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In the paper equations of mathematical model of mechanical, heat, diffusion and electromagnetic
processes in aqueous nonpolarized solutions of electrolyte with use of electrode potential are for-
mulated. It is shown that under certain conditions new coupled parameters can be found: absolute
temperature — entropy density, pressure — specific volume, chemical potential — concentration
of anions, electrode potential — mass electric charge density. It enables to relate balance model
equations with Maxwell equations.
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Introduction. In many cases equations of mass and electric charge transport in liquid
phase define fundamental properties of porous materials saturated with aqueous solu-
tion of electrolyte. The quantitative description of these processes is usually realized by
continuous mechanics conceptions [1, 2] and methods of the non-equilibrium thermo-
dynamics processes [3-5]. In the aim of include in equations of transport reciprocal re-
action of charged molecules and electromagnetic field, the electrochemical potential
[4, 6] or the electrode potential [7, 8] are use. We notice, that the electrode potential in
description of influence of charged molecules distribution on mechanical behavior of
metals was used in paper [9]. In case of using the electrochemical potential we get the
set of equations of model of electrolyte, for which the formulation of chosen initial
conditions is not trivial.

In present paper, in equations of transport processes we included the electrode
potential [7] and equations for mechanical, heat, diffusion and electromagnetic in aqueous
solutions of electrolyte without polarizations phenomena are formulated.

1. Gibb’s equation and linear state equations

It assumed that the solution (electrolyte) consist of three components, which the fun-
damental component is a water molecule and two others (cations and anions) are charged
molecules. In the macroscopic description each component of electrolyte correspond to
continuum K; (i=0, 1, 2), and for total system — to continuum of mass centre K..
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The mechanical, heat and electromagnetic processes are consider with use of kinemati-
cal characteristcs of continuum mass centre K., while diffusion processes as relative
motion of continuum K; points with respect to continuum K,. The system occurs in the
limited part of Euclidean space in Carthesian coordinates {x"}, where x" are the coordi-
nates (o =1, 2, 3).

Non-equilibrium processes in electrolyte will describe using local thermodyna-
mical equilibrium hypothesis [3]. Let assume that, local state of the system is described
by the coupled macroscopic parameters

T —s, -P—v, Wi— C,, k=0,1,2, (1)

where T is the absolute temperature, s is the mass density of entropy, P is the pressure,
v is the specific volume (v=1/p, p= Zp « denotes the total density, p; is the density
of k-th component); p'; is the chemical potential i-th component of the system and
Ci = py/ p its mass concentration.

Changes of parameters (1) are in agree with Gibbs and Euler equations, which with
comply of condition of standarization of concentration (XC;= 1) have a form [9, 10]

2 2
duszs—PvarZudek, u=Ts—Pv+Zudek+u{), )
k=1 k=1

where u is the density of internal energy, w, = W — Wy is the specific chemical potential
(k=1, 2), Wy is the chemical potential of water.

For description of diffusion of charged components and electromagnetic proces-
ses we introduce as independent parameter density of mass charge Q,,, 1. €.

Q,, =zC + 2,0, (3)

where z, =z F/M,, z, = z}F /M, are the mass densities of cations and anions charge

of electrolyte, z;, z, are the valency numbers of cations and anions; M,, M, are the

atomic (molar) mass of cations and anions; F' = |e| - N4 is the Faraday constant, | e| is
the absolute value of electron charge, N, is the Avogadro number.
With comply of formula (3), Gibbs and Euler equations (2) have a form

du =Tds — Pdv+u;dC, +9dQ,,, u=Ts—Pv+uC,+0Q, +uy, 4)

where puj =p, —zp, is the modified chemical potential (z =z/z;) and ¢ = p,/z, is
the electrode potential [7].

We notice that similar form of equation (4) we get with using the electrochemi-
cal potential.

Use from a definition of density free Helmholtz energy, namely: f'=u— Ts — ¢Q,,,
equations (4) rewrite in the following form

df =—sdT — Pdv+pnjdC, - Q,do, f=-Pv+uiC, +n;. ®)
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In case, when free Helmholtz energy f is a thermodynamical potential, i. e.
f=AT, v, Cy, ¢), then from Gibbs equation (5) we get general form of state equations

S:—[zj s P:—(gj R uf :{i\] , Qm 2—(1] . (6)
T ), e V)re., oc, TwQ, 9 )r.c,

m

Accepted that free Helmholtz energy is an analitical function of independent pa-
rameters 7, v, C;, ¢ and assuming that in an initial equilibrium state, coupled parame-
ters get values

To— so0, Po— o, Hle(o) — Cip,  ®o— Qo)

and consider small deviation from this state
0T =T-T,, Odv=v—y,, 8C1=C1—C1(0) dp=0—q,
we execute developments of free Helmholtz energy in Taylor series.
Then from state equations (6) we get following form of linear state equations
ds=c,/Ty 8T — o 8v—d\78C, + dy 80,
OP =—0.,6T —a,0v—d,; ,dC, +d, 00,
duy =d,;8T +d,,8v+d.8C, —d, 8¢,
3Q,, =dyp8T +d,,8v +d, 8C, +d 3¢, (7)

where 8s=s5—s,, OP=P—F), du{ =p| — “16(0) and 0Q), =Q, — Q,q) are the chan-

ges of coupled parameters;

2 e
¢y :TO[%] > A, z_[a_PJ ) dc z{aulJ D d(p :[an] , Op :_(a_Pj )
or? ), v ), oc, ), 20 ), oT ),

le: % ,dsz OQ_m > dlv: aul > d2v= an 5 dzc: an
oT o oT 0 ov 0 ov 0 oC, 0

are physical constants.

2. Conservation and balance equations

Mass conservation equation. A differential form (local) of mass equation has a form
0 = -
%i+V(mUQ:O,k=QL2, )
T

where v, (17,17) are the molecule velocity of k-th component of system (velocities of

continuum points Ky), V=1* 6/ ox® is the Hamiltonian operator 7 * are the contrava-
riant base vectors of the Carthesian coordinates (o= 1, 2, 3), T is the time.
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The rule of total mass conservation of the system we get from equations (8)
through their adding up

»__ dp_

—=-V-(pv)=0...0r.. -V, ©)

“pdt

where U= p_lz PV, is the velocity of points of continuum mass centre K, d/dt=
k

=0/0t+ V- V is the full derivative (substantial derivative).

Equations of mass conservation of respective components (8) we can express in
the form including mass concentrations of components

p‘i%wj,c:o, k=0,1,2, (10)

where J, =p; (O, — V) is the diffusion flux.

Equations of charge balance. The rule of electric charge conservation we get
from equations (10) by multiple of them by mass densities of charges z; (k= 1, 2) and
by their addition

aQ,

=V.J, 11
It J (11)

p

2
where j = szJ « 1s the density of conduction flux connected with ions diffusion.
k=1
The elecromagnetic field in the system and environment is determine from Max-
well’s equations [4, 7]

R E - - - H - -

VXHZSOSa—-i-I, Vsz—poua—, V-H=0, ¢&)V-E=Q, (12)
ot ot

- = E, - o =z oH, - = L

VxHezeoa—T“rje, VXE,=-q, 616’ V-H,=0, ¢gV-E=Q,. (13)

In equations (12) and (13) E ,Ee are intensities of electric field and H,H, . are intensi-

ties of magnetic field in the system and environment; €, p are the electric and magnetic
permittivities of electrolyte; €, L, are the electric and magnetic permittivities of vacuum;

I1=Q0 +] is the density of electric flux in the system, where Q = pQ,, and Q, is the
density of the volume charge in the system and environment; ]’e is the density of con-
duction flux in environment. The quantities Q, and ]e are in agree with a condition
Q,/0t1=-V"],.

When the equation for anions concentration C, replace by the equation of charge

conservation, then the system of equations of model consist of differential equations:
total mass conservation p, cations concentration C; and mass charge Q,,, namely

10
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dp = dc, = - dQ -
—=—pV:v, p—=-V-J,, L=-V-j. 14
1P P P J (14)
Remaining qualities we define on the base of algebraical relationships
Z 2
F 1 - 7 7 1l - T 2
Jy=—j—-zJ, J0=——]+(z—1)J1, z=—), (15)
Z 2 2

which are the result of using standarization conditions ZCk =1 and Zj =0

(k=0, 1, 2) and definition of density of mass charge (3).
Equations of motion. The differential form of equation of motion for the total
system is

p—=V-6+F+F,, (16)

where & is the Cauchy’s stress tensor [1], F and F, ;. is the mass force and the force
related to the Lorentz force, with recpect to elementary volume.

Cauchy’s stress tensor 6 is related to tensor of pressure P by relation 6 = -P [2].
In the general case, tensor of pressure P is expressed by P=PI+P", where P is the
pressure in equilibrium, P° is the tensor of viscous pressure. Tensor of viscous pressure

P® in the turn we write in form P® = P°] + P* + P* | where P° = (Pl‘f + P+ P )/3

is the viscous pressure, P P* are the antisymmetric and symmetric part of the de-

viator of tensor of viscous pressure Pv.
The mass force is defined as F = Zp F! ,in which F is the mass potential force

(F} =-Vy},) which is conservative force (Oy} /0t=0), y'; are potentials (k =0, 1, 2).
The force F, = Zpkﬁuk) related to the Lorentz force FL(k) =z; (E + LoV X I:I)

acting on k-th element of the system, using density of eletrical flux and conduction
flux, we write as follows F, =pQ, E +pol x H .

We notice that, to get a form of equation of motion in agree with literature [2]
we should to accept following relationships

Poz(gn_nujg.ﬁ, P =—am(Ves), =0, (17)

where 1, 1, are the form and volume viscosities respectively, (ﬁ ®6)S is the sym-

metrical part of the dyad V®U .

11
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Equations of balance of potential, kinetic and electromagnetic energy. The ba-
lance equation of potential energy in total py = Zpk\y « (k=0,1,2) we get from the
rule of mass conservation (8) elements of the system. In this aim, equation (8) we mul-

tiply by potential y'; and summarize by all £. Take into account conditions of standari-
zation we note

d
pd—“T’——v [Zkakj—u D P - ZJk Fy, (18)

k=0 k=1
where y; = y'y — Vg is the relative mass potential, F'k =—Vy « (k=1,2).

Equation of balance of kinetic energy we get from equation of balance of mo-
mentum (16) by scalar multiple with velocity vector U and take into account, that

6=-P, F:Zizopkﬁkr and F, =pQ, E + ol x H . Then we have

d(v) = oA e & = L L
pEL%j:—V-(U-P)+P:V®U+U-Zkak+U-(meE+;,LOI><H). (19)

Equations of balance of electromagnetic energy we get from Maxwell’equations

%B(%OEZ +HHOH2)}=—V(E><I:I)—E-Z. (20)

The rule of energy conservation and equation of balance of internal energy. Den-
sity of total energy e with recpect to elementary volume of the system we define as follows

1 > > 0’
pe—E(SSOE +upod )+p(7+\y+uj. 21)
When the density of flux of total energy we assume in the form
- 52 B 2 -
J,=p 7+\|/+u U+ ExH+ Zuk-l—\yk +Jy, (22)
k=1

where J o 1s the flux of heat, then the rule of conservation of total energy has a form

0 S
ECONE S 23)
ot
Equations of balance of internal energy we get, when we substitute expression
(21) and (22) to equation (23) and we use equation of balance of potential energy (18),
kinetic (19) and electromagnetic energy (20). Using equations (14) we notice them in a form
du P d_p d C1

d
—=-v.J +
pdr ot “lpd +op—— dr

12
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+J - X+ X+ POX, + P XS 4 PO XY (24)
where X, :—ﬁ(uf +\|/f),)?e :—ﬁ((pﬂpe +\y§)+u06xfl,Xu =—V.5,X" :—(§®6)s
and X% = —(? ® 6)a are the thermodynamic forces coupled to density of flux of cations
jl , flux od conduction ;, viscous pressure, symmetric part of tensor of viscous pres-
sure P* and antisymmetric part of pressure tensor pv ;(? ® 6)a is the antisymmetri-

cal part of the deviator of tensor VU ; wi =y, —2y,, ¥ =y, /z, are the trans-

formed potentials of mass forces, ¢, is the electric potential (E = —?(pe ) .

3. Equation of balance of entropy and Kinetic equations

Let consider boundary transition to equilibrium changes in the system. In this case we
reduce all fluxes to null, i. e. jQ -0, j1 —0, j—0 and P® 0. Except this, we

involve definition of entropy [10, 11]. From definition of entropy and heat flux J o Wwe have
lim (V-J,)=-pT—. 25

JQI r—r>10( 0 ) P (23)

Then from equation of balance of internal energy (24) we get

d_u— Tﬁ+£@+ ¢ _dC1+ de
pdt P dt pdr e dr *p dr

(26)

The change of state of the system and following physical quantities u, s, p, C,
and Q,, for this case runs quasi-static.

Equation of balance of entropy we lead out by comparison of equation of balan-
ce of internal energy (24) for real and quasi-static processes (26). In further part we

neglect the influence of mass forcess (yi =0, y5 =0), volumetric and rotating vis-
cosity (P° =0, P* =0), then we have
ds S 2 /- = FE T ype pLS . 1 LS
pEZ—V'JS+?(JQXQ+J1~X1+]-X + P Xx® ), (27)
where J s = J 0 / T is the flux of entropy, X, 0= -VT / T is the thermodynamic force co-
upled to density of flux of heat J 0>

Kinetic equations. Let assume that fluxes are function of forces. For isotropic
media are associated only fluxes and forces equal tensor nature [4], this means

Jp=Jdo(Xp. %0, %), Jy=J,(%,, %, %),
]:j()?Qﬂ)?la)?e)a F",US 213\)5 ()%L)S) ) (28)

13
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For homogeneous system in equilibrium, forces and thermodynamic fluxes are
equal null, then for small deviations from equilibrium positions we can assume linear
relationship between fluxes and forces in a form

J=LpXg+LyX\+L X, P =L:X" (30)

where Log, Lo, Loe, Lio, L1, Lies Leg, Let, Lee are the scalar kinematics coefficients and

L is the tensor’s kinematic coefficient (isotropic tensor of 4-th order).

We mark, that these coefficients should be well-chosen to comply the second
thermodynamic principle and equalities Ly = Lig, Lge = Leg, Lie = Lei, Which are the
result of Onsager principle [2, 4].

4. Key equations

Using the linear state equations (7) for the modified chemical potential p{, assuming
that, characteristics of material dir, d,,, d. and d,. are constants, expressions for ther-
modynamic force X | we write in a form

The form others thermodynamical forces stay without changes.
Substitutting expressions of thermodynamical forces in kinetic equations (29) we get

Jo =4V =XV =1V C =%V~ Ly, (Vo, ~1eOx H),

jl = —BTﬁT - Bvﬁv - Dﬁq - Eq)?(p -L, (ﬁ(pe — UL X I:I) ,

j= —/_\TﬁT ~AVv-ANVC ~ /_\(ﬁ(p -L, (ﬁ(pe — UV X I:I) ,

P* =—L:(Ve®u), (32)
where quantities marked by line refer to the modified material constants.

Equation of heat conduction we obtain from equation of balance of entropy (27)

c, dT dv dC,

=V -(XﬁT + xvﬁv + XLVQ + xqﬁ(p + L_Qeﬁ(pe - Zerof) X ﬁ)+ 0 (33)

where % =%/T, % =%/Ts %e=%e/T> %o=Xo/T > ZQezLQe/T and Q,=

=0, (5 TﬁvﬁCl,ﬁcp,...) is non-compensated heat [10].

Equation of diffusion of cations we obtain by substittuting to equation of con-
centration balance (14) right expressions for flux (32). Then

14
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dC, = (= = — = == = = = .=
pd—; =V (D VT +D,Vv+D,VC +DVo+ LV, —LudxH).  (34)
Equation of diffusion of electric charge we obtain from the balance equation of
charge (14) and expression for conduction flux ; from (32). We have
de . (A A U A U N, "/
p— =V (A VT+AVv+AVC +ANVo+L, Vo, ~ L,

Take into account chosen simplifications from equation of motion (16), we get

DX 1?) (35)

p@=—§P+V[£:(?®6)S}+FL. (36)
dr

Underline that, in this case should be take into account equations of balance of

total mass (14) and Maxwell equations (12), in which quantities I 1Q are determined
with regard to state equations (7) for charge Q,, and kinetic relation (32) for flux of

density of conduction flux ;.

5. Linearized key equations

After neglecting geometrical non-linearity related to convection motion of the system
points (d/dt = /0t ) and neglecting adiabatic relationship of thermodynamical proces-

ses (pds/dt=(c,p/T,)dT/dr), assuming constant density of the system (p=p,) and

its material characteristics, and also L= an 1 , we have

;—"po ‘Z—f = XAT + % AC, + %A@ + Lo, A0, = LouoV - (5x H)+Q,,  (37)
0
aC] ’ ’ _' = r 7
== DrAT + DAC, + DyAg + LA, = LoV - (5xH). (38)
T
8Qm ' ’ 7 - r 7
= ApAT +AAC +AAQ+ L AQ, = iV - (5xH). (39)
v.9-0, Lo Lop 9. (Yeo)+LF, (40)
ot Po Po Po
?xﬁzsosi—E+f, ﬁsz—uou%—H, %-H:o, ss(ﬁ'E:Q, (41)
T T

where quantities
F, =meE+p0[fo[], I=Q0+], Q=pQ,

are expressed by demand function 7,C},Q,,,0, P with use of kinetic equation

15
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J==po(ArVT +ANVC + A Vo)~ L, (Vo ~1eOx H)

and state equations 8Q, =d,;8T +d,.3C, +d,5¢ . Where x=%/pg, %y =%v/Po
Xc:%c/poﬂ X(p:%(p/pO’ DT:DT/pO’ Dv:Dv/pO’ Dczﬁc/pO’ D(p:5¢/p0’

AT :KT/pO ’ AV Z/_\V/Po ’ Ac :/_\c/pO ’ A(p :/_\(p/pO ’ Llle :Lle/pO ’ L(;e :Lee/pO
are modiffied material constants.

6. Boundary conditions

We assume, that functions 3, and ]e , decribing distribution of charge and electric flu-
xes in environment differ from null in limited part of space and on separate surface I" are

absent charge Qr and electric flux i . For initial conditions we assume values of velo-
city, temperature, concentration, electric potential, and magnetic field in initial moment
of time T = 0, which satisfy outgoing equilibrium state of the system. In this case

6=0, P=0, (=0, ¢=0, E=0, H=0, E =0, H,=0. (42)
If on separate surface with non-polarizeable and electrically non-conducting

environment assigned external loading by the force p,, for forces in the system we gi-
ve a condition

—(Pi+13°S)-ﬁ=pe. (43)

For heat processes we assume conditions of first, second and third kind

or oT
T=T., —=J, —+h(T-T,)=J,, 44
e o ) (44)

where T, T, are temperatures on the system surface and environment; 07/0n is di-
rectional derivative of temperature along the normal to medium surface; 4, is the rela-
tive coefficient of energy in heat form; Jr, J, are well-known functions of points of the
system surface and time.

For the electrode potential ¢ and for vectors of electromagnetic field E and H
we have

o=—0,, iix(H,-A)=0, E,-
Een_EnZO’ Hen_Hn:O’ (45)

where @y is a value of electrode potential ¢ on the system surface; Eel and E , are a pro-

jection right field vectors on contiguous plane to the system surface; £,,, £, are normal
components of electric field and H,,, H, are normal components of magnetic field.
For diffusion process on surface I' we assume

py=pr or G =Cr, (46)

16
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where pr and Cr are well-known functions. If surface of the system is mass-isolated,
this fulfils a condition J, -7 =0.
In similar way formulate contact conditions.

Conclusions. In present paper we formulated equations of mathematical model of me-
chanical, heat, diffusion and electromagnetic processes in aqueous solutions of electro-
lyte using the electrode potential without polarization phenomena.

In the quality of coupled parameters describing the local state of the system we
chosen: absolute temperature — density of entropy, pressure — specific volume, che-
mical potential — concentrations of ions and electrode potential — mass density of
electric charge. It enabled to connect in natural way balance equations of the model
with Maxwell equations.
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EnekTpoaHui noTeHuian y moaentoBaHHi
npoueciB NnepeHeceHHs1 B eNeKTPoniTi

Anyw INykoscki, €BreH Yanns

Y pobomi ompumano 6uxiowni cniegioHOWEHHA MAMEMAMUYHOT MOOe] MEXAHIYHUX, MENL08UX, OU-
Qy3iliHuUx ma ereKmpoMasHimHUX NPoYecié y B00HUX HENONAPUSOBHUX POZUUHAX eNeKMPORImy
3 GUKOPUCMAHHAM eJleKmpPOoOH020 nomernyiany. [lapamempamu 10KaIbHO20 CMAHY PO3YUHY 6UOPA-
HO abCOOMHY MeMRepamypy — MAacos8y 2yCmuHy eHmponii, Muck — RUmomutl 00 'em, Ximiuui no-
menyianu — Konyenmpayii komnonenm. Ilokazano, wo 3 BUKOPUCMAHHAM MACOBOT 2yCMUHU eleK-
MPUYHO20 3aPsI0y KOMNOHEHmM (KAmIioHi6 I aHIOHI8) Ma YMOGU HOPMYBAHHS KOHYEHMPAYIU, MONCHA
BUBHAUUMU HOGI CHPANCEHI napamempu, a came. y3a2albHeHull XIMIYHUL NOMeHYianl — KOHYeHm-
payito anioHie ma enekmpoOHULl NOMEHYIAN — MACo8Y 2YCMUHY eNeKMPUYHO20 3apaody cepedosulyd.
Beeoennsa macoseoi cycmunu enekmpuuno2o 3apaoy cepedosuwa y npocmip napamempis cmawy
0036071A€ BUSHAYUMU NPAMULL 38 130K 6I0NOBIOHUX DIBHAHL CMAHY MA OANAHCOBUX CNIBGIOHOUIEHD
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i3 pisnannamu Maxceenna. Buxoosauu 3 nomenyiansbHocmi 6HYmpiwHb0i eHepeii (8inbHoi enepeii
T'envmzonvya), i3 cpopmynvosanux pienans 1ivoca i Elinepa ompumano ninitini pieHAnHA cmMany.
3axonu 30epesicenHa ma 6anaHCOBI PIGHAHHA MOOeNi 3ANUCAHO Ol 2YCIMUHU MACU, KOHYEHMpayii
AHIOHI8, MACOB0I 2YCMUHU eNeKMPUUHO20 3apAdy cepedosuwd, iMnyasey ti ewmponii. 3 yux pie-
HAHb, GUKOPUCIOBYIOUU KIHEMUYHI PIBHANHA MA PIGHAHHA CIMAHY, 00epIHCAHO PO38 A3VIoUY cucme-
My pisusinb mooeni. Cpopmynboeano 6ionogioni nouamxo8i ma epanuyHi yMosu.

ANeKTpoAHbIM NOTEeHLUan B MoaenMpoBaHnmn
NpoLeccoB NepeHoca B 3NIeKTponuTe

Anyw Nykosckn, EBreHnn Yanns
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B pabome nonyuenwt ucxoomvie coommouenus Mamemamuieckoli MoOeu MeXaHu4ecKux, menioesix,
OUDDYZUOHHBIX U DNEKMPOMASHUMHBIX NPOYECCO8 8 BOOHBIX PACMBOPAX INEKMPOTUNMOE C UCNOb-
308anueM dNEKMpPOOHO20 NomeHyuania 6es yyema noaspusayuu cpeovl. B kavecmee napamempos,
XApaKmepusyrowux JOKAIbHOe COCMOsAHUE PACMEopd, 6blOPaHvl abCONOMHAA memnepamypd —
MACCOB8asL NIOMHOCHb SHMPONUU, 0a6lieHUe — YOenbHbIl 00beM, XUMUYECKUe NOMEHYUATb! — KOH-
yenmpayuu komnorenm. Ilokazano, 4mo, UCNOIb3Ys MACCOBbIE NIOMHOCMU IeKMPULECKUX 3aPsi-
006 KOMHOHEHM (KAMUOHOS8 U AHUOHOB) U YCIOBUSL HOPMUPOBAHUS KOHYEHMPAYULL MOICHO 86eCHIU
HOBblE CONPAdICEHHbIE Napamempbl: 000OWeHHbIL XUMUYECKUL] HOMEHYUAT — KOHYEHMPAYUio AHUOHOB U
INEKMPOOHBIL NOMEHYUAT — MACCOBYIO NIOMHOCHb DNEKMPUYECK020 3apsada cpeodsl. Hcnonvsosanue
6 Kauecmea napamempa CoCHOAHUA MACCOBOU NIONMHOCHIU JEKMPULECKO20 3apA0a cpedbl NO360NAem
YCMAaHO8UMb HENOCPEOCMBEHHYIO C6843b COOMBEMCMEYIOUUX YPABHEHU COCIMOAHUSA U OANAHCOBbIX
coommuowienuil ¢ ypagnenusimu Makceenna. Hcxo0s u3 nomeHyuaibHOCIMu 6HymMpeHHell SHepeuu (co-
600no1l 3Hepeuu I envmeonvya) uz copmyruposanuvix ypaguenuti I'uboca u Jinepa nonyueHvl
JuHelinble YPagHeHusi COCMOosHus. 3aKoHbl cOXpaneHus u 6anancogsle ypagHeHus MoOeau 3anucansl
0151 NIOMHOCIU MACCHI, KOHYESHMPAYUU aHUOHO8, MACCOBOU NIONHOCMU SNeKMPUIECKO20 3apioa
cpeobl, uMnybca u dumponuu. M3 smux ypasnenui, ucnonb3ys KUHemuieckue ypasHeHus u ypagHe-
HUsL COCMOAHUSA, NOTYyYeHa paspewaiowas cucmema ypasienuii mooenu. Chopmynuposamnst coom-
semcmeyloujue Ha4anbHble U SPAHUYHbLE YCL08US.

Otpumano 22.11.07



