#### Э.В.Приходько, В.Ф.Мороз

## ВЛИЯНИЕ ВЗАИМОДЕЙСТВИЯ С ВОДОРОДОМ НА МЕХАНИЧЕСКИЕ СВОЙСТВА СТАЛЕЙ

Использована физико-химическая модель металлических расплавов для изучения влияния водорода на свойства сталей. Установлены корреляционные связи механических свойств сталей и сплавов с интегральными параметрами межатомного взаимодействия.

### Анализ последних достижений и публикаций.

Аргументация многочисленных высказываний о форме существования водорода в стали [1,2] носит качественный характер. После анализа большого объема экспериментальной и расчетной информации А.Н. Морозов, например, пришел к заключению [2], что в стали большая часть водорода в газообразном состоянии находится в микропорах, причем под микропорами при этом понимаются любые несовершенства кристаллической решетки, по размерам превышающие элементарную ячейку.

Судя по литературным данным, внедрение водорода иногда приводит, а иногда не приводит к изменению структуры металла–растворителя [4– 6]. Это зависит от природы металла, количества, распределения и вида примесей и легирующих добавок, наличия микро– и макродефектов и целого ряда других факторов, контролировать которые можно лишь весьма приближенно. Учитывая дискуссионный характер проблемы, в данной статье ограничимся лишь таким анализом данных, когда предположительно можно вести речь о влиянии водорода, химически взаимодействующего с компонентами стали. Основные положения использованной методики физико–химического моделирования изложены в предыдущей статье авторов в настоящем сборнике.

#### Изложение основных материалов исследования.

Одним из факторов, приводящим к разрушению сталей в водороде при повышенных температурах и давлениях, является высокое давление метана, образующегося в микропустотах металла при взаимодействии углерода с водородом по реакции:

 $[C] + 2H_{2(\Gamma)} = CH_{4(\Gamma)}$ 

(1)

Давление метана P<sub>CH4</sub> определяется термодинамическими параметрами системы, активностью углерода, которая связана с составом стали, температурой.

В работах [7, 8] для девяти сталей (табл.1) определены равновесные давления метана и водорода при различных температурах. Анализ этих данных показал, что lg ( $P_{CH4}/P^2_{H2}$ ) в условиях равновесия коррелирует с интегральными параметрами межатомного взаимодействия в сталях: lg( $P_{CH4}/P^2$ ) = 108,99–18,20 $d_{cr}$ =556,73tg $\alpha_{cr}$ =0,0055t (r=0,937) (2)

| Сталь     | $d \cdot 10^{-1}$ , | $Z^{Y}$ ,e | tg α   | t,  | lg $r_{3\kappa c \pi}$ . | lg r <sub>расч.</sub> |
|-----------|---------------------|------------|--------|-----|--------------------------|-----------------------|
|           | HM                  |            |        | °C  |                          |                       |
| Угл.      | 2,7825              | 1,1833     | 0,0883 | 800 | -1,89                    | -2,08                 |
| 40X       | 2,7569              | 1,2285     | 0,0883 | 800 | -1,64                    | -1,84                 |
| 40X(0.8C) | 2,6967              | 1,2556     | 0,0889 | 800 | -1,50                    | -1,22                 |
| 30XMA     | 2,7812              | 1,2129     | 0,0881 | 800 | -2,05                    | -2,09                 |
| 15XM      | 2,8043              | 1,2085     | 0,0878 | 800 | -2,32                    | -2,32                 |
| CT.45     | 2,7453              | 1,2153     | 0,0887 | 900 | -2,634                   | -2,34                 |
| 16ГС      | 2,7868              | 1,2177     | 0,0883 | 900 | -2,625                   | -2,88                 |
| 09Г2С     | 2,7904              | 1,2251     | 0,0881 | 900 | -2,8                     | -2,87                 |
| 20Х3МВФ   | 2,7947              | 1,3074     | 0,0874 | 900 | -3,122                   | -2,97                 |
| 4X25H20C2 | 2,7445              | 1,9871     | 0,0865 | 900 | -4,26                    | -4,98                 |

Таблица 1. – Изменение lg ( $P_{CH4}/P_{n2}^2$ ) для сталей в зависимости от температуры [7,8] и интегральных параметров межатомного взаимодействия.

Сравнение рассчитанных значений с экспериментальными приведено на рис.1. Возможность расчета величины r и знание  $K_p$  (константы равновесия реакции (1) позволит определить активность углерода в стали –  $(a_c)$ , а следовательно, и стойкость стали к водородному охрупчиванию: чем выше активность углерода, тем меньше стойкость стали к водородной коррозии.



Рис.1 – Сравнение экспериментальных и рассчитанных по уравнению (2) значений lg(r), где r = Pсн<sub>4</sub>/ $P^2$ н<sub>2</sub>

Термическая обработка сталей происходит обычно в газовых атмосферах типа CO–CO<sub>2</sub>– H<sub>2</sub>–H<sub>2</sub>O–N<sub>2</sub>–CH<sub>4</sub>, целью подбо-

ра состава которых является предотвращение окисления и обеспечение заданного содержания углерода на поверхности металла. Взаимодействие сталей с газовыми атмосферами обычно не ограничивается реакциями окисления-восстановления и обезуглероживания – науглероживания, а и сопровождается наводороживанием, что вызывает изменение механических свойств металла. Анализ влияния содержания водорода в контролируемых атмосферах (табл.2) на механические свойства сталей 18ХГТ, 30ХГТ, 20ХНЗА, 20 ХГНР, 45Х и ШХ15 [9] показал, что на характер изменения механических свойств сталей влияет как состав последних, так и состав газовой атмосферы.

| Содержание компонентов, % |    |                 | Модельные        | е параметры    |                                   |              |
|---------------------------|----|-----------------|------------------|----------------|-----------------------------------|--------------|
| H <sub>2</sub>            | CO | CO <sub>2</sub> | H <sub>2</sub> O | $Z^{Y}_{r}, e$ | $d_{\rm f}$ ·10 <sup>-1</sup> ,нм | $tg\alpha_r$ |
| _                         | _  | _               | 0,002            | 0,769          | 1,3688                            | 0,13         |
| 10                        | 10 | 0,05            | 0,3              | 0,704          | 1,3522                            | 0,2945       |
| 21                        | 11 | 0,1             | 0,4              | 0,4319         | 1,4784                            | 0,3631       |
| 31                        | 17 | 0,2             | 1,0              | 0,2801         | 1,7020                            | 0,3937       |
| 39                        | 20 | 0,2             | 1,0              | 0,3849         | 1,5241                            | 0,3729       |
| 75                        | _  | -               | 0,05             | 0,5218         | 1,4176                            | 0,3429       |

Таблица 2. – Химический состав газовых атмосфер.

Состав газовой смеси рассматривается нами как химически единая система, реакционную способность которой характеризует сочетание соответствующих параметров  $Z_{\Gamma}^{Y}$ ,  $d_{\Gamma}$  и tg $\alpha_{\Gamma}$  (табл.2). При этом повышение содержания водорода в атмосфере печи вызывает снижение механических свойств. В табл.3 приведены интегральные параметры сталей, изменение механических свойств которых ( $\psi$ ,  $\delta$ ,  $a_{\rm H}$ ) коррелирует с интегральными параметрами составов сталей и газовых атмосфер, в которых проводилась термообработка:

$$\begin{split} \psi, & = -6400, 34 - 175, 36d_{CT} - 2871, 44Z^{Y}_{CT} + 118580, 70tg\alpha_{CT} + 1, 0d_{\Gamma} + \\ + 5, 12Z^{Y}_{\Gamma} - 7, 03tg\alpha_{\Gamma} \quad (r=0,97) \quad (3) \\ \delta, & = -635, 07 - 86, 33d_{CT} - 507, 46Z^{Y}_{CT} + 17156, 96tg\alpha_{CT} - 3, 20d_{\Gamma} - \\ - 0, 16Z^{Y}_{\Gamma} - 4, 76tg\alpha_{\Gamma} \quad (r=0,97) \quad (4) \\ a_{H,\text{KTM}/\text{CM}}^{2} = -234, 05 + 200, 40d_{CT} + 555, 75Z^{Y}_{CT} - 10885, 4tg\alpha_{CT} - \\ - 18, 13d_{\Gamma} - 2, 71Z^{Y}_{\Gamma} - 9, 44tg\alpha_{\Gamma} \quad (r=0,96) \quad (5). \end{split}$$

| Сталь         | $d_{\rm CT}$ ·10 <sup>-1</sup> , нм | $Z'_{\rm CT}$ , e | $tg\alpha_{CT}$ |
|---------------|-------------------------------------|-------------------|-----------------|
| 18XГТ         | 2,7875                              | 1,2286            | 0,0880          |
| <b>30</b> ХГТ | 2,7748                              | 1,2328            | 0,0881          |
| 20XH3A        | 2,7873                              | 1,2469            | 0,0887          |
| 45X           | 2,7479                              | 1,2323            | 0,0884          |
| ШХ15          | 2,6658                              | 1,2751            | 0,0891          |
| 20ХГНР        | 2,7858                              | 1,2299            | 0,0882          |

Таблица 3 – Интегральные модельные параметры сталей

Зависимость от давления водорода относительного сужения ( $\psi$ ) сталей и сплавов – XH23MTP, XH43MБТЮ, XH55MБЮ, 12X18HЮТ, XH70MБЮ (табл.4) [10], при скорости деформации 0,1 мм/мин описывается уравнением:

 $\psi_{H}$ ,  $\% = 900,51 - 123,38d_{CT} - 140,76Z_{CT}^{Y} - 2764,64tg\alpha_{CT} - 2,06P_{H_2}(r=0,967)$  (6).

Изучение влияния водорода (*P*н<sub>2</sub>=10Мпа) на механические свойства сталей X18АГ10, X18АГ15, X18АН9 и X18АН15 [11], имевших также различное содержание азота (32 состава) позволили установить связь σ,

σ<sub>0,2</sub>, δ с интегральными модельными параметрами состава сталей в виде уравнений:

Таблица 4 – Интегральные параметры межатомного взаимодействия в сталях.

| Сталь    | $d_{\rm CT}$ ·10 <sup>-1</sup> , нм | $Z_{CT}^{Y}$ , e | $tg\alpha_{CT}$ | Ψ <sub>H</sub> ,% |
|----------|-------------------------------------|------------------|-----------------|-------------------|
| X23MTP   | 2,8330                              | 1,8045           | 0,0903          | 42,3              |
| Х43МБТЮ  | 2,8385                              | 1,8857           | 0,0930          | 21,6              |
| ХН55МБЮ  | 2,8402                              | 1,7649           | 0,0973          | 27,9              |
| 12Х18НЮТ | 2,8017                              | 1,7671           | 0,0861          | 71,1              |
| ХНМБЮ    | 2,8374                              | 1,8263           | 0,0960          | 41,1              |

В работе [12] приведены результаты исследований разных авторов в части влияния химического состава сталей на содержание водорода в них. Несмотря на относительно малое число экспериментальных точек, анализ некоторых из этих результатов представляет несомненный интерес. Так, данные табл.5 для [H] (см<sup>3</sup>/100г) хорошо интерпретируются (r=0,98) уравнением:

 $[H] = 496,49 + 95,98 Z<sup>Y</sup> - 6874,7 tg\alpha,$  (10) причём парную связь [H] = f(Z') характеризует *r*=0,9.

Таблица 5 – Содержание водорода и основных легирующих элементов в сталях.

| N⁰ |       |      | Состав, | масс. % | [ <i>H</i> ], | Модельн | ые пара-             |            |                     |
|----|-------|------|---------|---------|---------------|---------|----------------------|------------|---------------------|
| П  |       |      |         |         |               |         | см <sup>3</sup> /100 | мет        | гры                 |
| п  | С     | Mn   | Ni      | Mo      | S             | Р       | Г                    | $Z^{Y}$ ,e | $d \cdot 10^{-1}$ , |
|    |       |      |         |         |               |         |                      |            | HM                  |
| 1  | 0,082 | 0,59 | 2,69    | 0,51    | 0,020         | 0,015   | 4,35,1               | 1,2181     | 2,8129              |
| 2  | 0,078 | 0,58 | 0,79    | 0,17    | 0,018         | 0,014   | 2,73,3               | 1,1740     | 2,8152              |
| 3  | 0,110 | 1,77 | 0,93    | 0,19    | 0,018         | 0,013   | 5,76,0               | 1,2079     | 2,8128              |
| 4  | 0,094 | 1,79 | 2,80    | 0,47    | 0,019         | 0,014   | 7,39,1               | 1,2437     | 2,8166              |
| 5  | 0,099 | 2,31 | 1,27    | 0,23    | 0,021         | 0,022   | 7,48,6               | 1,2266     | 2,8159              |
| 6  | 0,083 | 2,21 | 3,00    | 0,54    | 0,022         | 0,018   | 8,28,5               | 1,2575     | 2,8195              |

Для другой группы данных, приведенных в работе [12] и связанной с оценкой влияния состава флюса на содержание водорода в металле сварного шва и его относительную трещиностойкость (табл.6), картина вырисовывается более многоплановая.

С одной стороны, свёртка информации о столь разнообразных составах позволяет описать механические свойства сварных швов обобщающими уравнениями:

$$\sigma_{0,2(M\Pi a)} = 6623 Z^{\nu} - 7493,1 \quad (r=0,9) \tag{11}$$
  
$$\delta_{1}\% = 216,6 - 159,2Z^{\nu} \quad (r=0,8) \tag{12}$$

С другой стороны, содержание диффузионно–подвижного водорода, при котором у перечисленных сталей обеспечивается одинаковый уровень трещиностойкости ( $\sigma_{\kappa p}/\sigma_{0,2} = 0,5$ ), уменьшается с ростом химического эквивалента состава:

$$[H], (cm^3/100r) = 228,5 - 179,84 Z^Y$$

| ( | 1 | 3 | ) |
|---|---|---|---|
|   |   |   |   |

| N⁰ |       |      |      | Моде. | льные |      |       |      |            |                 |
|----|-------|------|------|-------|-------|------|-------|------|------------|-----------------|
| пп |       |      |      | парам | иетры |      |       |      |            |                 |
|    | С     | Si   | Mn   | Cr    | Ni    | Mo   | V     | Cu   | $Z^{Y}$ ,e | $d, 10^{-}$     |
|    |       |      |      |       |       |      |       |      |            | <sup>1</sup> HM |
| 1  | 0,078 | 0,45 | 1,2  | 0,35  | 0,35  | 0,11 | 0,01  | 0,30 | 1,2138     | 2,8036          |
| 2  | 0,071 | 0,31 | 1,4  | 0,34  | 1,6   | 0,34 | 0,01  | 0,31 | 1,2376     | 2,8104          |
| 3  | 0,070 | 0,18 | 1,3  | 0,82  | 1,75  | 0,32 | 0,015 | 0,30 | 1,2468     | 2,8142          |
| 4  | 0,078 | 0,25 | 1,3  | 0,50  | 1,85  | 0,46 | 0,045 | 0,33 | 1,2461     | 2,8113          |
| 5  | 0,082 | 0,22 | 0,85 | 0,75  | 2,65  | 0,45 | 0,02  | 0,56 | 1,2576     | 2,8107          |
| 6  | 0,082 | 0,30 | 0,87 | 0,37  | 0,28  | 0,28 | 0,01  | 0,22 | 1,2020     | 2,8070          |
| 7  | 0,065 | 0,22 | 0,82 | 0,60  | 2,4   | 0,45 | 004   | 0,20 | 1,2427     | 2,8132          |
| 8  | 0,078 | 0,29 | 0,95 | 0,65  | 2,1   | 0,49 | 0,03  | 0,21 | 1,2468     | 2,8094          |
| 9  | 0,076 | 0,17 | 0,82 | 0,75  | 2,2   | 0,55 | 0,01  | 0,20 | 1,2440     | 2,8130          |
| 10 | 0,066 | 0,28 | 1,05 | 0,70  | 2,2   | 0,50 | 0,01  | 0,20 | 1,2506     | 2,8118          |
| 11 | 0,070 | 0,34 | 1,30 | 0,80  | 2,2   | 0,55 | 0,06  | 0,45 | 1,2679     | 2,8106          |

|  | Габлица б | б – Химсостав | и модельные | параметры | сталей | [12] |
|--|-----------|---------------|-------------|-----------|--------|------|
|--|-----------|---------------|-------------|-----------|--------|------|

# Выводы.

Изложенные выше результаты позволяют утверждать, что выбранные для водорода значения  $Ru_{\rm H}^o$  и tg $\alpha_{\rm H}$  [13] и их использование в физикохимической модели расплавов с ОЦК – подобной структурой позволяют на численном уровне анализировать влияния межатомного взаимодействия на растворимость водорода в металлических расплавах и оценить его влияние на механические свойства сталей и сплавов.

- 1. *Ткачев В.И., Холодный В.И., Левина Н.И.* Работоспособность сталей и сплавов в среде водорода. –Львов: Изд.ФМИ, 1999. –255 с.
- 2. Водород в металлах. Под ред. Алефельда Г. и Фелькля Н. Перевод с немецкого.-М.: Мир, 1981. – Т.1. – 475 с.– Т.2.– 430 с.
- 3. Морозов А.Н. Водород и азот в стали. -М.: Металлургия, 1968. -284 с.
- 4. Гельд П.В., Рябов Р.А., Водород в металлах и сплавах. –М.: Металлургия, 1974. –272 с.
- 5. Шаповалов В.И. Влияние водорода на структуру и свойства железоуглеродистых расплавов. – М.: Металлургия. – 1982. – 230 с.
- 6. *Кубашевский С.Б., Олкок С.Б.* Металлургическая термохимия. –М.: Металлургия, –391 с.

- Алексеев В.И., Боголюбский С.Д., Ушаков И.С, Швариман Л.А.Активность углерода в низколегированных сталях и склонность их к водородной корро-
- зии. //Изв. АНСССР Металлы. –1971. –№1. –С.134–141.
  8. Алексеев В.И. Термодинамика реакций взаимодействия водорода с углеродом сталей и стойкость против водородной коррозии. //В кн. Проблемы металлофизики и физики металлов. –М.: Металлургия. 1980. –№6. –С.85–100.
- Шейндлин Б.Е. Влияние водорода печной атмосферы на механические свойства сталей. //Металловедение и термическая обработка металлов. –1968. – №11. –С.36–38.
- Ткачов В.І., Іваськевич Л.М., Витвицький В.І. Методичні аспекти визначення водневої тривкості сталей. //Фізично–хімічна механіка матеріалів. –2002. – №4. –С.17–25.
- Ткачов В.І., Іваськевич Л.М., Гаврилюк В.Г., Криль Я.А. Воднева тривкість сталей, легованих азотом. . //Фізично-хімічна механіка матеріалів. -2003. -№1. -С.103-106.
- Походня И.К. Проблема сварки высокопрочных низколегированных сталей. //Сучасне матеріалознавство XXI-сторіччя. –К.: Наукова думка, 1988. –С.31– 69.
- Кукса О.В., Приходько Э. Влияние межатомного взаимодействия в интерметаллидах на их сорбционную способность по отношению к водородую. // Доповіді НАНУ. –2000. –№ 7. –С.96–100.

Статья рекомендована к печати д.т.н., проф. Тогобицкой Д.Н.

7.