Взаимодействие оксида циркония с оксидом самария при температуре 1500 °C

Е. Р. Андриевская, О. А. Корниенко, А. В. Самелюк, В. С. Городов, К. А. Черкасова, В. О. Згуровец

Впервые исследованы фазовые равновесия в двойной системе ZrO_2 — Sm_2O_3 при температуре 1500 °C во всем интервале концентраций. Образцы различных составов были приготовлены из азотнокислых растворов выпариванием, сушкой и термообработкой при температурах 1100 и 1500 °C. В работе использовали рентгенофазовый и микроструктурный анализы. Установлено, что в системе образуются твердые растворы на основе различных кристаллических модификаций исходных компонентов и упорядоченной фазы $Sm_2Zr_2O_7$.

Системы с оксидами циркония и самария являются весьма перспективными в качестве альтернативных материалов для разработки теплозащитных покрытий и топливных ячеек [1]. Фазовые соотношения в бинарной системе ZrO₂—Sm₂O₃ исследованы в работах [1, 2—19]. Для указанной системы характерно образование областей твердых растворов на основе различных кристаллических модификаций исходных компонентов. Упорядоченная фаза $Sm_2Zr_2O_7$ в системе ZrO_2 — Sm_2O_3 обнаружена в работах [1, 2-9, 15-19]. Цирконат самария существует только при относительно низких температурах ~2025 [2, 4] и 1920 °C [6], однако, согласно данным работы [3], эта температура намного выше ~2400 °С. Ликвидус системы характеризуется наличием одной эвтектической точки L ≠ F + X (2190 °C, 75% (мол.) Sm₂O₃). Две другие реакции, $X \rightleftharpoons F + H$ и $A \rightleftharpoons F + B$, были обнаружены при 2100 и 1900 °С соответственно. Возможная реакция H ≠ F + + А определена приблизительно [2]. Границы фазовых полей также определены неоднозначно. Так. область гомогенности фазы типа пирохлора составляет 23—43% (мол.) Sm₂O₃ при 1450 °C [3]. Граница твердых растворов на основе фазы типа флюорита и двухфазной области (F + Py) в области с высоким содержанием ZrO₂ составляет 25% (мол.) Sm₂O₃ при 1900 °C [5]. Протяженность области твердых растворов на основе фазы типа пирохлора установлена от 38,5 до 55% (мол.) Sm₂O₃ при 1500 °C [9]. Двухфазное поле (F + Py) в области 55% (мол.) Sm₂O₃ найдено в работе [9], однако в области, богатой ZrO₂, двухфазное поле не обнаружено. Точка плавления для состава с 50% (мол.) Sm₂O₃ установлена при 2497 ± 10 °C [6]. В области с высоким содержанием ZrO₂ определены координаты эвтектоидной точки, отвечающей моноклинно-тетрагональному превращению M \rightarrow T ZrO₂ в соответствии с реакцией <M-ZrO₂> + <F-ZrO₂> ≈ <T-ZrO₂> при 865 °C и 1.5% (мол.) Sm₂O₃ [7].

Диаграмма состояния указанной системы изучена не в полном объеме, содержит противоречивые данные о координатах нонвариантных точек, протяженности границ фазовых полей, в некоторых случаях нарушается

[©] Е. Р. Андриевская, О. А. Корниенко, А. В. Самелюк, В. С. Городов,

К. А. Черкасова, В. О. Згуровец, 2008

правило фаз Гиббса. Поэтому изучение фазовых равновесий в двойной системе ZrO₂—Sm₂O₃ является актуальным и требует дополнительных исследований.

В настоящей работе впервые изучено взаимодействие оксида циркония с оксидом самария при температуре 1500 °С.

В качестве исходных веществ использовали цирконил азотнокислый ZrO(NO₃)₂·2H₂O марки Ч, азотную кислоту марки ЧДА и Sm₂O₃ марки CмO-E с содержанием основного компонента не менее 99,99%. Образцы готовили с концентрационным шагом 1—5% (мол.) из растворов нитратов выпариванием с последующим разложением нитратов на оксиды путем прокаливания при 1200 °C в течение 2 ч. Порошки прессовали в таблетки диаметром 5 и высотою 4 мм под давлением 10 МПа. Образцы подвергали двухступенчатой термообработке: в печи с нагревателями H23U5T (фехраль) при 1100 °C (3616 ч) и в печи с нагревателями из дисилицида молибдена (MoSi₂) при 1500 °C (150 ч) на воздухе. Скорость подъема температуры составляла 3,5 град/мин. Фазовый состав образцов исследовали методами рентгенофазового анализа и электронной микроскопии.

Рентгенофазовый анализ образцов выполняли методом порошка на установке ДРОН-1,5 при комнатной температуре (Си K_{α} -излучение). Скорость сканирования составляла 1—4 град/мин в диапазоне углов 2 θ = = 15—80°. Периоды кристаллических решеток рассчитывали методом наименьших квадратов, используя программу LATTIC, с погрешностью не ниже 0,0004 нм для кубической фазы.

Микроструктуру изучали на шлифах отожженных образцов с использованием данных локального рентгеноспектрального анализа (ЛРСА), выполненного на установке Superprobe-733 (JEOL, Japan, Palo Alto, CA) в обратно отраженных электронах (BSE), во вторично отраженных электронах (SE), в характеристическом излучении, а также результатов рентгеноспектрального анализа. Состав образцов контролировали, применяя спектральный и химический анализы выборочно.

По полученным результатам с учетом литературных данных построена диаграмма состояния системы ZrO_2 — Sm_2O_3 (рис. 1). Исходный химический и фазовый составы образцов, отожженных при 1500 °C, периоды кристаллических решеток фаз, находящихся в равновесии при заданной температуре, приведены в таблице.

В системе ZrO₂—Sm₂O₃ при 1500 °С обнаружены области твердых растворов на основе тетрагональной (T) и кубической (F) модификаций ZrO₂, моноклинной (B) модификации Sm₂O₃ и упорядоченной фазы, кристаллизующейся в кубической структуре типа пирохлора Sm₂Zr₂O₇ (Ру). Для определения положения границ фазовых полей наряду с данными о фазовом составе образцов использовали концентрационные зависимости периодов решетки образующихся фаз (рис. 2). Характерные образцов, находящихся в различных микроструктуры некоторых фазовых полях диаграммы состояния системы ZrO2-Sm2O3, представлены на рис. 3. В области с высоким содержанием ZrO₂ образуются твердые растворы на основе тетрагональной модификации ZrO₂, однако при заданных условиях модификация T-ZrO₂ не закаливается, вместо нее наблюдали образование моноклинной модификации M-ZrO₂. Растворимость Sm₂O₃ в T-ZrO₂ невелика и составляет 0,5% (мол.).

Рис. 1. Диаграмма состояния системы ZrO₂—Sm₂O₃: ● — ликвидус и солидус по данным работы [2]; ○ — однофазные, Ф двухфазные образцы по данным настоящего исследования.

Рис. 2. Концентрационные зависимости периодов кристаллических решеток твердых растворов типа флюорита (F, \blacksquare) и фазы Sm₂Zr₂O₇ (Py, \Diamond) в системе ZrO₂—Sm₂O₃ после отжига образцов при 1500 °C.

В соответствии с данными РФА (таблица) по изменению концентрационной зависимости периодов кристаллической решетки твердых растворов

Химический состав, % (мол.)		Фазовый состав	Периоды кристаллических решеток фаз, нм ($a \pm 0,0002$)					
ZrO_2 Sm_2O_3			<f> Py </f>				I	
- 2	2-5		а	а	а	b	С	β
1	2	3	4	5	6	7	8	9
0	100			—	1,3925	0,3632	0,8680	90,4
1	99		—	_	1,3968	0,3648	0,8680	88,1
2	98	<В>+ <f>сл.</f>	0,5344	_	1,3897	0,3630	0,8679	90,1
3	97	<В>+ <f>сл.</f>	0,5344		1,3961	0,3421	0,9745	84,3
4	96	<В>+ <f>сл.↑</f>	0,5344		1,4039	0,3471	0,8260	85,0
5	95	<В>+ <f>сл.↑</f>	0,5333		1,3997	0,3767	0,8073	89,0
6	94	<В>+ <f>сл.↑</f>	0,5341		—		_	
7	93	+<e></e>	0,5346	_	1,4057	0,3453	0,8230	84,4
8	92	+<f></f>	0,5333	_	1,4013	0,3584	0,8729	85,7
9	91	+<f></f>	0,5350	_	1,4229	0,3115	0,8594	78,7
10	90	+<f></f>	0,5356	_	1,4029	0,3423	0,8695	84,1
15	85	$<$ B>+ $<$ F> \uparrow	0,5350	_	1,4001	0,3469	0,8686	84,2
20	80	$<$ B>+ $<$ F> \uparrow	0,5341	_	1,4057	0,3453	0,8230	84,4
25	75	$<$ B>+ $<$ F> \uparrow	0,5349		_		_	-
30	70	$<$ B>+ $<$ F> \uparrow	0,5349		_		_	-
35	65	сл. + <f>осн.</f>	0,5349		_		_	
40	60	<f></f>	0,5341		_		_	
45	55	<f></f>	0,5333		_		_	
50	50	<f></f>	0,5319		_		_	
51	49	<f>+ Py</f>	0,5299		_		_	
52	48	<f> + Py</f>	0,5308	_	_	_	_	_
53	47	<f>сл. + Ру осн.</f>	0,5336	_	_	_	_	—
54	46	<F>сл.↓↓ + Ру осн.	0,5298	_				
55	45	Ру		1,0667				
57	43	Ру	_	1,0581				

Фазовый состав и периоды кристаллических решеток фаз после отжига образцов системы ZrO₂—Sm₂O₃ при 1500 °C 150 ч (по данным РФА)

Продолжение таблицы

1	2	3	4	5	6	7	8	9
58	42	Ру	_	1,0581				
59	41	Ру	_	1,0563		_	_	_
60	40	Ру	_	1,0555		_	_	
65	35	Ру	_	1,0510			_	
67	33	Ру	_	1,0488		_	_	
70	30	$Py\downarrow + $	0,5222	1,0454		_	_	—
71	29	$Py\downarrow\downarrow + $	0,5229	—	—		—	
72	28	Ру сл.↓ + <f>осн.</f>	0,5217	_	—			
73	27	Ру сл.↓↓ + <f>осн</f>	—	_	—			
74	26	<f></f>	0,5208	_	_		_	_
75	25	<f></f>	0,5200	—	_		_	_
76	24	<f></f>	0,5200	_	—		_	_
77	23	<f></f>	0,5196		—		_	
78	22	<f></f>	0,5193	_	—		_	
79	21	<f></f>	0,5188	_	_		_	_
80	20	<f>осн. + <t>*сл</t></f>	0,5178	—	—		_	_
85	15	<f>осн. + <t>*сл.</t></f>	0,5169	—	—		—	
90	10	<f>осн. + <t>*↑</t></f>	0,5158	—	—		—	
95	5	$+*\uparrow$	0,5158	_	—		_	
96	4	<f>+<t>*↑</t></f>	0,5158	_	—		_	
97	3	$\downarrow + *\uparrow$	0,5153	_	—		_	
98	2	$\langle F \rangle \downarrow + \langle T \rangle * \uparrow$	0,5152		_	_	_	
99	1	<f>сл.↓↓ + <t>*осн</t></f>	_	_	_	_	_	
99,5	0,5	<t>*</t>	_	_	—	_	_	—
100	0	<t>*</t>		_	_	_		_

* При заданных условиях (T = 1500 °C, 150 ч, на воздухе) модификация T-ZrO₂ не закаливается, вместо нее наблюдали образование модификации M-ZrO₂. Обозначения фаз: , <M> — твердые растворы на основе соответственно тетрагональной и моноклинной модификаций ZrO₂; <F> — твердые растворы на основе кубической модификации со структурой типа флюорита CeO₂; Py — упорядоченная фаза Sm₂Zr₂O₇ типа пирохлора; осн. — фаза, составляющая основу; сл. — следы фазы; ↑, ↓ — содержание фазы соответственно увеличивается и уменьшается.

на основе фазы типа флюорита определены границы двухфазной области (T + F), которая простирается от 0,5 до 20% (мол.) Sm_2O_3 (см. рис. 2).

Микроструктура двухфазной области (F + T) представлена на рис. 3, а-е. В образце, содержащем 98% (мол.) ZrO₂, 2% (мол.) Sm₂O₃, матрицу составляют анизотропные серые зерна <T-ZrO₂> размером 0,4-2,5 мкм. Следующая изотропная фаза <F-ZrO₂> проявляется в виде более темных, редких неоднородных включений. С vвеличением достаточно концентрации Sm₂O₃ количество F-фазы растет, постепенно изменяется морфология образцов, две структурные составляющие более четко различаются по контрасту. Микроструктура образца 90% (мол.) ZrO₂—10% (мол.) Sm₂O₃ характеризуется увеличением содержания кубической фазы типа флюорита <F-ZrO₂> и наличием трещин по границам зерен, возникающих вследствие значительного изменения объема в результате мартенситного тетрагонально-моноклинного превращения (M \leftrightarrows T). Матрицу составляют темные зерна $\langle F-ZrO_2 \rangle$ (рис. 3, δ). Микроструктура образца, содержащего 80% (мол.) ZrO₂, 20% (мол.) Sm₂O₃, определяет границу твердого раствора со структурой типа флюорита и свидетельствует о том, что он кристаллизуется как двухфазный. Темная фаза F составляет матрицу, светлая фаза T присутствует в явно меньшем количестве (рис. 3, в). Микроструктурные исследования согласуются с данными РФА (таблица).

Область твердых растворов на основе флюорита претерпевает разрыв температурном и концентрационном интервале существования в соединения Sm₂Zr₂O₇ (Py). Границы области гомогенности F-фазы при 1500 °С составляют 35-51 и 73-79% (мол.) ZrO₂. Период а кристаллических решеток твердых растворов возрастает от 0,5319 до 0,5349 и от 0,5178 до 0,5217 нм (см. рис. 2, таблицу). Наличие двух областей гомогенности кубического твердого раствора типа флюорита подтверждено микроструктурными исследованиями. Микроструктура, характерная для <F-ZrO₂>, представлена на рис. 3, г. Области гомогенности F-фазы отделены узкими двухфазными полями (F + Py) от поля твердых растворов на основе упорядоченной фазы Sm₂Zr₂O₇ со структурой типа пирохлора. На дифрактограммах образцов, содержащих 70—73% (мол.) ZrO₂ и 51—54% (мол.) ZrO₂, выявлены линии пирохлора (Ру) и твердых растворов типа флюорита (F). С увеличением концентрации Sm_2O_3 от 46 до 49% (мол.) интенсивность сверхструктурных пиков пирохлора постепенно растет, а для образцов с 30, 29, 28 и 27% (мол.) Sm₂O₃ — снижается. Кроме того, наблюдается тенденция расширения протяженности гетерогенной двухфазной области (Py + F) с увеличением содержания оксида самария. Характерная микроструктура двухфазной области (Ру + F) приведена на рис. 3, д, е. Образец состава 71% (мол.) ZrO₂-29% (мол.) Sm₂O₃ содержит две структурные составляющие. Согласно данным растровой электронной микроструктура образца представлена матричными микроскопии, светлыми зернами размером 12,5—0,8 мкм. В границах зерен содержится вторая мелкозернистая фаза размером 0,1-0,4 мкм. Качественный микрорентгеноспектральный анализ подтверждает присутствие этих двух фаз и свидетельствует о том, что межзеренная темная фаза обогащена цирконием и, следовательно, может являться фазой F-ZrO₂. Матричная светлая фаза обогащена самарием и цирконием. По этим данным ее можно

идентифицировать как фазу $Sm_2Zr_2O_7$ (Ру). С увеличением содержания ZrO_2 количество F-фазы растет (рис. 3, ∂).

Рис. 3. Микроструктура образцов системы ZrO_2 — Sm_2O_3 после отжига при 1500 °C: a - 98% (мол.) ZrO_2 —2% (мол.) Sm_2O_3 , $\langle F > \downarrow + \langle T > *\uparrow$, BEI, ×2000; $\delta - 90\%$ (мол.) ZrO_2 —10% (мол.) Sm_2O_3 , $\langle F > \circ ch. + \langle T > *\uparrow$, BEI, ×2000; $\epsilon - 80\%$ (мол.) ZrO_2 —20% (мол.) Sm_2O_3 , $\langle F > \circ ch. + \langle T > *\uparrow$, BEI, ×2000; $\epsilon - 78\%$ (мол.) ZrO_2 —20% (мол.) Sm_2O_3 , $\langle F > \circ ch. + \langle T > *cn.$, BEI, ×2000; $\epsilon - 78\%$ (мол.) ZrO_2 —22% (мол.) Sm_2O_3 , $\langle F - ZrO_2 >$, BEI, ×2000; $\delta - 73\%$ (мол.) ZrO_2 —27% (мол.) Sm_2O_3 , Py сл. + $\langle F - ZrO_2 >$, BEI, ×2000; $\epsilon - 71\%$ (мол.) ZrO_2 —29% (мол.) Sm_2O_3 , Py + $\langle F - ZrO_2 >$, BEI, ×600, светлая дырчатая матрица — Ру, темные включения — $\langle F - ZrO_2 >$, черное — поры; $\mathcal{K} - 67\%$ (мол.) ZrO_2 —33% (мол.) Sm_2O_3 , $Sm_2Zr_2O_7$ (Ру), BEI, ×2000; s - 10% (мол.)

 ZrO_2 —90% (мол.) Sm_2O_3 , <B- Sm_2O_3 > + <F- ZrO_2 >, BEI, ×2000, светлые зерна — <B- Sm_2O_3 >, темные — <F- ZrO_2 >, черное — поры.

Границы протяженности области гомогенности цирконата самария составляют 30—45% (мол.) Sm₂O₃ (1500 °C). Период а кубической решетки твердых растворов Sm₂Zr₂O₇ возрастает от 1,0488 нм для состава 67% (мол.) ZrO₂—33% (мол.) Sm₂O₃ до 1,0667 нм для состава 55% (мол.) ZrO₂—45% (мол.) Sm₂O₃ (см. рис. 2, таблицу). С уменьшением температуры область гомогенности твердых растворов на основе фазы пирохлора постепенно расширяется и достигает максимальной величины вблизи эвтектоида, где ожидается реакция между фазами флюорита и пирохлора с В-формой оксида самария по схеме F-ZrO₂ ≒ Sm₂Zr₂O₇ + + B-Sm₂O₃ (см. рис. 1). Характерная микроструктура для однофазной области Ру показана на рис. 3, ж. Микроструктура образцов 67% (мол.) ZrO₂—33% (мол.) Sm₂O₃ и 65% (мол.) ZrO₂—35% (мол.) Sm_2O_3 представлена крупными и мелкими (0,1-41,7 мкм) зернами с высокой внутризеренной пористостью. Микрорентгеноспектральный анализ показал, что образец однофазен, все элементы (Zr, Sm) распределены равномерно по исследуемой поверхности. Это согласуется с данными РФА (таблица) и свидетельствует об образовании твердого раствора на основе упорядоченной фазы Sm₂Zr₂O₇ (Py).

Образцы составов 2% (мол.) ZrO_2 —98% (мол.) Sm_2O_3 и 35% (мол.) ZrO_2 —65% (мол.) Sm_2O_3 определяют границы двухфазной области (B + F). Микроструктура последней представлена на рис. 3, *з*. В образце состава 10% (мол.) ZrO_2 —90% (мол.) Sm_2O_3 четко выявляются обе фазы в виде светлых зерен полиэдрической формы размером 0,4—5 мкм и темных зерен неизометричной формы с размером по длине 0,3—7,5 мкм. По данным качественного микрорентгеноспектрального анализа можно сделать заключение, что светлая фаза обогащена самарием и соответствует твердому раствору на основе <B-Sm₂O₃>. Темная фаза содержит больше циркония, следовательно, представляет собой твердый раствор на основе <F-ZrO₂>.

Область гомогенности <B-Sm₂O₃> невелика. Согласно данным РФА, в образце состава 2% (мол.) ZrO₂—98% (мол.) Sm₂O₃ наблюдали еще следы F-фазы. Растворимость ZrO₂ в B-модификации Sm₂O₃ составляет ~2% (мол.). Периоды кристаллической решетки B-фазы изменяются от a = 1,3925, e = 0,3632, c = 0,8680 нм, $\gamma = 90,42$ для чистого Sm₂O₃ до a = 1,3897, e = 0,3630, c = 0,8679 нм, $\gamma = 90,10$ для предельного состава твердого раствора.

Таким образом, изучены фазовые равновесия в системе ZrO_2 — Sm_2O_3 при 1500 °C. Для исследованной системы характерно образование ограниченных твердых растворов на основе различных кристаллических модификаций исходных компонентов. При 1500 °C найдены области твердых растворов на основе тетрагональной (T) и кубической со структурой типа флюорита (F) модификаций ZrO_2 , моноклинной (B) модификации Sm_2O_3 , а также упорядоченной фазы типа пирохлора $Sm_2Zr_2O_7$ (Py).

- 1. Chong Wang, Matsvei Zinkevich and Fritz Aldinger. Experimental investigation and thermodynamic modeling of the ZrO₂—SmO_{1.5} system // J. Amer. Ceram. Soc. 2007. 90, No. 7. P. 2210—2219.
- Rouanet A. Contribution a l'etude des systemes zirconia—oxydes des lanthanides au voisinage de la fusion: Memoire de these // Rev. Internat. Hautes Temp. et Refract. 1971. 8. P. 161—180.

- 3. *Perez M., Jorba Y.* Contribution a letude des systems zircone—oxides de terres rares // Annual. Chim. 1962. 7, No. 7—8. P. 479—511.
- Rouanet A., Foex M. Study at high temperature of systems formed by zirconia with samarium and gadolinium sesquioxides // C. R. Acad. Sci. Paris, Ser. C. — 1968. — 267, No. 15. — P. 873—876.
- Гавриш А. М., Алексеенко Л. С., Тарасова Л. А., Орехова Г. П. Структура и некоторые свойства твердых растворов в системах ZrO₂—R₂O₃ (R = Sm, Dy) // Изв. АН СССР. Неорган. материалы. — 1981. — 17. — С. 1541—1544.
- 6. Зоз Е. И., Фомичев Е. Н., Калашник А. А., Елисеева Г. Г. О структуре и свойствах цирконатов и гафнатов РЗЭ // Журн. неорган. химии. 1982. 27, № 1. С. 95—99.
- 7. Andrievskaya E. R., Lopato L. M. Influence of composition on the $T \rightarrow M$ transformation in the systems ZrO_2 — Ln_2O_3 (Ln = La, Nd, Sm, Eu) // J. Mater. Sci. 1995. **36**, No. 10. P. 2591—2596.
- Katamura J., Seki T., Sakuma T. The cubic-tetragonal phase equilibria in the ZrO₂—R₂O₃ (R = Nd, Sm, Gd, Y) // J. Phase Equilibria. — 1995. — 16, No. 4. — P. 315—319.
- 9. Tabira Y., Withers R. L. Structure and crystal chemistry as a function of composition across the wide range nonstoichiometric $(1-\epsilon)ZrO_2-\epsilon SmO_{1.5}$ (0,38 < ϵ < 0,55), oxide pyrochlore system // J. of Solid State Chem. — 1999. — **148**. — P. 205—214.
- 10. *Wang Ch.* Experimental and computational phase studies of the ZrO₂-based systems for thermal barrier coatings // Ph. D. Thesis, University of Stuttgart, 2006.
- 11. Стегний А. И., Шевченко А. В., Лопато Л. М. и др. Термический анализ окислов с использованием солнечного нагрева // Докл. АН УССР. Сер. А. 1979. № 6. С. 484—489.
- Lefevre J. Some structural modifications of fluorite-type phase in the systems based on ZrO₂ or HfO₂ // Annual. Cheim. 1963. 8, No. 1—2. P. 254—256.
- 13. *Klee W. E., Weitz G.* Infrared spectra of ordered and disordered pyrochlore-type compounds in the series Re₂Ti₂O₇, Re₂Zr₂O₇ and Re₂Hf₂O₇ // J. Inorg. and Nucl. Chem. 1969. **31**, No. 8. P. 2367—2372.
- Michel D., Rouaux Y., Perez M., Jorba Y. Ceramic eutectics in the system ZrO₂—Ln₂O₃ (Ln — lanthanide): Unidirectional solidification, microstructural and crystallographic characterization // J. Mater. Sci. — 1980. — 15. — P. 61—66.
- Kazuo Sh., Masahiro M., Koji K., Osamu S. Oxigen-ion conduction in the Sm₂Zr₂O₇ pyrochlore phase // J. Amer. Ceram. Soc. — 1979. — 62. — P. 538—539.
- Barry E. S., William B. White characterization of anion disorder in zirconate A₂B₂O₇ compounds by raman spectroscopy // Ibid. — 1979. — 62. — P. 468—469.
- Глушкова В. Б., Сазонова Л. В. Влияние добавок редкоземельных окислов на полиморфизм двуокиси циркония // Химия высокотемпературных материалов. — Л.: Наука, 1967. — С. 83—90.
- 18. Портной К. И., Тимофеева Н. И., Салибеков С. Е. Синтез и исследование сложных оксидов и циркония // Изв. АН СССР. Неорган. материалы. 1972 8, № 2. С. 406—408.
- Faucher M., Caro P. Ordre et desordre dans certains composes du type pyrochlore // J. Solid State Chem. — 1975. — 12, No. 1—2. — P. 1—11.