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Subject of the paper includes two open asymmetric I-cross sections of cold-formed thin-walled
beams. The both beams are simply supported and are subjects to pure bending. Every I-section is
separately described by dimensionless parameters. Geometric properties with warping functions
and inertia moments are determined. The strength, global and local stability conditions are defi-
ned for both beams. Mathematical solution of elastic local buckling problem for the flange of I-
thin-walled beam is experimentally verified. Optimal open cross section shapes of both beams are
determined. The optimization criterion is formulated on the basis of a dimensionless objective
function. Optimal open cross sections of both beams are compared with a classical I-section beam.
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Introduction. Manufacturing of arbitrary open cross sections of cold-formed thin-wal-
led beams is widespread and well-known in engineering. Contemporary studies of
strength and stability problems of these beams are of very extensive character. Selected
results of these studies are presented for example by: Bradford and Ge (1997), Brad-
ford (1998), Chen (2000), Davies (2000), Pi and Trahair (2000), Rasmussen (2001),
Hancock (2003), Mohri, Brouki and Roth (2003), Hsu and Chi (2003), Bambach and
Rasmussen (2004), Corte et al. (2004), Di Lorenzo et al. (2004), Dinis, Camotim and
Silvestre (2004), Magnucki, Szyc and Stasiewicz (2004), Trahair and Hancock (2004).
Optimal designing of thin-walled beams under strength and stability constraints be-
longs also to contemporary studies. Magnucki and Monczak (2000), Magnucki (2002),
Magnucka-Blandzi and Magnucki (2004), Magnucki and Ostwald (2005) determined
optimal shapes of selected mono-symmetrical open cross sections of cold-formed thin-
walled beams.

Subject of the optimization includes two cold-formed thin-walled beams with
open cross sections, which was presented by Magnucki and Ostwald [15]. The first
cross section is I-cross section of a cold-formed beam, and the second one is a generali-
zed case of the first cross section. The both beams of the length L, depth H, and wall
thickness ¢ are in a pure bending state.
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1. Geometric properties of an asymmetric I-section cold-formed beam

The first cross section of the asymmetric I-section cold-formed beam is shown in fig. 1.
This cross section of the beam is described by two following dimensionless pa-
rameters

x,=bla, x3=t/b. ()

The centroid of the cross section (the point O) and the shear center (the point C) are
located in the center of the coordinate system yz — the principal axes. The total area
and the geometric stiffness for Saint-Venant torsion of the cross section

A=2at-f,, Jtzéat3~f0, )

where f, =1+2x,.

Moments of inertia of the cross section area with respect to the y and z axes and
the warping moment of inertia are as follows

Jy:2a3t.f2, JZ:2a3‘»f.:5’ szzast'ﬂ, (3)

where
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The warping functions — values of the functions in points of the profile (fig. 1)
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Fig. 1. Scheme of the asymmetric I-section beam
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where

N 253 _ ~ 1 - - 1
®; :_ﬁ, Wy =, —5(l—x1x3)x1, @3 = —5(1—2x1x3)x1,

~ ~ 1 ~ ~ 1 ~ o~

2. Geometric properties of an asymmetric lipped I-section cold-formed beam

The second cross section of an asymmetric lipped I-section cold-formed beam is shown
in fig. 2.

This cross section of the beam is described by three following dimensionless pa-
rameters

x,=bla, x,=c/b, x;3=t/b. (3)

The product of inertia of the cross section is zero for the principal axes yz
(v,.=0), that

X, =i(1—1/1—kxl ) (6)

Xy

where k = (1 — X1 X3 )/2 + (2 — X1 X3 )x3 .
The total area, the geometric stiffness for Saint-Venant torsion and moments of inertia
of the cross section are as follows

A=2at-fy, J,=2ar’-f;, )
J,=2a’t-f,, J.,=2da’-f;, J,=2a’tf;, ®)
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Fig. 2. Scheme of the asymmetric lipped I-section beam
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where

1 1 1
fi=x +(1—x1x3)2{5x1 +§(1—x1x3):|+§[1—(1—x1x2)3],
B ~2 11y~ ~2) ~2
By, + @2+ (B2 + By + 02 )1 | 3.

The warping functions are (fig. 2)
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3. Elastic buckling of the flange of the I-section cold formed beam

3.1. Analytical solution. Mathematical model for local buckling of the upper flange of
the beam is assumed in the form of a beam on an elastic foundation [15]. Scheme of
the deformation of the cross section of the beam is shown in fig. 3.

The differential equation for the beam on an elastic foundation is in the follo-
wing form

d4W+k2 d2W
4 2
dx dx

where k> = F/EJ_ ;, B=c/EJ. ;. J. =2b3,

+B-w(x)=0, (o I

c=8E(t/ b)3 are the module of the elastic foundation, F is the

longitudinal compression force of the upper flange.

The web is rigid as compared to the flange of the beam.
In consequences, the deflection function determining the buck-
ling shape is assumed in the following form

W(x) =W -sin” (nm x/L) ’ (11 Fig. 3. Deformed

cross section of the beam

iHAgexc M o3Havyae aTOM OBEPXHI .
under pure bending

where w, is amplitude, m is natural number.
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The differential equation (10) is solved with the Galerkin method. The critical
force is obtained in the following form
FoogE D minl 2y S L —SﬁEi (12)
KT p v 3 4y b’

where Y = mnb/L.

The critical stress for the compressed flange of the I-section of cold-formed
beam will be
(anat) _ F, \/— tY
anal CR
c =L =442F —| . 13
K 2bt [bj (1)

For the beam: L =900 mm is the length, H =162 mm is the depth, b =80 mm is the

width, 7= 0,6 mm is the wall thickness, the critical stress 6% = 65,2 MPa .

3.2. Experimental tests. The mathematical model of the flange of the beam includes
some simplifications, and the analytical solution of the buckling problem is only
approximate. Experimental research was carried out for two cold-formed thin-walled
beams (the first case of beam — the asymmetric I-section, fig. 1). Sizes of the beams:
L.=1000 mm is the total length of the beam, H =162 mm is the depth, b = 80 mm is
the width, ¢ = 0,6 mm is the wall thickness, L = 900 mm is the length of the beam under
pure bending. The beam with elastically buckled upper flange is shown in fig. 4.

In results of the experimental tests the following critical stresses are obtained:

G(Cefl) =62,8 MPa, G(Cf,',fsz) =83,7MPa . The value of the critical stress (13) calculated
analytically is contained between these values.

Fig. 4. General view of the beam with buckled flange (Fot. M. Ostwald)
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4. Optimization of I-section cold-formed beams

The optimization criterion assumed based on the paper of Magnucka-Blandzi and Mag-
nucki (2004) has the following form

max[q)ml(xi)uq)m2(xlﬁ7\‘)]:CDmaxﬂ (14)

i

where @, =M, / EAY? s the dimensionless objective functions, L =L/H is the

relative length of the beam, j =1 is the strength condition, j =2 is the lateral buckling
condition.
Maximal value of the dimensionless objective function @, is equivalent to a

maximum of moment M as a load or minimal value of the area A4 of the cross section of
the beam. Hence, the assumed criterion includes two optimization problems: maximi-
zation of the load and minimization of the area of the beam cross section.

Constraints of allowable solutions are:
o the strength condition
M <M, (15)
where M|, =2J.6,/H, H=2a+t is depth of the beam, o, is the allowable stress, M
is the bending moment as the load;

o the lateral buckling condition

M<M,, (16)
where
nk nJ
M,=—— |J J|1+2(1+v)=="2 |,
’ 1/2(1+vjcs1:\/ g ‘{ (V)7 J,}

and L =\ H is the length of the beam, ¢ is the coefficient of safety, F, v are the material
constants;

o the local buckling condition

o, <2 (17)

where 6, is the maximal stresses in the flange or in the web of the beam, ¢, =1,5¢, is

the coefficient of safety for the local buckling [15, 16], G(C’;Z{’”ge) = 42E(t/b)* is the
critical stress for the flange of I-section cold-formed beam (13),

2 2
G(Cv;fb) =2(1n—2)E[£] is the critical stress for the flat web of thin-walled beam
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Fig. 5. Maximal values of the dimensionless objective function for two beams

2
(1+v)(4-3c/a
the beam [15, 16, 20].

2
[15, 16], G(Cl’;"t) = )E(ij is the critical stress for the bent flange of
c

5. Numerical calculations

The numerical calculations are carried out for a family of the beams of relative length
7,5<A =20, and Ga/E =0,0015, v=0,3, ¢, = 1,8. Maximal values of the objective
function @, (14) are numerically determined for each beam of the family (fig. 5).

The plot shows that both investigated cross-sections of cold-formed thin-walled beams
are practically equivalent. Maximal values @ . of both beams approximate each

other in the investigated interval A € <7,5;20,0> . Moreover, @ . for standard I-section

beam is shown in fig. 5. Examples of optimal cross sections of these beams for depth
H =200 mm and A = 7,5, A= 12,5 are shown in fig. 6.

b= 153’6 mm W b= 142,0 mm
t=4,11 mm ¢=>517mm
)\’:1,25 t:4,12mm

’ A=12,5

Fig. 6. Optimal cross sections of cold-formed thin-walled beams (H = 200 mm)
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Conclusions. The optimization criterion (14) with dimensionless objective functions

®,,; is a quality measure of cross sections of beams. This criterion enables sorting and

comparing the beams with different shapes of cross sections. Values of the objective
function for both cold-formed thin-walled beams are similar. The quality of the thin-
walled beams subject to the study considerably exceeds the one of standard I-section
beam. The maximal values @ .. of thin-walled beams exceed by 40 percent the ones

max

of the standard I-section beam.
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MpyxHa BTpaTa CTINKOCTI 1 onTUMi3auin
acMMeTpUYHUX NnonepeyHnx nepepisis ABOTaBPOBUX
xonoaHoopMoOBaHMX TOHKOCTIHHMX 6anok

Kwuwtod Marnyuki, Map’aH OcTteansg

YV pobomi posenaoaromuvcs x0100HOpOPMOBAHT MOHKOCMIHHI 080MABPO6i OANKU 3 GIOKPUMUMU
acumempuyHuMU nonepeuHuMu nepepizamu 06ox munie. baixu einbro onepmi ma nepedysaioms 6
ymogax uucmozo s2unanus. Ilepepiz kodcnoi 3 banox onucyroms 6e3po3MIpHUMU NAPAMEMPAMU,
wo 8paxogyroms ix ceomempiio, momenmu inepyii ma degpopmayiio. Busnaueni ymosu miynocmi,
JIOKAIbHOL ma 2nobanvhol cmitkocmi 0ns. 060x munig 6anok. Ilpoeedeno excnepumenmanohy
nepesipKy OmpuMano20 po3s’si3Ky 3a0aui npo JOKANbHY empamy Cmitikocmi noauyi 06omaepa.
Ha ocnosi cghopmynvosanozo kpumepiro onmumizayii, 3 UKOpUCMAHHAM 0e3pO3MIPHOT Yinbosoi
@yHKyii, BUSHAYEHO ONMUMATbLHI POPMU NONepeuHUX nepepisie 01 060x 6aroxk. Ompumani onmu-
ManvHi napamempu nonepeuHux nepepizie NOPIGHAHO 3 KIACUUHUM 080MABPOBUM Nepepi3oM.

Ynpyrasi notepsi yCTOW4MBOCTU M ONTUMMU3ALUA
acMMMeTpPUYECKUX nonepeyvHbIX Ce4eHUN ABYXTaBPOBbIX
X0NnoAHoGOpPMUPOBaAHHbIX TOHKOCTEHHbIX 6anok

Kwuwtod MarHyukun, MapbsaH OcTtBanbg
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B pabome paccmampusaiomes xono0nogopmuposantvie moHKOCHEHHble 08YXmagposuvle OAKu
OMKPLIMbIX ACUMMEMPUYHBIX cedeHull 08yx munog. Ilpunumaemcs, umo 6anrku c60600HO onep-
moele U HAxooamcs 6 ycnoguax yucmoeo useuba. Ceyenusi 6aioK OnucwLBaom 6e3pasmepHbIMu
napamempamu, KOmopwvle YUUmvléarom ux 2eoMempuio, MOMeHmbl uHepyuu u Oeopmayuio.
Hccneodyromes napamempbl npoyHOCMU, YCL06UA NOKATHOU U 2100aNbHOU YCMOu4ugocmu Oanox.
IIposedena sKcnepumenmanvHas NPOGEPKA NOJYUEHHO20 MAMEMAMUYECKo20 peueHus 3a0ai O
JIOKANLHOU nomepe ycmouuusocmu noaku osyxmaspa. Ha ocnosanuu cgopmynuposannozo Kpu-
mepus ONMUMU3AYUY, C UCNOIbI0BAHUEM DE3PA3SMEPHOU DYHKYUU Yeau, onpedeneHbl ONmumMalb-
Hble @opmbl nonepeunvix ceuenuil oanox. Ilposedeno cpasnenue NOTYUEHHBIX ONMUMANLHBIX
napamempos nonepeyHvlx cevenull ¢ Kiaccuieckum 08yXmagpogbiM ceveHueMm.
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