 

 The screened interaction energy, taking into 
account Σ(r, r΄, ω) and based on Eq. (26), tends 
to the image potential energy in the vacuum re-
gion far away from the metal surface which con-
firms, at least, qualitative validity of the calcula-
tion. Moreover, this approach can be easily ap-
plied to other solid media, e. g. semiconductors 
[92]. Since the polarization energy (image force 
energy) thus obtained is static and the surface 
plasmons are its source, the static image forces 
origin might be interpreted as an interaction of 
an electron (or other test charge) with zero-point 
oscillations of virtual surface plasmons [93, 94]. 
From this viewpoint, the surface charge σ(x,y) of 
the classical electrostatics involved into Eqs. 
(10), (11) can be considered as a frozen surface 
plasmon. Of course, this identification is not ex-
act. Indeed, the dependence W(z) is integral in-
cluding contributions both from surface and bulk 
plasmons. The latter is of a minor importance for 
the outer region of W(z), i. e. for the image force 
energy per se, while the inner (intra-metal) 
branch of W(z) is formed by the surface and bulk 
terms together with the internal potential energy 
determined by the bulk plasmons alone [94]. 
 Now we can generalize our treatment and 
assume a finite velocity v of the charge Ze, lo-
cated at a moment t at a point z0(t) (see Fig. 3, 
where a three-layer configuration is depicted). 
The trajectory is supposed to be perpendicular to 
the interfaces. Such an approach was suggested 
previously [48, 95–97], the electron motion be-
ing non-relativistic, i. e. v « c, where c is the 
light velocity. It means that one can totally ne-
glect the retardation of the electromagnetic po-
tentials whereas the inertia of the plasma re-
sponse becomes essential. Indeed, in the latter 
case small parameters which characterize the 
importance of the dynamic corrections to the 

static image forces in a close vicinity of the in-
terfaces z → 0, are as follows [61] 

2 2 2/TF pvκ ω         (27) 

if a charge moves with a constant speed v and 
2/TF ext pe E mκ ω     (28) 

if a charge is accelerated in the external field Eext. 
At a large distance z from the interface in the 
vacuum region, the small parameters remain the 
same with an accuracy of a substitution 
κTF → z-1. The emergence of the dynamical per-
turbation of the image forces is due to finiteness 
of the plasma frequency ωp. Namely, itinerant 
electrons inside a metal simply have no time to 
properly screen a varying field of a moving 
charge. Eqs. (27), (28) confirm the statement 
made above that the plasmon retardation has 
little to do with the electromagnetic relativistic 
retardation. In fact, these formulae do not con-
tain the light velocity c whereas the plasma fre-
quency ωp appears there. 
 It can be shown that in fields, smaller than 
atomic ones m2e5/ћ4, the correction (28) for a 
typical metal is of the order 0.05 [61]. On the 
other hand, if a velocity v becomes of the order 
of a metal Fermi velocity vF ~ 106 m/s, parame-
ter (27) is no longer small. However, in this case 
one can forget about the spatial dispersion of 
ε(q,ω) altogether and still arrive at the exact so-
lution for image force energies with the finite 
value at z = 0 [48, 95, 97]! It means that the sin-
gularity can be eliminated by the temporal dis-
persion alone, so that for incident charged parti-
cles, i. e. traveling from vacuum perpendicularly 
to a metal surface one obtains: 

( ) ( ) ( )2
0

0

2

2
s z tZe

W z t f
v v

ω 
= −      

 
   (29) 

where 
( ) Ci( )sin si( )cosf x x x x x= − ,  (30) 

cos
Ci( )

x

t
x dt

t

∞

= −∫ ,   (31) 

sin
si( )

x

t
x dt

t

∞

= −∫ .        (32) 

 At the interface from Eqs. (29) and (30) it 
comes about that the announced finite value be-
comes 

( )2

(0)
4

sZe
W

v

π ω
= −    (33) 



A.M. Gabovich 
_____________________________________________________________________________________________ 

 

ХФТП 2010. Т. 1. № 1 82 

while at the large distances from the metal surface 

( )02 / 1s z t vω >>  the classical (quasi-static) 

image force energy (1) is restored with z = z0(t). 
 Quite another situation emerges, when 
charged particles are emitted from a metal into 
the vacuum with a constant velocity v normal to 
the interface, as in the previous example. Spe-
cifically, in this case the emission is accompa-
nied by the excitation of real surface plasmons 
leading to the different behavior of W(z). 
Namely, even at far distances from the metal 
classical image forces are distorted by oscillat-
ing terms of the same order of magnitude [48]. 
This unphysical behavior is, however, an artifact 
caused by the neglect of the plasmon damping 
always existing although not always substantial. 
The metal dielectric function in this case (with-
out spatial dispersion!) takes the form 

( )
2

( , ) 1 p
plasm i

ω
ε ω

ω ω ρ
= −

+
q    (34) 

where ρ is the inverse relaxation time character-
izing the damping of the plasma oscillations. For 
incident particles the damping is not crucial in-
deed, whereas for emitted charges it leads to the 
suppression of anomalous terms and the restora-
tion of the good old image force energy [8] 

( )2

0
0

0

( )
( ( ) ) 1 exp

4 ( ) 2emit

z tZe
W z t

z t v

ρ  →∞ = − − − ×  
  

( )
( )

0 0

0

( )2
2cos 1 sins s

s

z t z tv

v vz t

ρ
ρ

  Ω Ω + −    Ω   

. (35) 

Here 
2 2

2 4
p

s

ω ρΩ = −    (36) 

is the renormalized surface plasma frequency. 
Nevertheless, a strong influence of the real 
plasmons on the W(z) behavior at the intermedi-
ate distances from the interface survives the 
damping effect. 
 Dynamical renormalization of the image 
forces is not a kind of exotics. On the contrary, 
field emission processes, where electrons are 
emitted and accelerated in vacuum, inevitably 
involve the dynamic image forces [61, 62, 98]. 
Incomplete screening of the emitted-charge field 
by the retarded plasma oscillations leads to 
broadening of the corresponding tunnel barrier, 
so that the current becomes smaller than that 

given by the conventional Fowler-Nordheim 
theory [6, 32]. Such a reduction was observed, 
e. g., in photon-assisted tunneling [99]. 

CONCLUSIONS 
 The facts and speculations covered by this 
paper show that the image force concept which 
appeared as a technical tool used to tackle cum-
bersome electrostatic problems, has transformed 
into a flourishing research realm. Based on the 
concept concerned, self-consistent approach (us-
ing the electron density functional), dielectric 
formalism, quantum-field-theory methods de-
scribing the interaction between charges and 
surface plasmons were applied to study solid-
state electronics, atmospheric science, electro-
chemical surface, biological membranes, cata-
lytic reactions, scanning tunnel microscopy, 
atomic force microscopy. I would like to men-
tion, in particular, such exotic spheres of appli-
cability of the image force concept as oxide 
growth and the crystal defect behavior [100] and 
deposition of multiply charged particles on wire 
screens [101]. Although modern theoretical 
methods are quite sophisticated, it is now easier 
for experimentalists to interpret their results on 
the basis of the image-force concept than it was 
decades ago. Better understanding of the micro-
scopic background of the classical notion is the 
reason of this success in the research. Here, I 
tried to elucidate only main ideas leaving the 
technical side of the problem beyond the scope 
of the paper. The reader can find necessary de-
tails in numerous references, reflecting various, 
sometimes conflicting viewpoints. 
 I am grateful to the 2008 and 2009 Visitors 
Programs of the Max Planck Institute for the 
Physics of Complex Systems (Dresden, Ger-
many) for giving me opportunity to work on the 
subject in a quiet and stimulating atmosphere. 
Remarks and suggestions of the anonymous 
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Дзеркальні сили у фізиці та хімії поверхні: деякі основні аспекти 

О.М. Габович 

Інститут фізики Національної академії наук України,  
проспект Науки 46, Київ 03680, Україна 

 Аналізуються використання та роль дзеркальних у фізиці та хімії поверхні. Показано, що, на пер-
ший погляд, проста концепція класичної електростатики має непросте підґрунтя, пов’язане із розмаї-
тими багаточастинковими ефектами. Зокрема, звернено увагу на динамічні аспекти, зазвичай малі, 
проте важливі через свої особливі прояви. 

Силы изображения в физике и химии поверхности: некоторые основные аспекты 

А.М. Габович 

Институт физики Национальной академии наук Украины, 
 проспект Науки 46, Киев 03680, Украина 

 Анализируются использование и роль сил изображения в физике и химии поверхности. Показано, 
что, на первый взгляд, простая концепция классической электростатики имеет сложную подоплёку, 
связанную с разнообразными многочастичными эффектами. В частности, привлекается внимание к 
динамическим аспектам, обычно малым, но, тем не менее, важным из-за своих особенных проявлений. 


