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SINGULAR REDUCTION OF SYMMETRIES IN
HAMILTONIAN MECHANICS AND CONTROL THEORY

We discuss the reduction of symmetries of dynamical systems, Hamiltonian systems, Hamiltonian
systems with non-holonomic constraints, and non-linear control systems. We assume that the
symmetry group of each system acts properly on the phase space of the system. Reduced system
is described in the framework of theory of di�erential spaces.

Introduction. Existence of symmetries of dynamical systems usually simpli�es
the task of analyzing solutions of the systems. Reduction of symmetries leads to
a dynamical system with a lower number of degrees of freedom.

If the action of the symmetry group G on the phase of the system P is not
free and proper, the phase space R = P/G of the reduced system need not be
a manifold. If the action is proper, the reduced space phase of the system is a
strati�ed space. It is a union of manifolds called strata [1].

If one is interested only in local properties of solutions, one can study the
reduced dynamics stratum by stratum using standard techniques of di�erential
geometry. However, if one wants to know asymptotic properties of solutions, one
has to know global structure of the reduced phase space. In particular, one has
to know how strata of the strati�cation are put together.

In 1983 Richard Cushman initiated a program of singular reduction in terms
of the ring of smooth invariant functions on the phase space [2]. For a linear action
of a compact group, invariant smooth functions are smooth functions of algebraic
invariants [3]. Thus, in order to visualize the reduced phase space, it su�ces to
describe the set given by relations among algebraic invariants.

Sikorski's theory of di�erential spaces [4]1 provides a theoretical framework
for Cushman's approach. It allows for a description of the di�erential structure of
the orbit space as well as of its geometric structure. In particular, it allows for a
discussion of ordinary di�erential equations directly on the reduced phase space
[5].

The aim of this lecture is to describe a few examples in which one can get
a complete description of the geometric structure of the reduced system. The
general principle is to encode the invariant geometric structure of the original
phase space P as an algebraic structure of the ring C∞(P )G of invariant functions.
Since the ring of smooth functions C∞(R) of the reduced phase space R = P/G
is isomorphic to C∞(P )G, it inherits from C∞(P )G = C∞(R)G its algebraic
structure which, in turn, can be decoded as the geometric structure on the reduced
space R. Since, invariant functions need not separate orbits of an improper action,

1 In the introduction to his book, Sikorski wrote that his work had been based on some
ideas of Postnikov. However, he did not give a reference.
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Singular reduction of symmetries

this approach is applicable only if the action of G on P is proper.
1. Dynamical systems. We consider a dynamical system, given by a vector

�eld X on a smooth manifold P . A symmetry of the system is a di�eomorphism
of P preserving X. Let G be a connected Lie group. We denote by

Φ : G× P → P : (g, p) 7→ Φ(g, p) ≡ Φg(p) ≡ gp

the action of G on P , and assume that, for each g ∈ G, the di�eomorphism
Φg : P → P preserves X. In other words,

TΦg ◦X = X ◦ Φg,

where TΦg: TP → TP is the derived map.
We say that an action Φ is free if Φ(g, p) = p implies that g is the identity in

G. Also, Φ is said to be proper if, for every convergent sequence (pn) in P and
a sequence (gn) in G such that the sequence (gnpn) is convergent, the sequence
(gn) has a convergent subsequence (gnk

) and

lim
k→∞

(gnk
pnk

) =
(

lim
k→∞

gnk

)(
lim

k→∞
pnk

)
.

1.1. Regular reduction. If the action Φ of G on P is free and proper, then the
space R = P/G of G-orbits on P is a manifold and the orbit map ρ : P → R is a
�bration. The action Φ of G on P induces on P the structure of a (left) principal
G-bundle over R. The G -invariance of the vector �eld X implies that X projects
to a vector �eld X̄ on R such that

Tρ ◦X = X̄ ◦ ρ.

It should be noted that the ring C∞(R) of smooth functions on R is isomorphic
to the ring C∞(P )G of smooth G-invariant functions on P , with the isomorphism
given by the pull-back by the projection map

ρ∗ : C∞(R) → C∞(P )G : f̄ 7→ ρ∗f̄ = f̄ ◦ ρ. (1)

The orbit space R = P/G is often called the reduced phase space of the
system. The passage from the dynamical system X on P to the dynamical system
X̄ on R, given by the vector �eld X̄, is called the reduced called the reduction of
symmetries. In order to solve equations of motion for X, we may �rst �nd integral
curves of X̄ and then lift them to integral curves of X. The second step is called
reconstruction.

1.2. Singular reduction. Singular reduction deals with the situation when the
action of the symmetry group is proper but not free. In this case, the orbit space
R = P/G is not a manifold but a strati�ed space [1]. For each p ∈ P the isotropy
group

Gp = {g ∈ G | gp = p}
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of p is compact. For each compact subgroup H ⊆ G, the set

P(H) = {p ∈ P | Gp is congruent to H}
is a local manifold. Connected components of the projection of P(H) to R are
smooth manifolds. They are strata of the strati�cation of R by orbit type.

We de�ne the ring of smooth functions on R to be

C∞(R) = {f̄ ∈ C0(R) | ρ∗f̄ ∈ C∞(P )},
where ρ : P → R is the orbit map. It satis�es the following conditions:

• The family of sets

{f̄−1((a, b)) | f̄ ∈ C∞(R), and a, b ∈ R}
is a sub-basis for the topology of R.

• For every k ∈ N, every f̄1, ..., f̄k ∈ C∞(R) and F ∈ C∞(Rk), the composition
F (f1, ..., fk) is in C∞(R).

• If a function f on R is such that, for every x ∈ R, there exists an open
neighbourhood Ux of x in R, and a function fx ∈ C∞(R) satisfying

f|Ux
= fx|Ux

,

then f is in C∞(R).

Definition. A topological space endowed with a subring of continuous functions
satisfying the above conditions is called a di�erential space.

A homeomorphism ϕ : R → S of di�erential spaces is smooth if its pull-
back ϕ∗ maps C∞(S) to C∞(R) . It is a di�eomorphism if it is invertible and
ϕ−1 : S → R is smooth.

Since the action of G on P is proper, elements of C∞(R) separate points in
R. Hence, the quotient topology on R is Hausdor�. Moreover, each point of R has
a neighbourhood di�eomorphic to a subset of Rn [6]. Hence, R is a subcartesian
space in the sense of Aronszajn [7].

In order to see how the strati�cation structure of R is encoded in C∞(R) we
need to de�ne an appropriate notion of a vector �eld on a di�erential space. A
derivation of C∞(R) is a linear map X̄ : C∞(R) → C∞(R) satisfying Leibniz's
rule

X̄(f̄1f̄2) = (X̄f̄1)f̄2 + (X̄f̄2)f̄1

for all f̄1, f̄2 ∈ C∞(R). A curve c̄ : I → R, where I is an interval, is an integral
curve of a derivation X̄ if

d

dt
f̄(c̄(t)) = (X̄f̄)(c̄(t))
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for every f̄ ∈ C∞(R) and t ∈ I. For a subcartesian di�erential space R, every
derivation X̄ of C∞(R) and every r ∈ R, there exists a maximal integral curve of
X̄ through r [8]. A vector �eld on a subcartesian di�erential space R is de�ned
as a derivation X̄ of C∞(R) such that translations along maximal integral curves
of X̄ give rise to a local one-parameter group exp(tX̄) of local di�eomorphisms
of R. Let X (R) be the family of all vector �elds on R. For each r ∈ R the orbit
of X (R), de�ned by

Or =
= {exp(tnX̄n)◦ ...◦ exp(t1X̄1)(r) |n ∈ N, t1, ..., tn ∈ R, X̄1, ..., X̄n ∈ X (R)} (2)

is a manifold. Moreover, if R is a strati�ed space, orbits of X (R) coincide with
strata of the strati�cation of R [5].

For each orbit O of X (R), the preimage ρ−1(O) ⊆ P is a manifold. Moreover,
the restriction ρO : ρ−1(O) → O of ρ to ρ−1(O) is a submersion.

We can now go back to the vector �eld X on P de�ning dynamics of our
system. Since X is G-invariant, it preserves the ring C∞(P )G of G-invariant
functions on P . Hence, it induces a derivation X̄ of C∞(R) such that, (X̄f̄) ◦ρ =
= X(f̄ ◦ ρ) for every f̄ ∈ C∞(R), where ρ : P → R is the orbit map. Moreover,
the local one-parameter group of local di�eomorphisms exp(tX) of P generated
by X commute with the action of G and, hence, it induces a local one-parameter
group of local di�eomorphisms of R generated by X̄. Thus, X̄ is a vector �eld on
R and its integral curves are reduced evolutions. It should be noted that integral
curves of X̄ and every other vector �eld on R preserve the strati�cation of R.

For each stratum O of R, the restriction X̄O of X̄ to O is a vector �eld on O
that is ρO related to the restriction Xρ−1(O) of X to ρ−1(O). In other words,

TρO ◦Xρ−1(O) = X̄O ◦ ρO.

In many applications the dynamical system under considerations has an additi-
onal invariant geometric structure. Ideally, one would like to have this structure
reproduced by reduction. In general, it is not possible. I shall discuss some examples
in which the auxiliary structure is reproduced.

2. Hamiltonian systems. Let ω be a symplectic form on P. In other words,
ω is a non-degenerate closed 2-form. For every f ∈ C∞(P ), there is a unique
vector �eld Xf on P such that

Xf ω = df ,

where denotes the left interior product (contraction). The vector �eld Xf is
called the Hamiltonian vector �eld of f . A dynamical system on P is called
Hamiltonian if there exists a function h ∈ C∞(P ) such that the vector �eld
X, de�ning the dynamics, is the Hamiltonian vector �eld of h. In other words,
X = Xh. The function h is called the Hamiltonian of the system. The triplet is
called a Hamiltonian system. Evolutions of the Hamiltonian system (P, ω, h) are
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given by integral curves of Xh. In other words, a curve c(t) in P is an evolution
of the system if

ċ(t) = Xh(c(t)), (3)
where ċ(t) denotes the tangent vector of c(t).

A symplectic form ω on P gives rise to a Poisson bracket {·, ·} on C∞(P )
de�ned as follows. For each f1, f2 ∈ C∞(P ),

{f1, f2} = Xf1f2 = ω(Xf2 , Xf1).

The Poisson bracket is bilinear, skew symmetric, satis�es the Jacobi identity

{f1, {f2, f3}}+ {f2, {f3, f1}}+ {f3, {f1, f2}} = 0

and
{f1f2, f3} = f1{f2, f3}+ f2{f1, f3}

for all f1, f2, f3 ∈ C∞(P ). The ring C∞(P ) endowed with the Poisson bracket is
called the Poisson algebra of the symplectic manifold (P, ω). Evolution equations
of our Hamiltonian system (3) can be written in the Poisson form

d

dt
f(c(t)) = {h, f}(c(t)) (4)

for every f ∈ C∞(P ).
Let a connected Lie group G be a symmetry group of the Hamiltonian system

(P, ω, h). In other words, for each g ∈ G, the di�eomorphism Φg of P preserves the
symplectic form ω and the Hamiltonian function h. This implies that Φg preserves
the Poisson bracket on C∞(P ). In other words,

Φ∗g{f1, f2} = {Φ∗gf1, Φ∗gf2}

for all f1, f2 ∈ C∞(P ). If f1 and f2 are G-invariant, then Φ∗g{f1, f2} is G-
invariant. Hence, the ring C∞(P )G of G-invariant smooth functions of P is a
Poisson subalgebra of C∞(P ). We can use the isomorphism (1) to pull-back the
Poisson algebra structure on C∞(P )G to C∞(R). The Poisson bracket on C∞(R)
is given by

ρ∗{f̄1, f̄2} = {ρ∗f̄1, ρ
∗f̄2}

for every f̄1, f̄2 ∈ C∞(R). Thus, the reduced space R = P/G is a Poisson manifold.
Every f̄ ∈ C∞(R) gives rise to a derivation X̄f̄ of C∞(R) such that

X̄f̄ f̄ ′ = {f̄ , f̄ ′} (5)

for every f̄ ′ ∈ C∞(R). The derivation X̄f̄ is a vector �eld on R, called the
Hamiltonian (or Poisson) vector �eld of f̄ .

Since the Hamiltonian h is G-invariant, it follows that it pushes forward to
a smooth function h̄ ∈ C∞(R). In other words, h = ρ∗h̄. Let c(t) be an integral
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curve of Xh and c̄(t) = ρ◦c(t) its projection to R. For every f̄ ∈ C∞(R), equation
(4) implies that

d

dt
f̄(c̄(t)) =

d

dt
f̄(ρ ◦ c(t)) =

d

dt
f̄ ◦ ρ(c(t)) =

d

dt
ρ∗f̄(c(t)) = {h, ρ∗f̄}(c(t))

= {ρ∗h, ρ∗f̄}(c(t)) = ρ∗{h̄, f̄}(c(t)) = {h̄, f̄}(ρ ◦ c(t)) = {h̄, f̄}(c̄(t)).

This means that c̄(t) is an integral curve of the derivation X̄h̄ of C∞(R) given by

X̄h̄f̄ = {h̄, f̄}

for every f̄ ∈ C∞(R).
Let O be a stratum of R, i.e. an orbit of a family X (R) of all vector �elds

on R. Since The Poisson bracket of functions f1, f2 ∈ C∞(R) at a point r ∈ O
depends only on the di�erentials at r of restrictions of f1 and f2 to O. Hence,
C∞(O) inherits the structure of a Poisson algebra. Hence O is a Poisson manifold.
As in the preceding section, the restriction of X̄h̄ to O is a vector �eld on O that
is ρO-related to the restriction of Xh to ρ−1(O).

If the symmetry group G is not discrete, the symplectic form ω does not push
forward to a symplectic form on R. However, every Poisson manifold is singularly
foliated by symplectic manifolds [9]. Association to a symplectic manifold (P, ω)
of the singular foliation of R = P/G by symplectic manifolds is the essence of the
optimal reduction of Ortega and Ratiu [10].

Let g be the Lie algebra of the symmetry group G. An Ad∗-equivariant function
J : P → g∗ is called a momentum map for an action of G on (P, ω) if, for
every ξ ∈ g, the action of the one-parameter subgroup exp(tξ) of G is given
by translation along integral curves of the Hamiltonian vector �eld XJξ

, where
Jξ = 〈J | ξ〉 is the evaluation of J on ξ. Assume that the action Φ admits an Ad∗-
equivariant momentum map J . In this case, the symplectic leaves of the singular
foliation of R can be described as follows.

For p ∈ P , let µ = J(p), and

Gµ = {g ∈ G | Ad∗gµ = µ}

be the isotropy group of µ. The symplectic leaf containing ρ(p) can be identi�ed
with the intersection of the stratum of R through ρ(p) with the connected compo-
nent of ρ(J−1(µ)) containing ρ(p). Note that ρ(J−1(µ)) can be identi�ed with the
space J−1(µ)/Gµ of Gµ-orbits in J−1(µ). If the action of G is free, this description
coincides with the Marsden-Weinstein reduction [11].

3. Non-holonomic constraints. Consider a mechanical system with con�gu-
ration space Q, kinetic energy metric k : TQ×Q TQ → R, and potential energy
v : Q → R. We assume that the motions of our system are constrained so that the
velocity has to be in the constraint distribution P on Q. We assume further that
the work of the reaction force of the constraints on virtual motions compatible
with constraints vanishes.

157



J. �Sniatycki

In the following, we treat P as a submanifold of TQ. Let τ : P → Q be the
restriction to P of the tangent bundle projection τQ : TQ → Q, and

H = {w ∈ TP | Tτ(w) ∈ P ⊂ TQ}.
We say that a vector �eld Y is in H if Y (u) ∈ H for each u ∈ P.

The pull-back of the canonical symplectic form ωQ of T ∗Q by the Legendre
transformation L : TQ → T ∗Q, corresponding to the Lagrangian l(u) =

1
2
k(u, u)−

−v(τQ(u)) of the system, induces on each �bre of Hu a linear symplectic form $u.
We say that (H,$) is a symplectic distribution on P . For each f ∈ C∞(P ), the
distributional Hamiltonian vector �eld of f is the unique vector �eld Yf in H such
that, for every u ∈ D and w ∈ Hu,

$(Yf (u), w) = 〈df | w〉.
Let ∂Hf denote the restriction of df to H. Then, we can write

Yf $ = ∂Hf.

Motions of our system are given by integral curves of the distributional Hamiltonian
vector �eld Yh of the energy function

h(u) =
1
2
k(u, u) + v(τQ(u)).

Wemay generalize this approach to non-holonomic constraints and consider an
abstract distributional Hamiltonian systems (P, H, $, h), where P is a manifold,
(H, $) is a symplectic distribution on P and h ∈ C∞(P ). This approach, described
in [12], is a special case of a more general structure introduced by Bocharov and
Vinogradov in 1977, [13].

For f1, f2 ∈ C∞(P ), the almost Poisson bracket of f1 and f2 is the derivative
of f2 in the direction of the vector �eld Yf1 . In other words,

{f1, f2} = Yf1f2.

The almost Poisson bracket on C∞(P ) is bilinear, skew-symmetric, and it satis�es
Leibniz' rule

{f1, f2f3} = f2{f1, f3}+ {f1, f2}f3

for all f1, f2, f3. It satis�es the Jacobi identity if and only if P is an involutive
distribution on Q [14].

The almost Poisson bracket was introduced by Van der Schaft and Maschke
[14] in terms of coordinates. An abstract de�nition was given by Koon and Marsden,
[15]. The term almost Poisson bracket was coined by Cantrijn, de Le�on and de
Diego [16].

Let G be a symmetry group of a distributional Hamiltonian system (P,H, $, h),
and Φ is the action of G on P. For each g ∈ G, the di�eomorphism Φg of P
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preserves the distribution H, the symplectic form $ on H and the Hamiltonian
h. Therefore, Φg preserves the almost Poisson bracket. In other words, for every
f1, f2 ∈ C∞(P ),

Φ∗g{f1, f2} = {Φ∗gf1,Φ∗gf2}.
If f1 and f2 are G-invariant, then Φ∗g{f1, f2} is G-invariant. Hence, the ring
C∞(P )G of G-invariant smooth functions of P is stable under almost Poisson
bracket. We can use the isomorphism (1) to pull-back the almost Poisson bracket
on C∞(P )G to C∞(R). Thus, the reduced space R = P/G is a manifold with the
ring C∞(R) of smooth functions on R endowed with an almost Poisson bracket
[15].

As in the case of Hamiltonian systems, the geometric structure of the reduced
space R is encoded in the almost Poisson bracket on C∞(R). Given f̄ ∈ C∞(R),
we denote by Ȳf̄ the vector �eld on R such that

Ȳf̄ f̄ ′ = {f̄ , f̄ ′} (6)

for all f̄ ′ ∈ C∞(R). The family {Ȳf̄ | f̄ ∈ C∞(R)} of vector �elds Yf̄ spans a
generalized distribution H̄ on R. For each stratum O of R, the restriction of H̄
to O is a generalized distribution in the sense of Sussmann. The almost Poisson
bracket on C∞(R) gives rise to a symplectic form $̄ on H̄ such that

$̄(Ȳf̄ , Ȳf̄ ′) = Ȳf̄ f̄ ′
for f̄ , f̄ ′ ∈ C∞(R). Hence, Ȳf̄ , de�ned by equation (6), is distributional Hamilto-
nian vector �eld on R with respect to the symplectic form $̄ on H̄ . Moreover, the
reduced dynamics is given by the distributional Hamiltonian vector �eld Ȳh̄, where
h = h̄ ◦ ρ is the energy function of our system. Thus, reduction of symmetries
of a distributional Hamiltonian system (P,H, $, h) gives a generalized almost
distributional Hamiltonian system (R, H̄, $̄, h̄), where the term generalized refers
to the fact that H̄ need not have constant rank. An example in which H̄ has
variable rank is provided by Chaplygin skate [17].

4. Non-linear control systems. A smooth nonlinear control system, as
de�ned by Brockett, [18], is a quadruple (B,M, π, ϕ) such that

1. (B, M, π) is a �bre bundle with total space B, base space M and projection
π : B → M, and

2. ϕ : B → TM is a bundle morphism such that, for each x ∈ M and each
b ∈ Bx = π−1(x), ϕ(b) ∈ TxM .

The assumption that (B,M, π) is a �bre bundle implies that there exists a
family Γ(M, B) of smooth local sections σ of π : B → M such that M is covered by
the domains of the sections σ ∈ Γ(M,B). For each σ ∈ Γ(M, B), the composition
X = ϕ◦σ is a control vector �eld on M . In this way we obtain a family D

D = {X = ϕ◦σ | σ ∈ Γ(M, B)} (7)
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of locally de�ned vector �elds on M such that M is covered by the domains of
X ∈ D. A choice of the family Γ(M, B) of sections leads to a description of the
non-linear control system (B, M, π, ϕ) as a piecewise linear system given by a
family of local vector �elds on M .

An example of a control problem on M is the analysis of the structure of
accessible sets of the family D. For each X ∈ D, we denote by exp(tX) the local
one-parameter local group of di�eomorphisms of M generated by X. For every
x ∈ M , the accessible set of D through x is

Nx = {exp(tnXn)◦ ...◦ exp(t1X1) | n ∈ N, t1, ..., tn ∈ R, X1, ..., Xn ∈ D}. (8)

It has been shown by Sussmann that Nx is a manifold immersed in M, [19]. The
family of accessible sets of D de�nes on M the structure of a smooth foliation
with singularities, [20].

Let G be a Lie group with Lie algebra g, and let

Θ : G×B → B : (g, u) 7→ Θ(g, u) ≡ Θg(u) ≡ gu,

and
Φ : G×M → M : (g, x) 7→ Φ(g, x) ≡ Φg(u) ≡ gx,

be left actions of G on B, and M , respectively. We say that G is a symmetry
group of the control system (B, M, π, ϕ) if the mapπ : B → M intertwines the
actions of G on B and M , and the map ϕ : B → TM intertwines the actions of
G on B and TM . In other words, G is a symmetry if, for every g ∈ G ,

π◦Θg = Φg◦π and ϕ◦Θg = TΦg◦ϕ.

Clearly, if G is a symmetry group of a nonlinear control system (B, M, π, ϕ), then
the action of G on B determines its actions on M and TM .

We consider here a special case in which all sections σ ∈ Γ(M,B) intertwine
the action Φ on M and the action Θ on B. In other words, we assume that

σ◦Φg = Θg◦σ (9)

for every σ ∈ Γ(M, B) and g ∈ G. This does not imply that the range of σ is
G-invariant. On the other hand, if x and gx are in the domain of σ and X = ϕ◦σ,
then TΦg(X(x)) = X(gx). By de�nition, the domain of X is open. Hence, for
every x ∈ domain of X there exists a neighbourhood U of e in G such that
TΦg(X(x)) = X(gx) for all g ∈ U . We shall refer to this property by saying that
X is locally G-invariant. If the domain of σ were G-invariant, then X would
be a G-invariant vector �eld. Thus, we are dealing with a control system on a
manifold with symmetry in which all controls have same symmetry. Clearly, if G
is a symmetry group of a nonlinear control system (B, M, π, ϕ), then the action
of G on B determines its actions on M and TM .

4.1. Regular reduction. If the action of G on B is free and proper, then the
actions Θ and Φ are free and proper. In this case, that orbit spaces B̄ = B/G
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and M̄ = M/G are quotient manifolds of B and M , respectively, with projection
maps β : B → B̄ and µ : M → M̄. Since the map π : B → M intertwines the
actions Θ and Φ, it induces a map π̄ : B̄ → M̄ such that

µ◦π = π̄◦β.

Let ψ = Tµ◦ϕ : B → TM̄ . For every g ∈ G, and u ∈ B,

ψ(gu) = Tµ(ϕ(Θgu)) = Tµ(TΦg(ϕ(u)) = Tµ(ϕ(u)) = ψ(u).

Thus, ψ is constant on orbits of G, and it pushes forward to a smooth map
ϕ̄ : B̄ → TM̄ such that

Tµ◦ϕ = ϕ̄◦β.

The quadruple (B̄, M̄ , π̄, ϕ̄) is a smooth nonlinear control system obtained from
(B, M, π, ϕ) by reduction of symmetries.

4.2. Singular reduction. If the actions Θ and Φ are not free, the orbit spaces
B̄ and M̄ need not be manifolds. If Θ and Φ are proper, then B̄ and M̄ are
strati�ed spaces, As before, we de�ne di�erential structures on B̄ and M̄ in terms
of G-invariant smooth functions on B and M , respectively. More precisely,

C∞(B̄) = {h : B̄ → R | h◦β ∈ C∞(B)},

and
C∞(M̄) = {h : M̄ → R | h◦µ ∈ C∞(M)}.

The spaces B̄ and M̄ endowed with these di�erential structures are subcartesian
di�erential spaces.

In the category of di�erential spaces, the orbit maps β : B → B̄ and µ : M →
→ M̄ are smooth. As in the case of a free and proper action, we have a smooth
projection π̄ : B̄ → M̄ such that

µ◦π = π̄◦β. (10)

In order to describe a mapping ϕ̄ : B̄ → TM̄ , we have to de�ne what we mean
here by the �tangent bundle space� of a subcartesian space. Di�erent notions of
tangent vectors, which are equivalent on a manifold, need not be equivalent in the
case of a di�erential space. We choose here the notion of a Zariski tangent bundle
TM̄ de�ned as the union over M̄ of all derivations of C∞(M̄) at all points of M̄ .
In other words, for x̄ ∈ M̄ , the Zariski tangent space Tx̄M̄ consists of linear maps
w̄ : C∞(M̄) → R such that, for each f̄1, f̄2 ∈ C∞(M̄)

w̄(f̄1f̄2) = f̄1(x̄)w̄(f̄2) + f̄2(x̄)w̄(f̄1).

We de�ne a projection map τM̄ : TM̄ → M̄ such that τM̄ (w̄) = x̄ if w̄ is a
derivation at x̄. Each f̄ ∈ C∞(M̄) gives rise to a function df̄ on TM̄ such that
df̄(w̄) = w̄(f̄) for every w̄ ∈ TM̄.
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We are can now de�ne a mapping ϕ̄ : B̄ → TM̄ as follows. If u ∈ B, and
x = π(u), then ϕ(u) ∈ TxM acts on f ∈ C∞(M) by

ϕ(u) · f =
d

dt
f(c(t))|t=0,

where t 7→ c(t) is a curve in M such that c(0) = x and ċ(0) = ϕ(u). For every
g ∈ G,

ϕ(Θgu) · f = TΦg(ϕ(u)) · f = ϕ · Φ∗gf =
d

dt
f(Φg(c(t)))|t=0.

If f is G-invariant, then f◦Φg = f , and ϕ(Θgu) · f = ϕ(u) · f for every g ∈ G.
In this case, ϕ(u) · f depends only on ū = β(u) ∈ B̄. Since every G-invariant
function on M is of the form f = f̄◦µ, for a unique f̄ ∈ C∞(M̄), we have a map
ϕ̄ : B̄ → TM̄ such that

ϕ̄(ū) · f̄ = β(u) · (f̄◦µ) (11)
for every f̄ ∈ C∞(M̄), where u is any element of β−1(ū).

The quadruple (B̄, M̄ , π̄, ϕ̄) is a smooth nonlinear control system obtained
from (B,M, π, ϕ) by singular reduction of symmetries. Here B̄ and M̄ are di�eren-
tial spaces and π̄ : B̄ → M̄ and ϕ̄ : B̄ → TM̄ are smooth maps of di�erential
spaces, [21].
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