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COLLECTIVE EXCITATIONS IN CARBON NANOTUBES

The effective action functional has been built by a functional integral method
for nanotubes. The closed, self-consistent system of equations of the system is built on
the basis of the variational differentiation the effective action on collective variables
of an electron-phonon subsystem. A general expression for a polarization function and
spectrum of the system are considered.

1. Introduction

The atomic and electron structure of carbon nanotubes can be represented as,
a two-dimensional carbon hexagonal structure rolling along a given direction and
reconnecting the carbon bonds. Systems of carbon atoms can exist in several
modifications: laminated graphite with a hexagonal structure, nite carbon, crystal
diamond, the fullerenes Cg, C79, C73, Cs, and carbon nanotubes—two-dimensional
extended structures rolled up in a single- or multiwall tube [1,2]. Carbon nanotubes
were synthesized simultaneously with fullerenes and are more interesting
structures because they model a one-dimensional system. Soliton states are known
to be formed in such systems.

The property of nanotubes to absorb liquid metal, hydrogen, oxygen,
methane, and other gases opens a prospect for constructing strong thin conducting
lines of fuel elements and creating new types of fuel. The discovery of
superconductivity in metal-doped Cg, [3] feeds the hope to find the same
phenomenon in nanotubes filled with metal or to modify the superconductivity of
known superconductors by injecting them in a nanotube.

Electron spectrum of such structure is characterized by quantum numbers
including the number of radial (n) , azimuthal (m) and longitudinal (&) modes

[4,5]. Its physical properties are considerably related to collective electron-phonon
excitations and oscillations of electron density (plasmons or plasma oscillations).

The equations, describing such excitations, can be obtained on the basis the
functional integral method with help of the variational derivatives of the expression
for the effective action integral. We assume that a such approach allows most
precisely to calculate polarizing function of the carbon nanotube in view of all
features of its atomic structure.

2. The effective action function of the system
The researched system consists of ions with charge Ze and degenerate
electrons. Then the functional integral of the system in terms of spatial coordinates
(x,y,z ) and imaginary time (7 ) can be represented as [4,5]

Z = [ Dy Dy exp(STy]), )
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where the action S[y/] is determined by the expression

s
- J'dr'[ dx Y ! (x,r)K(x,r)w, (x,r)—
28
- [ ddpten = ptn+ @

+Idr2{lpl (r)o, q, (r)—pI r )} a=a,p.

C
Here s is an electron spin, ¥ (x,r) is the two-component wave function of the

nanotube lattice (a,b )
W (X,7)
v, (x,7) = [ j ,
W, (X,7)

p, , g, and 2M,. are a moment, a coordinate and the mass of an ion in /,

sublattice cite, V(x—y)=1/|x—y| is the operator of the Coulomb interaction.
Beside, K(x,r) is the operator of kinetic energy of the form
K, (x,r) 0
K(x,r)= Koy (xr) =
0 K, (x,r) '
where 0, =0/0,, A,/(2m) is the kinetic energy for the ath sublattice, x, a

&

chemical potential of the a th sublattice.
The charge density po(x,r) is composed of ion (p?(x,r)) and electron

(p°(x,r)) parts and equals p(x,r) = p?(x,r)— p°(x,r) , where
Pl =Y pl (.13, ,, p(x,r)= po (x,r).
a,y a.y

The summation on « and y is carried out over all lattice sites a and b .
In the representation of the functional integral (1) can be rewritten as
Zly.¢1=[ Dy Dy [ Dpexp(Sly. 1) 3)
where the action function S[y, @], which contains an electron influence, the field
@ and its interaction, has the form

B
Sty = [dr[advp(x, 3 (x = g, +
B B
+ j dTJ. dxz w! (e, r)K'Ce,r)y (x,r)+ iej drj dxp? (x,7)p(x,7) +

+J.er ip, (r0.q, (r)— p,( )} a=a,p.
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Here
K'(X,I") — Ka(x,r)—ie(p(x,z') —ie(o(x,r) -
iew(x: T) Kb (X, V)_ieW(xa Z')
Integrating in (3) on Fermi fields [4] and using the known Liouville formulae,
(lg det A)' = Sp((ln A) ’) , where A is matrix, a prime denotes a first derivative, we

can transform (3) to the form Z = qu) exp (Se/f [go]) . Here the effective action
17 .
Sylo) = [ dr[ddyoe, ) (= )2+
0
B
+2SpInK'(x,7) + ieJ. drj dxp? (x,7)p(x,7) +
0

X )
P <r>}

:a9 b
2M p

B
+[drY| ip, (10,9, ()~
0 la c
allows to describe the system in collective variables.
The matrix Green function, G =[|G, ;|| of the system is determined by the
equation

K'(x,0)G(x,7,;y,7,) =6(x—y)o(z, —7,) )
At presence only the effective field, V,,,
carbon nanotube (see [Ah]) the Green function, G, || G, 4 ||, is determined by the

of single-electron model potential of

equation
Ky (x,7)G,(x,7,59,7,) = 5(x = 1)d(z, = 7,) ,
where K, (x,7.)=K'(x,7,)]|

Q=iVyy °
Using the representation K '(x,7,)=K,(x,7,)+K,(x,7,), where the function

K, (x,7,) = (—iep(x,z,)+ eV, (x)) |l c, I, ¢, =1, (i,k =1,2) (5) can be rewritten in

the form
G(x,7:59,7,) =Gy(x,75¥,7,)—

£ (6)
- j dr, J dzG,(x,7,;2,7.)K,(2,7.)G(2,7_;y,7 ).
0

The obtained expressions for the effective action function together with the
equation (6) for the Green function permit build the equations determining the field

p(x,7,).

3. The equations for field functions
The equations describing states of the system are obtained by equating to zero
the variational derivation of the effective action function (4) with respect to
generalized coordinates ¢(x,7,), ¢, , p, that give the system
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Slp(x,7) g, (1) 3(p (7))

These three equality result in the system of the three equations

[ (x = »)p(y, 7) +iep” (x,7) -

. 11
—2e hm Sp{G(x, T3, ry)[l J} =0,

5S,9] “o 5S,,[9] 58, [9]

y—k

7,-7,-0 (7)
i0,p, (7)- ierd3x(0(x, T)Vo(x—gq, ) =0,

p, (7) _

i0.q, (r)— 0.

C
From the first equation of the system (7) follows that the field function
o(z,7) = iej dV(z—x)p(x,7)— 4iej dxV (z—x)x
< lim (G (x.7:3.7,)+ G, (x.7,5.7,)) ®)
y—k
7,27,-0
means the electrical field of the electrical potential of ions and electrons. This
quantity completely determines the interaction in the system and its collective
excitations. Taking into account that AV (x — y) = —475(x — ) , the equation (8) can
be transformed to the form
Ap(z,7) =4mep? (x,7)—
~167e lim (G 750.0)+ G (xrinr)) © O
7,-7,-0

that together with the equation (6) consists the closed system. For solving this

system we introduce the new notations the G =G, +G, and Go = G, + G, . Then
taking into account that for statical ions

iV, = ie'[sz(x—z)pq(z,r)—4iejde(z—x) lim [Go(z,rz;zl,rzI )J

z >z
., ~7.-0

and

G =Go+2ieGo(p—iV)G = Go +2ieGo(p—iV)Go +...,
we can obtain the expression
p(z,7) =iV, = 8e2J.a’za’zla’rzl V(x—2)G,(z,7;2,7,) %
x(o(z,=1V,,(2)) Gy (2.7:2,,7)Gy(2,,7:2.0) + ooy T. ST,

which describes plasma oscillations.
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The second and third equations of the system (7) determine motion of carbon
ions. The obtained self-consistent close system of equations describes the electron
and vibrational subsystems via collective variations.

For calculation the electron density fluctuation induced by plasma vibration
relative to the stationary ion lattice we will enter into (8) the polarization operator
P(x,7;z,,7,) which is determined by equality

Idzldrl V(x—2z)o0(t—1)CG(z,,752",7")—

—J. dz dt P(x,7;2,1,)0(t —1,)G, (2,752, 7).
Then the field function can represent in terms of the effective potential V,, and
polarization operator P in the form
(z,7)— 4iej dz,dr, (P(x,732,,7,) —
—V(x—z)o(r—1,) )Go(z],r];z’,z")
The Green function obeys the matrix equation

@(z,7) = ngf/

G=Go +8€2G0 (P—V)GOG ,
whence applying the relation VG = PG, we can obtain the equation

P=V -8V GoP, (10)
determining in the linear approximation the polarization P . The poles of the
Fourier transform of the polarization function P determine plasma oscillations of
the density relative to a ground stationary state.

Applying the Fourier transform to (10) we can obtain in the approximation of
the second order in V' the expression

4r
P(q,0;9",0") = —q—zﬁ(q -q")5(0—-")x

e Arn

8 1+?q_2 Z J.denmk (x)Gmmlkl (_x)eiiqxé‘(a) - Enmk + E”lmlkl ) ’
n,m,k;
ny,my Lk

where g and ® are coordinate and frequency components of the Fourier

transform; Energy levels of stationary states of the electron subsystem are denoted
as E,, (see [1]). The spectrum and intensity of the collective excitations are

described by the diagonal part of P(q,w;q",@") .
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O3HAYEHHS TA BUKOPUCTAHHS MHOKUHHA
CTPOI'O PAHIOHAJIBHUX CTPATEI'IU Y AESAKHUX
AHTATOHICTUYHMUX ITPAX

There has been defined the set of strictly rational strategies and the set of
nonstrictly rational strategies of a player in the antagonistic game. On the example it
has been shown what advantage a player obtains if it applies the set of strictly rational
strategies by the other player swerve from the set of its optimal strategies.

O3HaYeHO MHOXHHY CTPOTO PAaIliOHaJbHHUX CTpaTeriii Ta MHOXHHY HECTPOro
palioHaTbHUX CTpATETiil TpaBIl B aHTaroHICTHYHIA Tpi. 3a IOMOMOTOI TMPHKIALY
[I0Ka3aHO, SIKYy BHT'OZY OTPHUMY€E IpaBellb, SKIIO BiH BUKOPHCTOBYE MHOXXHHY CTPOTO
pamioHaJbHUX CTpaTerii NpH BIACTYHI IHIIOTO TpaBUsS BiX MHOXHHH CBOIX
ONTHMAJIbHUX CTpPATeTiil.

IlepenmoBa Ta ¢opmyTI0BaHHS 33124 JOCTiIZKEHHS

[IpuiHATTS ONTUMANBPHUX pINIEHhP B yMOBaX KOH(IIKTHHUX CHTyalid €
aKTyaJIbHOIO Ta TPAKTUYHO 3HAYYNIOK 33/1a4€l0  Cy4acHOl MpPHKIAIHOT
MatemMaTHku [1]. Barato Takux 3amad (GopMami3yloThCS Ta MOJCIIOIOTHCSI 3a
JIOTIOMOT'OI0 arapary Teopii aHTaroHiCTHYHUX irop [2]. Meroauka po3B’si3yBaHHs
AQHTarOHICTHYHUX Irop 3aCHOBaHa Ha KJIACHYHOMY IPUHIMII ONTHUMAaIBHOCTI, /1€
LEHTPAIBbHOIO KAaTETOPi€l0 € KOHILEIIis PiBHOBArd, 3BiAKM 1 3HAXOJSTHCS CIIJIOBI
TOYKH y YHCTHX, UM, B3araji KaXydH, 3MIllIaHUX cTparerisx [3, 4]. O4eBuaHO, 10
1 KOHIIEMIIis He CYNepeunTh IHTYITUBHUM VSBJICHHSM IIPO BUTITHICTD, CTIHKICTh
Ta crpaBemHBicTh. [IpoTe Bimomo, a y pobdorax [5 — 10] 3BepHYTO yBary Ha Ty
00CTaBWHY, 110 HE BCi €JIEMEHTH MHOXWHH ONTHMAJIBHHX CTpaTerii rpaBIs B
MIeBHil aHTArOHICTUYHIN TPl € PIBHOIMPABHUMH 3 TOUYKH 30PY OJHAKOBHX HACIIAKIB
ix BukopucTaHHA. Tak, y po0oti [8] 03HaYeHO MHOXXWHY CTPOTO pamioHaJBHIX
YHCTHX CTPATeriii Ta MHOXKMHY HECTPOTO palliOHATbHUX YHCTHX CTpATeTiil rpaBLs
B QHTaroHICTMYHIN Tpi, Ji€¢ MOKa3aHO, Ky BHUTOAY OTPHMYE IpaBellb, SKIIO BiH
BUKOPHCTOBYE MHOXHHY CTPOTr0 ab0 HECTPOTO PalliOHAIBHUX YHCTHX CTparerii
TIPY BIACTYII 1HIIOTO T'paBUs BiJi MHOXXHHHU CBOIX ONTUMAIIbHUX YHCTHX CTPATETIH.
30KpeMa, SKIIO0 aHTarOHICTHYHA Tpa € MATPUYHOIO Ta i1 siApoM € MaTpuus [§]
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