Сб. науч. трудов/ Отв. Ред. Н. В. Новиков, НАН Украины, Институт сверхтвердых материалов им. В. Н. Бакуля. – Киев, 2005.– С. 209–220.

- Спекание твердого сплава ВК15 под действием сжимающего напряжения/ В. П. Бондаренко, Н. А. Юрчук // Сб. науч. тр. «Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения». 2005. – Вып. 8 – К.– ИСМ.– С. 81–86.
- 32. Бондаренко В. П., Павлоцкая Э. Г. Спекание вольфрамових твердых сплавов в прецизионно контролируемой газовой среде. – К.: Наук. думка, 1995. – 204 с.
- 33. Чапорова И. Н., Чернявский К. С. Структура спеченных твердых сплавов. М.: Металлургия, 1975. 248 с.
- 34. Киффер Р., Шварцкопф П. Твердые сплавы. М.: Металлургиздат, 1957. 664 с.
- 35. Exner H. E. Phisical and chemical nature of cemented carbides // International Metals Reviews. 1979. N 4. P. 139–173.
- 36. Лаптев А. В. Уплотнение сплавов WC-Со при твердофазном спекании (обзор)/ Порошковая металлургия. 2007. № 7/8. С. 8–18.
- 37. Лаптев А. В. Особенности формирования структуры и свойств сплавов WC-Co при твердофазном спекании. 1. Эволюция геометрической структуры // Порошковая металлургия. 2007. № 9/10. С. 3–13.
- 38. Лаптев А. В. Особенности формирования структуры и свойств сплавов WC-Co при твердофазном спекании. 2. Механические свойства образцов // Порошковая металлургия. – 2007.– № 11/11.– С. 3–11.

Поступила 06.07. 2010

УДК 621.891:620.22

Г. П. Богатырева¹, д-р техн. наук; Г. Д. Ильницкая¹, Г. А. Петасюк¹, Ю. В. Сирота¹, В. С. Лысаковский¹; Е. А. Закора¹, Г. С. Грищенко¹, А. П. Жудра², А. И. Белый² кандидаты технических наук; В. И. Дзыкович²

¹Институт сверхтвердых материалов им. В. Н. Бакуля НАН Украины, г. Киев ²Институт электросварки им. Е. О. Патона НАН Украины, г. Киев

ПОВЫШЕНИЕ КАЧЕСТВА ПОРОШКОВ КАРБИДА ВОЛЬФРАМА

The results division powders of carbide tungsten under the form of particles and allocation from a total mass of particles carbide tungsten of not spherical and extended form are presented in this report. After division of powders carbide tungsten of various grain sizes 630/800, 450/630, 250/450, -250 microns and -180 microns on vibrating installation under the form of particles are received the powders differing among themselves under morphological characteristics.

Введение

В настоящее время при наплавке композиционных сплавов широко применяют порошки тугоплавких соединений. В процессе наплавки эти порошки обычно нагреваются до высокой температуры, что приводит к окислению, изменению состава и разрушению частиц. Армирующие зерна могут частично растворяться в сплаве-связке, ухудшая свойства композиции.

Проблемы наплавки композиционных сплавов успешно решены в Институте электросварки им. Е. О. Патона (ИЭС). В частности, ИЭС НАН Украины. Разработаны, в частности, наплавочные порошки в виде литых сплавов карбидов вольфрама [1], методом термоцентробежного распыления получили зернистый карбид вольфрама в виде сферических частиц заданного диаметра [2; 3]. В процессе изготовления порошков зернистых порошков карбида вольфрама помимо сферических частиц правильной формы образуются частицы карбида вольфрама несферической и вытянутой форм, что негативно влияет на качество наплавки композиционных сплавов.

Цель настоящей работы состояла в разделении зернистого карбида вольфрама по форме частиц и выделении из общей массы частиц карбида вольфрама несферической и вытянутой формы.

Методика исследований и исходные материалы

Работы по разделению порошков карбида вольфрама проводили в Институте сверхтвердых материалов им. В. Н. Бакуля НАН Украины (ИСМ) на вибрационной установке для сортировки порошкообразного материала по форме частиц (вибрационном столе) в два этапа.

Прежде всего, разделили порошки карбида вольфрама широкого диапазона крупности 250/800 и -250 мкм - массой около 1,5 кг каждый.

Крупность порошков карбида вольфрама обозначается согласно нормативным документам ИЭС. Качественная оценка полученных продуктов разделения показала хороший результат. В первые ячейки вибростола выделили частицы карбида вольфрама сферической формы, в последние - несферической и даже вытянутой формы.

Второй этап работы состоял в разделении порошков карбида вольфрама массой 0,5 кг каждый по крупности: 630/800, 450/630, 250/450, -250 и -180 мкм. Порошки каждой крупности разделили по форме частиц на 4–6 продуктов разделения, определили их массу и рассчитали выход полученных порошков.

Далее прибором DiaInspect.OSM фирмы VOLLSTADT DIMANT GmbH (Германия) [4] определяли морфометрические характеристики частиц порошков карбида вольфрама крупностью 630/800 и 250/450 исходных и после разделения на вибростоле. Прочностные характеристики порошков карбида вольфрама крупностью 250/450 исходных и после разделения на вибростоле определяли по динамической прочности [5], плотность – автопикнометром 1320 [6].

Результаты и их обсуждение

Результаты разделения карбида вольфрама на вибрационном столе приведены в табл.1.

Крупность	Продукт	Выход порошка,		
порошка	разделения	Γ	%	
	1	202	40,4	
	2	199	39,8	
620/800	3	53	10,6	
030/800	4	16	3,2	
	Пробы, потери	30	6,0	
	Исходный	500	100,0	
	1	123	24,6	
	2	183	36,6	
	3	137	27,4	
450/630	4	36	7,2	
	5	14	2,8	
	6	7	1,4	
	Исходный	500	100,0	
	1	63	18,9	
250/450	2	123	36,8	
	3	73	21,8	

Таблица 1. 1	Результать	ы разделения	порошков	карбида	вольфрама	разной	крупности	ПО
форме част	иц на вибр	ационной уст	гановке					

РАЗДЕЛ 3. ТЕХНИКА И ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ТВЕРДЫХ СПЛАВОВ И ИХ ПРИМЕНЕНИЕ В ИНСТРУМЕНТЕ ДЛЯ РАЗЛИЧНЫХ ОТРАСЛЕЙ <u>ПРОМЫШЛЕННОСТИ</u>

	4	48	14,4
	5	25	7,5
	6	2	0,6
	Исходный	334	100,0
	1	80	15,9
	2	178	34,5
	3	142	28,4
-250	4	70	13,9
	5	21	4,2
	6	11	2,2
	Исходный	502	100,0
-180	1	97	18,8
	2	128	24,8
	3	122	23,6
	4	132	25,6
	5	37	7,2
	Исходный	516	100,0

Внешний вид частиц порошков карбида вольфрама продуктов разделения № 1 – (а) и № 4 – (б) крупностью 630/800 и 250/450 показан на рис.1.

Рис. 1. Внешний вид частиц карбида вольфрама крупностью 630/800 и 250/450 после разделения на вибрационной установке: а – продукт разделения № 1; б – продукт разделения № 4

При выполнении настоящей работы анализировали следующие характеристики частиц порошков карбида вольфрама: площадь проекции зерна, периметры истинного (фактического) и выпуклого его контуров, максимальный и минимальный диаметры Feret, форм-факторы выпуклого и фактического изображения проекции зерна, эллиптичность, Feret-удлинение и шероховатость зерен. Поскольку эти морфометрические характеристики относительно новые в сфере диагностики порошков СТМ, их название и обозначение приведены в табл. 2.

Таблица	2.	Названия	морфометрич	еских	характеристик,	диагностиру	уемых г	грибором
DiaInspe	ct.(OSM и рас	считываемых	путем	пост-DiaInspect	обработки	данных	диагнос-
тики, и и	ix c	бозначени	Я					

Название морфометрической характеристики	Обозначение
Минимальный диаметр Feret, мкм	<i>Feret</i> _{min}
Максимальный диаметр Feret, мкм	<i>Feret</i> _{max}
Компактность (форм-фактор истинного изображения)	$C_{ m r}$
Выпуклость (форм-фактор выпуклого изображения)	$C_{ m conv}$
Эллиптичность	E
Feret-удлинение (аналог коэффициента формы по ДСТУ 3292)	$F_{ m el}$
Шероховатость (Roughness)	R
Площадь проекции зерна, мкм ²	Α
Периметр истинного изображения, мкм	$p_{ m r}$
Периметр выпуклого изображения, мкм	$p_{ m conv}$
Удельный периметр, 1/мкм	$P_{ m yg}$
Средний размер зерна, мкм	$d_{ m m}$
Эквивалентный диаметр зерна, мкм	$d_{ m e}$

В качестве максимального (минимального) диаметра Feret приняли максимальное (минимальное) расстояние между двумя параллельными касательными к контуру проекции зерна (рис. 2).

Рис. 2. Проекция абстрактного зерна

Feret-удлинение характеризует удлиненность зерна и определяется по формуле

$$F_{el} = \frac{Feret_{\max}}{Feret_{\min}},$$
(1)

Компактность (форм-фактор истинного изображения) рассчитывается по формуле

$$C_r = \frac{p_r^2}{4\pi A},\tag{2}$$

где $\pi = 3,14159...$ – математическая константа;

Выпуклость (форм-фактор выпуклого изображения) рассчитывается по формуле

$$C_{\rm conv} = \frac{p_{\rm conv}^2}{4\pi A},\tag{3}$$

Для окружности $C_r = C_{conv} = 1$.

Поскольку периметры p_r и p_{conv} не внесены разработчиками прибора DiaInspect.OSM в итоговую xls-таблицу, выдаваемую пользователям по завершении диагностики порошка, они рассчитываются косвенно из формул (2) и (3) при известных C_r , C_{conv} и A.

Эллиптичность характеризует симметрию проекции зерен порошка и рассчитывается по формуле

$$E = \sqrt{\frac{J_{\text{max}}}{J_{\text{min}}}},$$
(4)

где J_{max} , J_{min} – инвариантные комплексы осевых моментов инерции J_x , J_y относительно осей *X*, *Y* прямоугольной системы координат и центробежного момента инерции J_{xy} .

Эти инвариантные комплексы выражаются через указанные моменты зависимостями [7]

$$J_{\max} = 0.5 \Big[J_x + J_y + \sqrt{(J_x - J_y)^2 + 4 \cdot J_{xy}^2} \Big];$$

$$J_{\max} = 0.5 \Big[J_x + J_y - \sqrt{(J_x - J_y)^2 + 4 \cdot J_{xy}^2} \Big].$$
(5)

Для квадрата и круга E = 1.

Шероховатость характеризует гладкость контура проекции и определяется по формуле

$$R = \frac{p_r}{p_{\text{conv}}}.$$
 (6)

Все приведенные характеристики диагностируются прибором DiaInspect.OSM. В лаборатории технологии дисперсных материалов ИСМ с использованием результатов DiaInsресt-диагностики дополнительно рассчитывают другие морфометрические характеристики, в частности, удельный периметр, средний размер зерен, эквивалентный диаметр зерен. Удельный периметр, как и шероховатость, характеризует гладкость контура проекции и представляет собой отношение фактического периметра проекции зерна к ее площади:

$$P_{\rm yd.} = \frac{p_r}{A},\tag{7}$$

Средний размер зерна рассчитывается по формуле

$$d_m = \frac{Feret_{\max} + Feret_{\min}}{2}, \tag{8}$$

его эквивалентный диаметр – по формуле

$$d_e = 2\sqrt{\frac{A}{\pi}} \,. \tag{9}$$

Рассчитанные DiaInspect-характеристики имеют следующий физический смысл: *Feret*_{max}, *Feret*_{min}, d_m , d_e несут информацию о размерном факторе зерен, C_r , F_e , E описывают форму зерен, P_{yg} и R отражают развитость поверхности зерен. Средние значения морфологических характеристик порошков крупностью 630/800 исходного и продуктов разделения приведены в табл. 3.

Vanaumanua	Значения для порошков						
Характеристика	Исходного	№ 1	Nº 2	Nº 3	<u>№</u> 4		
Feret _{min} , мкм	808	793	804	806	832		
Feret _{max} , мкм	774	763	772	774	783		
C_r	1,1831	1,1798	1,1702	1,1717	1,1826		
E	1,0285	1,0237	1,0245	1,0232	1,0493		
F_{el}	1,0446	1,0389	1,0411	1,0415	1,0670		
R	1,0754	1,0741	1,0695	1,0696	1,0711		
d_m , мкм	791	778	788	790	807		
d_e , мкм	785	772	781	783	799		
<i>А</i> , мкм ²	487529	471762	482753	484642	508052		
<i>р</i> _{<i>r</i>} , мкм	2680	2632	2655	2661	2727		
$p_{\rm conv}$, MKM	2493	2451	2482	2488	2546		
<i>Р</i> _{уд} , 1/м	0,0056	0,0057	0,0056	0,0056	0,0057		
F_{yz} , M^2/Γ	4,91	4,98	4,90	4,90	5,03		

Таблица 3. Средние значения характеристик порошков исходного и продуктов разделения

Кроме приведенных характеристик на основании полученных в результате DiaInspectдиагностики данных с использованием разработанных методических средств рассчитывали методом математического моделирования зерновой ситовый состав исследуемых порошков [4; 7]. Результаты ситового анализа порошка крупностью 630/800 приведены в табл. 4.

одукт (еления	Грани ного и	цы размер- интервала,	F_{el}	Пофракционное содержа- ние зерен, %		Cpe	дние знач	ения
Пр разд		МКМ		по количеству	по массе	<i>Feret</i> _{min}	R	C_r
	315	400	0,000	0,00	0,00	0	0,000	0,000
	400	500	0,000	0,00	0,00	0	0,0000	0,000
	500	630	1,017	33,66	24,52	706	1,0773	1,189
1	630	800	1,016	65,84	74,61	817	1,0726	1,176
	800	1000	1,010	0,50	0,88	954	1,0514	1,122
	1000	1250	0,000	0,00	0,00	0	0,0000	0,000
	1250	1600	0,000	0,00	0,00	0	0,0000	0,000
	315	400	0,000	0,00	0,00	0	0,0000	0,000
	400	500	0,000	0,00	0,00	0	0,0000	0,000
	500	630	1,019	25,36	18,27	712	1,0733	1,181
2	630	800	1,016	73,91	80,52	815	1,0682	1,167
	800	1000	1,014	0,72	1,21	943	1,0634	1,155
	1000	1250	0,000	0,00	0,00	0	0,0000	0,000
	1250	1600	0,000	0,00	0,00	0	0,0000	0,000
	315	400	0,000	0,00	0,00	0	0,0000	0,000
3	400	500	0,000	0,00	0,00	0	0,0000	0,000
	500	630	1,016	28,86	20,98	717	1,0731	1,181

таолица 4. гезультаты ситового анализа порошка крупностью 050/0	Таблица 4	. Результаты	ситового	анализа	порошка	крупностью	630/80
---	-----------	--------------	----------	---------	---------	------------	--------

РАЗДЕЛ 3. ТЕХНИКА И ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ТВЕРДЫХ СПЛАВОВ И ИХ ПРИМЕНЕНИЕ В ИНСТРУМЕНТЕ ДЛЯ РАЗЛИЧНЫХ ОТРАСЛЕЙ ПРОМЫШЛЕННОСТИ

	630	800	1,019	70,47	77,85	821	1,0681	1,168
	800	1000	1,011	0,67	1,18	964	1,0666	1,158
	1000	1250	0,000	0,00	0,00	0	0,0000	0,000
	1250	1600	0,000	0,00	0,00	0	0,0000	0,000
	315	400	0,000	0,00	0,00	0	0,0000	0,000
	400	500	0,000	0,00	0,00	0	0,0000	0,000
	500	630	1,020	30,93	22,11	714	1,0797	1,195
4	630	800	1,018	68,04	76,17	827	1,0737	1,178
	800	1000	1,023	1,03	1,72	946	1,0620	1,146
	1000	1250	0,000	0,00	0,00	0	0,0000	0,000
	1250	1600	0,000	0,00	0,00	0	0,0000	0,000
	315	400	0,000	0,00	0,00	0	0,0000	0,000
	400	500	0,000	0,00	0,00	0	0,0000	0,000
ный	500	630	1,020	30,93	22,11	714	1,0797	1,195
ЮДН	630	800	1,018	68,04	76,17	827	1,0737	1,178
Исх	800	1000	1,023	1,03	1,72	946	1,0620	1,146
	1000	1250	0,000	0,00	0,00	0	0,0000	0,000
	1250	1600	0,000	0,00	0,00	0	0,0000	0,000

Полученные с помощью прибора DiaInspect.OSM данные позволили сделать следующие выводы: порошки карбида вольфрама крупностью 630/800 исходные и после разделения по форме состоят из частиц размером: 500/630, 630/800 и 800/1000. При этом содержание частиц крупностью 630/800 составило 65–70 %; форма частиц (удлинение F_{el}) в продуктах разделения 1-3 - 1,04, а в 4 - 1,06.

Аналогичные значения морфологических характеристик получены и для порошков карбида вольфрама крупностью 250/450 исходного и после разделения на вибрационной установке.

Для порошков карбида вольфрама крупностью 250/450 исходных и после разделения по форме частиц на вибрационной установке определили динамическую прочность и плотность (табл. 5).

Таблица 5. Физико-механические характеристики карбида вольфрама крупностью 250/450

Продукт разделения	Динамическая прочность, <i>Fi</i> , y. e.	Плотность ρ , г/см ³
1	16	18,04
2	14	_
3	14	_
4	10	17,05
исходный	15	17,41

Как следует из данных табл.5, разделенные по форме частицы на вибрационной установке порошки карбида вольфрама динамической прочностью. Так, динамическая прочность продукта № 1 составляет 16 у. е, а № 4 – 10 у.е. При этом плотность продукта № 1 составляет 18,04, г/см³, а продукта № 4 – 17,05, г/см³.

Таким образом, результаты исследований свидетельствуют о возможности повышения качества порошков карбида вольфрама путем удаления на вибрационной установке час-

тиц пониженной плотности и удлиненной формы, содержание которых в исходном порошке не превышает 10 %.

Выводы

1. После разделения порошков карбида вольфрама крупностью 630/800, 450/630, 250/450, -250 и -180 мкм на вибрационной установке по форме частиц получены порошки с различающимися морфометрическими характеристиками.

2. В результате разделения порошков карбида вольфрама различной крупности по форме зерен стало возможным выделение из общей массы порошка частиц карбида вольфрама несферической и вытянутой формы.

3. С помощью данных, измеренных прибором DiaInspect.OSM и рассчитанных, установлено, что порошки карбида вольфрама крупностью 630/800 исходные и после разделения по форме частиц состоят из частиц размером: 500/630, 630/800, 800/1000. При этом содержание частиц размером 630/800 составляет 65–70 %. При этом форма частиц (удлинение F_{el}) в продуктах разделения 1-3 составляет 1,04, а в продукте 4 - 1,06.

4. Установлено, что разделенные на вибрационной установке порошки карбида вольфрама, различаются физико-механическими характеристиками. Динамическая прочность порошков карбида вольфрама, выделенных в продукт № 4 на 37,5 % ниже динамической прочности порошков карбида вольфрама продукта № 1.

Литература

- 1. А. с. 614713 СССР, кл. В23К 35/36. Шихта для наплавки / М. А. Пащенко, Е.И. Фрумин, А.П. Жудра и др. – Заявл. 11.10.77; Опубл. 25.09.78.
- 2. А. с. №1381840 СССР. Установка центробежного распыления стержней из тугоплавких материалов / А. И. Белый и др. – Заявл. 10.07.86; Опубл. 15.11.87.
- 3. Пат. на изобретение № 20516 А Кл. В22F 9/10. Украина. Способ получения гранулированных тугоплавких материалов / К. А. Ющенко, А. П. Жудра, А. И. Белый и др. – Заявл. 14.10.94; Опубл. 15.07.97.
- 4. Новиков Н. В., Богатырева Г. П., Петасюк Г. А. К вопросу повышения информативности морфологических характеристик порошков из сверхтвердых материалов, определяемых на видеокомпьютерных диагностических комплексах // Сверхтвердые матер.– 2005.– № 3.– С. 73–85.
- 5. Diamond under Different Rates of Strain. Proceedings of the Royal Society. Ser. A.– 1976.– **293**. p. 259–274.
- 6. Богатырева Г. П., Гвяздовская В. Л. Определение пикнометрической плотности алмазных порошков // Сверхтвердые матер.– 1988.– № 2.– С. 35– 37.
- 7. Петасюк Г. А. Компьютерное моделирование процедуры ситового анализа шлифпорошков сверхтвердых материалов // Заводская лаборатория.– 1999.- № 10.- С. 29–32.

Поступила 15.06.10