ТЕРМОЭДС И ЭЛЕКТРОПРОВОДНОСТЬ ТВЕРДЫХ РАСТВОРОВ КОБАЛЬТИТОВ-ГАЛЛАТОВ ЛАНТАНА И НЕОДИМА

Н.Н. Лубинский, Л.А. Башкиров, Г.С. Петров, А.И. Клындюк (Белорусский государственный технологический университет, Минск, Республика Беларусь)

В работе приведены результаты экспериментального изучения термоЭДС и электропроводности на постоянном токе твердых растворов $LaCo_{1-x}Ga_xO_3$ и $NdCo_{1-x}Ga_xO_3$ в интервале температур 300-1050 К. Показано, что температурная зависимость коэффициента термоЭДС (S) носит сложный характер. При комнатной температуре в обеих исследованных системах при $0 \le x \le 0.3~S$ имеет отрицательные значения. При увеличении температуры S возрастает, проходит через ноль при 435-530 К (LaCo_{1-x}Ga₃O₃) или 490–540 К (NdCo_{1-x}Ga₃O₃), достигает максимальных значений при 560–650 К (LaCo_{1-x}Ga_xO₃) или 560-705 К (NdCo_{1-x}Ga_xO₃) и затем уменьшается. Показано, что зависимость удельной электропроводности (σ) от температуры для образиов с малыми значениями x носит Sобразный характер, причем для ряда образиов при высоких температурах зафиксирован переход от полупроводникового к металлическому типу проводимости. Рассчитаны величины энергии активании электропроводности (Е) для различных температурных интервалов, проанализирована зависимость Е от температуры и состава твердого раствора (величины х). Для обеих исследованных систем в области высоких температур обнаружены участки, где удовлетворительно выполняется соотношение S = C - A·lno, справедливое для полупроводников с одним типом носителей тока. На основании полученных данных для перескокового механизма электропроводности оценена доля ионов Со³⁺, ответственных за электропроводность. На основании рассчитанных значений факторов мощности (P) показано, что кобальтиты NdCo_{0.8}Ga_{0.2}O₃, LaCo_{0.8}Ga_{0.2}O₃ являются перспективными оксидными термоэлектрическими материалами.

Введение

В последние годы возобновился интерес к исследованию физико-химических свойств кобальтитов лантана $LaCoO_3$ и других редкоземельных элементов, что обусловлено наличием у этих объектов особых магнитных, электрических свойств, заметной электрохимической и каталитической активности, вследствие чего они широко используются в качестве электродных материалов для гальванических элементов с твердым электролитом, для изготовления керамических мембран при получении чистого кислорода из воздуха, а также в устройствах новой области науки и техники – спинтроники [1-6]. При этом подавляющее число работ посвящено изучению индивидуальных кобальтитов РЗЭ *LnCoO*₃, для которых показано, что их электрофизические свойства во многом обусловлены спиновым состоянием $3d^6$ -электронов ионов Co^{3+} и наблюдаемым спиновым переходом ионов Co^{3+} из низкоспинового в промежуточноспиновое и/или высокоспиновое состояние. Кроме того, для данных кобальтитов имеет место фазовый переход типа полупроводник-металл, протекающий в довольно широком интервале температур [7-8]. Заметим, что результаты физико-химических исследований различных авторов не всегда хорошо согласуются между собой. Для твердых растворов соответствующих кобальтитов литературные данные по физико-химическим свойствам практически отсутствуют.

Цель работы – исследование влияния изовалентного замещения в $LaCoO_3$ и $NdCoO_3$ парамагнитных ионов Co^{3+} с частично заполненной 3d-оболочкой диамагнитными ионами Ga^{3+} с полностью заполненной 3d-оболочкой на термоЭДС и электропроводность образующихся твердых растворов кобальтитов-галлатов лантана и неодима $LaCo_{1-x}Ga_xO_3$ и $NdCo_{1-x}Ga_xO_3$.

Методика эксперимента

Кобальтиты-галлаты неодима, лантана $NdCo_{1-x}Ga_xO_3$, $LaCo_{1-x}Ga_xO_3$ ($x = 0 \div 1.0$) получали керамическим методом из оксидов неодима, лантана, кобальта (Co_3O_4), галлия. Все реактивы имели квалификацию «х. ч.». Порошки исходных соединений, взятых в заданных молярных соотношениях, смешивали и мололи в планетарной мельнице «Pulverizette 6» с добавлением

этанола. Полученную шихту с добавлением этанола прессовали под давлением 50 - 75 МПа в таблетки диаметром 25 мм и высотой 5 - 7 мм и затем отжигали при 1523 К на воздухе в течение 4 часов. После предварительного обжига таблетки дробили, перемалывали, прессовали в бруски длиной 30 мм и сечением 5×5 мм², которые отжигали при температуре 1523 К на воздухе в течение 4 часов.

Электропроводность полученных керамических образцов кобальтитов-галлатов неодима, лантана измеряли на постоянном токе на воздухе в интервале температур 300 – 1050 К четырехзондовым методом с использованием серебряных электродов, нанесенных тонким слоем на торцевые поверхности образцов размером 5×5×4 мм³ путем вжигания серебряной пасты.

Коэффициент термоЭДС (S) определяли относительно серебра в интервале температур 300 - 1050 К на воздухе в динамическом режиме со скоростью нагрева и охлаждения (3 – 5) К·мин⁻¹ при градиенте температур 20 - 25 К на образцах размером $5 \times 5 \times 27$ мм³.

Результаты и их обсуждение

Рентгенофазовый анализ полученных образцов кобальтитов-галлатов неодима, лантана показал, что в системах $NdCoO_3 - NdGaO_3$, $LaCoO_3 - LaGaO_3$ образуется непрерывный ряд твердых растворов, кристаллизующихся при $0 \le x \le 0.5$ в кубической структуре перовскита, при $0.5 < x \le 1.0$ – в структуре ромбически (орторомбически) искаженного перовскита (для $NdCo_{1-x}Ga_xO_3$), в ромбоэдрической ($0 \le x \le 0.7$) и ромбической ($0.7 < x \le 1.0$) структуре искаженного перовскита (для $LaCo_{1-x}Ga_xO_3$).

Результаты измерений электропроводности образцов кобальтитов-галлатов неодима, лантана приведены на рис. 1, 2 *a*, *c*.

Рис. 1. Зависимость Ino om 1/T для $NdCo_{1-x}Ga_xO_3$ (a), $LaCo_{1-x}Ga_xO_3$ (б) при различных значениях x: a) x = 0 (1); 0.1 (2); 0.2 (3); 0.3 (4); 0.5 (5); 0.7 (6); 0.8 (7); 0.9 (8); б) x = 0 (1); 0.15 (2); 0.2 (3); 0.3 (4); 0.5 (5); 0.7 (6); 0.8 (7); 0.9 (8); 0.95 (9).

Рис. 2. Температурные зависимости электропроводности σ (а, г), коэффициента термоЭДС S (б, д) и фактора мощности P (в, е) для NdCo_{1-x}Ga_xO₃ (а – в), LaCo_{1-x}Ga_xO₃ (г – е).

Электропроводность твердых растворов $NdCo_{1-x}Ga_xO_3$, $LaCo_{1-x}Ga_xO_3$ при увеличении степени замещения x постепенно уменьшается на несколько порядков, например: для $NdCoO_3$, $LaCoO_3$ при 950 К удельная электропроводность составляет $\sigma = 100 \text{ Om}^{-1} \cdot \text{сm}^{-1}$, $\sigma = 200 \text{ Om}^{-1} \cdot \text{сm}^{-1}$ соответственно, и при увеличении степени замещения ионов Co^{3+} ионами Ga^{3+} от 0 до 0.9 она постепенно уменьшается до значений $1.70 \cdot 10^{-3} \text{ Om}^{-1} \cdot \text{сm}^{-1} - для NdCo_{0.1}Ga_{0.9}O_3$ и $1.75 \cdot 10^{-3} \text{ Om}^{-1} \cdot \text{сm}^{-1}$ – для $LaCo_{0.1}Ga_{0.9}O_3$. Такое значительное уменьшение удельной электропроводности при увеличении степени замещения x ионов Co^{3+} ионами Ga^{3+} можно объяснить перескоковым (поляронным) механизмом проводимости (возрастанием эффекта экранирования ионами Ga^{3+} и уменьшением вероятности перескока электрона из пары ($Co^{3+} \cdot e$) на соседние ионы кобальта в присутствии ионов Ga^{3+}). Величина аномалии (скачка) на температурной зависимости электропроводности $NdCoO_3$, $LaCoO_3$, обусловленная присутствием в интервале температур 550 – 950 К размытого фазового перехода полупроводник-металл, постепенно уменьшается с увеличением содержания ионов галлия, и при x > 0.5 она практически отсутствует.

Для образцов твердых растворов $NdCo_{1-x}Ga_xO_3$, $LaCo_{1-x}Ga_xO_3$ со значениями $x \le 0.5$ на зависимости $\ln \sigma$ от T^{-1} наблюдается по три линейных участка (рис. 1). Один из них (низкотемпературный) расположен в начале исследованного интервала температур 300 - 1050 К, другой (высокотемпературный) – в конце этого исследованного интервала температур, и третий участок расположен в промежуточной области температур, в котором наблюдается наиболее значительное увеличение скорости изменения электропроводности при изменении температуры. Частичное замещение ионов Co^{3+} ионами Ga^{3+} ($0 < x \le 0.5$) приводит к смещению температуры перехода к металлическому характеру проводимости в сторону более высоких температур. Для образцов твердых растворов с большим содержанием галлия (x > 0.5) (рис. 1) на зависимостях $\ln \sigma$ от T^{-1} имеется лишь два или один линейных участка и отсутствует высокотемпературный участок, что свидетельствует об отсутствии фазового перехода полупроводник-металл у этих твердых растворов в исследованном интервале температур.

По тангенсу угла наклона линейных участков зависимости $\ln \sigma$ от T^{-1} с помощью метода наименьших квадратов рассчитаны энергии активации электропроводности образцов твердых растворов кобальтитов-галлатов неодима, лантана для областей низких, промежуточных и высоких температур ($E_{A_1}, E_{A_2}, E_{A_3}$ соответственно) (таблицы 1, 2).

Таблица 1

Соединение,	<i>Е</i> _А , эВ			Соединение,	$E_{\rm A},$ эВ					
$NdCo_{1-x}Ga_xO_3$	E _{A1}	E_{A_2}	E _{A3}	$LaCo_{1-x}Ga_xO_3$	E_{A_1}	E _{A2}	E _{A3}			
NdCoO ₃	0.30	0.62	0.07	LaCoO ₃	0.10	0.47	0.06			
$NdCo_{0.9}Ga_{0.1}O_3$	0.31	0.56	0.11	$LaCo_{0.85}Ga_{0.15}O_{3}$	0.16	0.48	0.09			
$NdCo_{0.8}Ga_{0.2}O_3$	0.34	0.59	0.16	$LaCo_{0.8}Ga_{0.2}O_3$	0.16	0.49	0.06			
$NdCo_{0.7}Ga_{0.3}O_3$	0.36	0.67	0.24	$LaCo_{0.7}Ga_{0.3}O_3$	0.19	0.54	0.16			
$NdCo_{0.5}Ga_{0.5}O_3$	0.51	0.67	0.39	$LaCo_{0.5}Ga_{0.5}O_3$	0.36	0.56	0.20			
$NdCo_{0.3}Ga_{0.7}O_3$	0.62	0.76	_	$LaCo_{0.3}Ga_{0.7}O_3$	0.51	0.67	-			
$NdCo_{0.2}Ga_{0.8}O_3$	0.85	-	-	$LaCo_{0.2}Ga_{0.8}O_3$	0.54	0.65	-			
$NdCo_{0.1}Ga_{0.9}O_3$	0.87	_	_	$LaCo_{0.1}Ga_{0.9}O_3$	0.89	_	-			
				$LaCo_{0.05}Ga_{0.95}O_3$	0.92	_	_			

Значения энергии активации электропроводности (E_A) в области низких, промежуточных, высоких температур (E_{A1}, E_{A2}, E_{A3} соответственно) для кобальтитов-галлатов NdCo_{1-x}Ga_xO₃ и LaCo_{1-x}Ga_xO₃

Данные, приведенные в таблице 1, показывают, что при увеличении степени замещения x от 0 до 0.3 энергия активации электропроводности E_{A_1} увеличивается лишь на 0.06 эВ для $NdCo_{1-x}Ga_xO_3$ и на 0.09 эВ для $LaCo_{1-x}Ga_xO_3$.

Дальнейшее увеличение степени замещения x от 0.3 до 0.8 приводит к увеличению энергии активации E_{A_1} на 0.51 эВ для $NdCo_{1-x}Ga_xO_3$ и на 0.57 эВ для $LaCo_{1-x}Ga_xO_3$. Энергия активации электропроводности в промежуточной области температур E_{A_2} также постепенно увеличивается при увеличении степени замещения x, но в меньшей степени, чем в низкотемпературной области.

Таблица 2

Энергия активации электропроводности (E_A), рассчитанная по значениям производной $\frac{d \ln \sigma}{dT^{-1}}$

Coorrespondence		<i>T</i> K							
Соединение	400 K	$T_{E_{A,\max}}$, K	1000 K	$I_{E_{A,max}}$, K					
$NdCo_{1-x}Ga_xO_3$									
NdCoO ₃	0.34	0.70	0.06	565					
$NdCo_{0.9}Ga_{0.1}O_3$	0.32	0.65	0.13	630					
$NdCo_{0.8}Ga_{0.2}O_3$	0.35	0.69	0.16	670					
$NdCo_{0.7}Ga_{0.3}O_3$	0.38	0.89	0.24	700					
$NdCo_{0.5}Ga_{0.5}O_3$	0.47	1.03	0.50	755					
$NdCo_{0.3}Ga_{0.7}O_3$	0.59	0.88	0.76	870					
$LaCo_{1-x}Ga_xO_3$									
LaCoO ₃	0.28	0.50	0.05	480					
$LaCo_{0.85}Ga_{0.15}O_{3}$	0.24	0.55	0.06	560					
$LaCo_{0.8}Ga_{0.2}O_3$	0.24	0.64	0.07	595					
$LaCo_{0.7}Ga_{0.3}O_3$	0.24	0.66	0.17	620					
$LaCo_{0.5}Ga_{0.5}O_3$	0.36	0.72	0.27	660					
$LaCo_{0.3}Ga_{0.7}O_3$	0.52	0.73	0.59	810					
$LaCo_{0.2}Ga_{0.8}O_3$	0.50	0.70	0.61	860					

для кобальтитов-галлатов $NdCo_{1-x}Ga_xO_3$, $LaCo_{1-x}Ga_xO_3$ при температурах 400, 1000, $T_{E_{d_{max}}}$, K

Ввиду того, что в исследованном интервале температур 300 – 1050 К энергия активации электропроводности кобальтитов-галлатов неодима, лантана зависит от температуры, в работе

по производной $\frac{d \ln \sigma}{dT^{-1}}$ при определенной температуре были получены температурные

зависимости энергии активации электропроводности E_A для $NdCo_{1-x}Ga_xO_3$, $LaCo_{1-x}Ga_xO_3$ (рис. 3). Из рисунка 3 видно, что зависимости E_A от T для $NdCo_{1-x}Ga_xO_3$, $LaCo_{1-x}Ga_xO_3$ с $(0 \le x \le 0.7)$ имеют максимум, температура которого $(T_{E_{A,max}})$ соответствует температуре фазового (электронного) перехода полупроводник-металл. Следует отметить, что этот переход совершается не скачком, а постепенно. При температурах выше $T_{E_{A,max}}$ энергия активации в широком интервале температур уменьшается монотонно, что указывает на постепенное увеличение доли металлической фазы. Вероятно, смена знака температурного коэффициента электропроводности от положительного к отрицательному будет наблюдаться при температуре, при которой полупроводниковая фаза полностью перейдет в металлическую.

В таблице 2 приведены значения энергии активации электропроводности для $NdCo_{1-x}Ga_xO_3$, $LaCo_{1-x}Ga_xO_3$ при температурах 400 и 1000 К, $T_{E_{A,max}}$. Увеличение степени замещения ионов Co^{3+} ионами Ga^{3+} в системах $NdCo_{1-x}Ga_xO_3$, $LaCo_{1-x}Ga_xO_3$ приводит к постепенному смещению температуры перехода полупроводник – металл: от 565 К, 480 К для $NdCoO_3$, $LaCoO_3$ до 755 К, 660 К – для $NdCo_{0.5}Ga_{0.5}O_3$, $LaCo_{0.5}Ga_{0.5}O_3$ соответственно.

Рис. 3. Энергия активации электропроводности (E_A) , рассчитанная по значениям производной $dln\sigma/dT^{-1}$, для кобальтитов-галлатов $NdCo_{1-x}Ga_xO_3$ (a), $LaCo_{1-x}Ga_xO_3$ (b) при различных значениях x: a) x = 0 (1); 0.1 (2); 0.2 (3); 0.3 (4); 0.5 (5); 0.7 (6); b) x = 0 (1); 0.15 (2); 0.2 (3); 0.3 (4); 0.5 (5); 0.7 (6); 0.8 (7).

Сравнение данных по энергиям активации, приведенных в таблицах 1, 2, показывает, что значения E_{A_3} близки к значениям E_A при 1000 K, а значения E_{A_2} несколько меньше значений $E_{A,max}$ для соответствующих кобальтитов-галлатов. Значения E_A при 400 K несколько больше значений E_{A_1} . Величины $E_{A,max}$, $T_{E_{A,max}}$ отличаются незначительно от данных, приведенных в работе [9].

Результаты измерения коэффициента термоЭДС кобальтитов-галлатов неодима, лантана в интервале температур 300 – 1050 К приведены на рисунке 2 б, д. Коэффициент термоЭДС (S) для кобальтитов-галлатов неодима, лантана с $0 \le x \le 0.5$, при температурах несколько выше комнатной отрицателен, при увеличении температуры проходит через минимум, начинает возрастать, проходит через ноль и достигает максимального значения, после чего снова начинает уменьшаться. Например, коэффициент термоЭДС равен $S = -0.170 \text{ мB}\cdot\text{K}^{-1}$ при 335 К для $NdCoO_3$, и $S = -0.166 \text{ мB}\cdot\text{K}^{-1}$ при 305 К для $LaCoO_3$ (рис. 2 б, д). При увеличении температуры до 396 К, 350 К S принимает минимальное значение ($-0.200 \text{ мB}\cdot\text{K}^{-1}$), ($-0.207 \text{ мB}\cdot\text{K}^{-1}$) – для $NdCoO_3$, $LaCoO_3$ соответственно. При дальнейшем повышении температуры S возрастает, проходя через 0 при 490 К, 435 К, достигает максимального значения при $\approx 560 \text{ K}$ ($S = 0.110 \text{ мB}\cdot\text{K}^{-1}$), $\approx 500 \text{ K}$ ($S = 0.060 \text{ мB}\cdot\text{K}^{-1}$) и затем постепенно уменьшается для $NdCoO_3$, $LaCoO_3$ соответственно. Подобная температурная зависимость коэффициента термоЭДС для монокристалла $LaCoO_3$ приведена и в работе [10].

Частичное замещение ионов Co^{3^+} ионами Ga^{3^+} приводит к постепенному увеличению температуры, при которой *S* изменяет знак. При этом наблюдается увеличение максимальной положительной величины *S*: от 0.110 мВ·K⁻¹ (*NdCoO*₃), 0.060 мВ·K⁻¹ (*LaCoO*₃) (рис. 2 δ , d) до 0.188 мВ·K⁻¹ (*NdCo*_{0.7}*Ga*_{0.3}*O*₃), 0.100 мВ·K⁻¹ (*LaCo*_{0.7}*Ga*_{0.3}*O*₃), а также увеличение температуры, при которой *S* имеет максимальное значение: от 560 К, 500 К для *NdCoO*₃, *LaCoO*₃ до 705 К, 650 К для *NdCo*_{0.7}*Ga*_{0.3}*O*₃, *LaCo*_{0.7}*Ga*_{0.3}*O*₃ соответственно. При этом следует отметить, что для кобальтитов с $0 \le x \le 0.3$ температуры положения максимума на зависимости *S* от *T* практически равны температурам, при которых наблюдается максимум энергии активации для этих кобальтитов-галлатов.

Для обеих исследованных систем в области высоких температур обнаружены участки, где удовлетворительно выполняется соотношение $S = C - A \cdot \ln \sigma$, справедливое для полупроводников с одним типом носителей тока [11, 12]. На основании полученных данных для перескокового механизма электропроводности проведена оценка доли ионов $Co^{3+}(y)$, ответственных за электропроводность, по формуле

$$S = \frac{k}{e} \ln \frac{1 - y}{y},\tag{1}$$

где *k* – постоянная Больцмана, *e* – элементарный заряд.

Для твердых растворов $NdCo_{1-x}Ga_xO_3$ со значениями x = 0.3 и 0.5 увеличение температуры от 775 до 1050 К приводит к увеличению доли ионов Co^{3+} , ответственных за электропроводность, от величин 13 и 15% до 25 и 30% соответственно. Для кобальтитов-галлатов лантана $LaCo_{1-x}Ga_xO_3$ увеличение температуры от 700 до 1000 К приводит к некоторому увеличению доли ионов Co^{3+} , ответственных за электропроводность: на 5% для $LaCoO_3$ и на 9, 11, 12% для образцов с x = 0.15, 0.20. 0.30 соответственно.

Полученные данные показывают, что не все ионы кобальта Co^{3+} в твердых растворах кобальтитов-галлатов неодима, лантана являются донорами носителей тока (электронов, дырок), и при температурах порядка 1000 К таковыми является не более 40% (для $NdCo_{1-x}Ga_xO_3$), 45% (для $LaCo_{1-x}Ga_xO_3$) от общего количества ионов в соответствующих твердых растворах.

По результатам измерения удельной электропроводности (σ) и коэффициента термоЭДС (S) были рассчитаны значения фактора мощности (P) по формуле

$$P = S^2 \cdot \sigma \,. \tag{2}$$

Температурные зависимости фактора мощности представлены на рисунке 2 в, е. Из рисунка 2 видно, что при увеличении температуры фактор мощности сначала увеличивается, достигает максимума, а затем уменьшается. Следует отметить, что для исследованных кобальтитов-галлатов при увеличении степени замещения ионов Co^{3+} ионами Ga^{3+} максимальное значение фактора мощности сначала увеличивается, достигает максимального значения при x = 0.2 (P = 74 мкВт / ($K^2 \cdot M$) для $NdCo_{0.8}Ga_{0.2}O_3$ (рис. 26) и P = 40 мкВт / ($K^2 \cdot M$) для $LaCo_{0.8}Ga_{0.2}O_3$ (рис. 2 e)) и затем уменьшается. Также с увеличением степени замещения x увеличивается и температура, при которой достигается максимальное значение фактора мощности: от 680 К, 600 К для NdCoO₃, LaCoO₃ до 980 К, 840 К для NdCo_{0.5}Ga_{0.5}O₃, $LaCo_{0,7}Ga_{0,3}O_{3}$ соответственно (рис. 2 в, е). Величина фактора мощности твердого раствора $LaCo_{0.5}Ga_{0.5}O_3$ во всем исследованном интервале температур возрастает, не достигая максимального значения. Значения фактора мощности, полученные для образцов $NdCo_{0.8}Ga_{0.2}O_3$, $LaCo_{0.8}Ga_{0.2}O_3$, значительно выше, чем для образцов $LaCo_{0.8}Ti_{0.2}O_{2.86}$, $LaCo_{0.8}Ni_{0.2}O_{2.95}$ (P = 28.2 и 9.5 мкВт / ($K^2 \cdot M$), рекомендуемых авторами работы [12] для практического использования, вследствие чего указанные твердые растворы можно рассматривать в качестве перспективных оксидных термоэлектрических материалов.

Полученные в настоящей работе данные могут быть использованы при создании новых функциональных оксидных материалов с заданным комплексом свойств, предназначенных для изготовления различных устройств электронной техники.

Выводы

Показано, что температурная зависимость коэффициента термоЭДС (S) носит сложный характер. Так, при комнатной температуре в обеих исследованных системах при $0 \le x \le 0.3 S$ имеет отрицательные значения. При увеличении температуры S возрастает, проходит через ноль при 435–530 К ($LaCo_{1-x}Ga_xO_3$) или 490–540 К ($NdCo_{1-x}Ga_xO_3$), достигает максимальных значений при 560-650 К (*LaCo*_{1-x}*Ga*_x*O*₃) или 560-705 К (*NdCo*_{1-x}*Ga*_x*O*₃) и затем уменьшается. Показано, что зависимость удельной электропроводности (о) от температуры для образцов с малыми значениями x носит S-образный характер, причем для ряда образцов при высоких температурах зафиксирован переход от полупроводникового к металлическому типу проводимости. Рассчитаны величины энергии активации электропроводности (Е) для различных температурных интервалов, проанализирована зависимость Е от температуры и состава твердого раствора (величины х). Для обеих исследованных систем в области высоких температур обнаружены участки, где удовлетворительно выполняется соотношение $S = C - A \cdot \ln \sigma$, справедливое для полупроводников с одним типом носителей тока. На основании полученных данных для перескокового механизма электропроводности оценена доля ионов *Co*³⁺, ответственных за электропроводность. На основании рассчитанных значений факторов что мощности (Р) показано, кобальтиты $NdCo_{0.8}Ga_{0.2}O_3$, $LaCo_{0.8}Ga_{0.2}O_3$ являются перспективными оксидными термоэлектрическими материалами.

Литература

- 1. Пальгуев С.Ф., Гильдерман В.К., Земцов В.И. Высокотемпературные оксидные электронные проводники для электрохимических устройств. М.: Наука, 1990. 198 с.
- Вашук В.В. Синтез и физико-химические свойства соединений с перовскитной и перовскитоподобной структурой на основе оксидов кобальта и никеля: Дис. д-ра хим. наук: 02.00.04. – Минск, 2000. – 310 с.
- 3. Viswanathan B. Solid State and Catalytic Properties of Rare Earth Cobaltites New Generation Catalysts // J. Sci. IND. Res. 1984. Vol. 4. № 3. P. 156-163.
- 4. Хартон В.В., Наумович Е.Н., Жук П.П. Физико-химические и электрохимические свойства электродных материалов *Ln(Sr)CoO*₃ // Электрохимия. 1992. Т. 28. № 12. С. 1693-1702.
- Jakobs S., Hartung R., Mobius H.-H., Wilke M. Sauerstoffelectroden aus Mischoxiden mit Zirkondioxid und Cobaltaten der seltenen Erden // Rev. Chim. Miner. – 1980. – Vol. 17. – № 4. – P. 283-298.
- Kharton V.V., Yaremchenko A.A., Naumovich E.N. Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. II. Perovskite-related oxides // J. Solid State Electrochem. – 1999. – Vol. 3. – P. 303-326.
- Rao C.N.R., Md. Motin Seikh, Chandrabhas Narayana. Spin-State Transition in LaCoO₃ and Related Materials // Top. Curr. Chem. – Berlin: Springer-Verlag, 2004. – Vol. 234. – P. 1-21.
- Knižek K. Structural anomalies associated with the electronic and spin transitions in LaCoO₃ // The European Phys. Jour. B. 2005. Vol. 47. № 2. P. 213-220.
- 9. Yamaguchi S., Okimoto Y., Tokura Y. Bandwidth dependence of insulator-metal transitions in perovskite cobalt oxides // Phys. Rev. B. 1996. Vol. 54. № 16. P. R11022-R11025.
- 10.Dordor P. Electrical properties of lead-doped *LaCoO*₃ single crystal // Phys. Status Solidi. 1986. Vol. 93 A. № 1. P. 321-329.
- 11.Метфессель З., Маттис Д. Магнитные полупроводники. М.: Мир, 1972. 405 с.
- 12. Robert R., Bocher L., Trottmann M., Reller A., Weidenkaff A. Synthesis and high-temperature thermoelectric properties of *Ni* and *Ti* substituted *LaCoO₃* // J. Solid State Chem. – Vol. 179. – 2006. – P. 3893.

Поступила в редакцию 10.02.09.